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Abstract. The classical Cohn-Vossen inequality states that for any complete 2-dimen-
sional Riemannian manifold the difference between the Euler characteristic and the normalized
total Gaussian curvature is always nonnegative. For complete open surfaces in Euclidean 3-
space this curvature defect can be interpreted in terms of the length of the curve “at infinity”.
The goal of this paper is to investigate higher dimensional analogues for open submanifolds
of Euclidean space with cone-like ends. This is based on the extrinsic Gauss-Bonnet formula
for compact submanifolds with boundary and its extension “to infinity”. It turns out that the
curvature defect can be positive, zero, or negative, depending on the shape of the ends “at infin-
ity”. We give an explicit example of a 4-dimeiasal hypersurface in Euclidean 5-space where
the curvature defect is negative, so that the direct analogue of the Cohn-Vossen inequality does
not hold. Furthermore we study the variationedfplem for the total curvature of hypersurfaces
where the ends are not fixed. It turns out that for open hypersurfaces with cone-like ends the
total curvature is stationary if and only if each end has vanishing Gauss-Kronecker curvature
in the sphere “at infinity”. For this case of stationary total curvature we prove a result on the
quantization of the total curvature.

1. Introduction and main results. The total curvature of Riemannian manifolds and
submanifolds has been a field of active research during the last 175 years, initiated by the
work of Gauss. For compact manifolds tBauss-Bonnet theoremis a milestone in differen-
tial geometry, in both an extrinsic and an intrinsic version. It states that a certain curvature
guantity of the interior of a compact manifodus another curvature quantity of the bound-
ary (including a discussion of angles if theme @any) equals the Euler characteristic, up to a
constant depending only on the dimension. The intrinsic version for even-dimensional mani-
folds is nowadays often called ti@&auss-Bonnet-Chern theorem, after Chern [15], [16]. The
extrinsic version is closely related with the Hopf index theorem, with the mapping degree of
the Gauss map and with the study of critical points of height functions.

In the non-compact case Cohn-Vossen [18] investigated the total curvature of complete
open 2-manifolds. In this case the boundary term is missing, and therefore in general the same
equality between the total curvature and the Euler characteristic cannot hold. However, the
Cohn-Vossen inequality states that the missing boundary term is always nonnegative. Some
details on this Gauss-Bonnet difference term will be reviewed in Section 2.

For higher-dimensional open manifolds this missing boundary term is still much less
understood, neither extrinsically nor intrinsically. In any case one has to assume that the
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manifold is of finite topology and that the curvature is globally absolutely integrable. Partial
results have been obtained by Portnoy [47], Walter [65], Rosenberg [50], Wintgen [70] under
certain additional assumptions. For the case of locally symmetric spaces a formula of Gauss-
Bonnet type was established, see [44].

For complete manifolds of bounded sectional curvature and finite volume the intrinsic
Gauss-Bonnet-Chern theorem still holds, by the work of Cheeger and Gromov [13]. However,
this assumption appears to be fairly restvietin the case of hypersurfaces, because complete
hypersurfaces with cylindrical ends have infinite volume, and complete hypersurfaces with
finite volume tend to have unbounded sectional curvature at the ends, unless the ends are
somehow intrinsically flat, like a cusp over a torus.

If the given manifold is diffeomorphic to the interior of a compact manifold with bound-
ary, then the difference between the Euleamtteristic and the total curvature can be ex-
pected to depend only on geometric quantities which are defined on this boundary. Intrinsi-
cally, theideal boundary in the sense of Gromov is a concept for defining such a boundary and
for studying its geometric properties, see.[Blowever, this concept seems to be successful
mainly in the case of manifolds of nonpositive sectional curvature. Again, this would exclude
the case of hypersurfaces of Euclidean space. For 2-dimensional surfaces, the ideal boundary
is in fact a very successful concept in connettigith the total curvature, see the discussion
in Section 2.

For hypersurfaces or submanifolds of Euclidéa 1)-spaceE”+1 an extrinsic analogue
was investigated by Wintgen [70] by means of the setroit directions. By definition this set
is the part of the unit-spheres” ¢ E"*! which appears as the geometric compactification of
M “atinfinity”. If the submanifold kehaves “asymptotically cone-like” at the ends (in a sense
to be specified below), then the ordinary Gauss-Bonnet theorem implies the following result:

MAIN THEOREM 1. If M" c E”*! is a complete n-dimensional submanifold with
finitely many cone-like ends in Euclidean (m + 1)-space, then the difference between the
Euler characteristic and the total curvature can be explicitly expressed as a sum of the even
higher total mean curvaturesof theset Mo, C S™ “atinfinity” , weighted with certain positive
constants:

Cm

CmX(M)—/ KdVean= Z —/ Ko dVso ,
L 0<2i<n—1 Cm—n+2iCn—1-2i J M

where ¢; isthe volume of the unit standard j-sphere.

For more details see Section 5 below. This expression allows a further discussion of the
validity of the Cohn-Vossen inequality. It turns out that there is a simple 4-dimensional ex-
ample in Euclidean 5-space where this indiquaoes not hold. Remarkably enough, for this
example the total curvature $&ationary within the class of all submanifolds with cone-like
ends. In more generality the variation of the total curvature functional leads to the following:
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MAIN THEOREM 2. Let M" c E"*! be a complete open hypersurface with finitely
many cone-like ends in Euclidean (n + 1)-space with n even. Then the gradient of the total
curvature functional is the Gauss-Kronecker curvature of the hypersurface “ at infinity” .

For a proof see Theorem 6.7 and Corollary 6.9. Consequently, a formula of Gauss-
Bonnettype (i.e., constancy of the total curvature) hoifisitesimally if the Gauss-Kronecker
curvature of the hypersurface “at infinity” vanishielentically. In particular, this is the case if
the set “at infinity” is totally geodesic. This raises the question for a classification of compact
hypersurfaces in the standard unit sphere with vanishing Gauss-Kronecker curvature. One can
also ask for the possible values of the total curvature in the stationary case. There is a partial
result as follows:

MAIN THEOREM 3. Let M* c E° bea complete open hypersurface with finitely many
cone-like ends and with stationary total curvature. Assume that for each end the rank of the
shape operator in the sphere “ at infinity” is constant. Then the normalized total curvature

takes valuesin the integers:
3

— KdV e Z.
47r2/M

For a proof, see Theorem 7.6. Note that the analogous result holds for 2-dimensional
surfaces with stationary total curvature. Here we hdy@r) [,, KdA € Z. Even though the
total curvature functional can attain an interval of values, just by deforming the set at infinity
(e.g., ranging from one point to a great sphere), in the stationary case (at least in dimension
2 and 4) the total curvature functional ranges only in a discrete set of values, a kind of a
quantization of the total curvature.

CoNJECTURE(Quantization of the total curvature) For any complete open hypersur-
face M" c E"*1 (n even) with cone-like ends and with stationary total curvature [ v Kav,
the normalized total curvature (2/c,) . 1 KdV isaninteger.

A short announcement of the main results without proofs appeared in [19].

2. The Cohn-Vossen inequality, intrinsic and extrinsic. For a compact oriented
(and connected) Riemannian 2-manifgltf, g) with boundarydM, the classical Gauss-
Bonnet theorem states the equation

an(M)—/ KdA:/ k(s)ds ,
M oM

wherex denotes the geodesic curvature on the oriented boundary. In particular, if all boundary
curves are geodesics, we obtain

27 x (M) —/ KdA =0,
M

the same formula which holds for compact 2-manifolds without boundary.
In the case of non-compact 2-manifolds tjgrare a little bit more complicated. First of
all, one should assume th@¥, g) is complete because for non-complete metrics one cannot
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expect general results on the total curvature. Secondly, the quaniti$ and [,, Kd A
need not be finite numbers. If we assume thais of finite topological type, thed/ is
homeomorphic to a closed surfagé with a finite number of pointgx, ..., pr removed
(calledends), k > 1. So, in particular,

X(M) = (M) —k < x(M)—1<1.

Finally, one has to assume that the Gauss curvaureabsolutely integrable oveél, that is,
[y |K1dA < oo. Then the following holds:

THEOREM 2.1 (Cohn-Vossen [18], Satz 6)lf (M, g) is a complete Riemannian 2-
manifold of finite topological type and with absolutely integrable Gauss curvature K, then
theinequality

27 x (M) —/ KdA >0
M

holds. In particular, we have [,, KdA < 2x if M is non-compact.

There are more subtle versions for the case M not of finite topological type (in this
case we can formally define(M) = —oc) and thatf,, Kd A attains a value in the extended
real numberg—oo, +00]. Here the statement is that the Cohn-Vossen inequality still holds.
In particular,x (M) = —oc implies [,, KdA = —oo, see [34] and [8]. Under the additional
assumptiork > 0 the inequality implies that (M) > 0, and hencé/ is homeomorphic to
R2 unless it is compact. This was independently observed by Cohn-Vossen [18] and by Stoker
[61] for surfaces in Euclidean 3-space.

Furthermore, there are a number of additional conditions under which the Gauss-Bonnet
equality 2r x (M) — [,, KdA = 0 continues to hold in the non-compact case.

THEOREM 2.2. Under the general assumptions of Theorem 2.1 above, any of the fol-
lowing conditionsimplies the Gauss-Bonnet equality:

(1) (Cohn-Vossen[18, Satz 1)1, ¢) hasno end of thetype* proper chalice” (german:
“eigentlicher Kelch”).

(2) (Huber [34, Thm. 12]jM, g) isof finite total area [,, dA.

(3) (Huber [34, Thm. 11]}or every end thereis a sequence of closed curves around it
converging to the end such that the length of the curvesis uniformly bounded.

(4) (Wintgen [70])The metric g isinduced froma proper immersion f: M — E3 with
finitely many limit directions. The set of limit directions is defined as the set of all possible

limits
S (xn)

lim ,
n=00 || f (xn) |l
where x,, isany sequencein M converging to one particular end.

From the Gauss-Bonnet formula it seems to be obvious that the curvature defgdf 2—
[y KdA can be calculated or at least controlled by the geodesic curvature of the boundary
curves in an exhaustion
MiCMyCMzC---CM
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of the given surfacé/ by compact surface®; with boundary. However, it took a surprisingly
long time until this curvature defect was well understood.

If a neighborhood of each end is isometric to an open part of a cone with line element
ds? = dr?+cr-ds? (wherec is a constant ands? is the line element of the unit circle), then
the contribution of such an end to the curvature defect is nothinghwti@ particular, it is 2r
if the end is planar. By passing to the limit, the same holds if the metric is asymptotically cone-
like at each end or, in the extrinsic setting, if the surface is asymptotically cone-like itself.
More specific results in that direction were obtained for minimal surfac&s inecause the
end of each minimal surface is asymptoticgllanar. For embedded and complete minimal
surfaces with finite total curvatu@sserman [45] showed the equation

27 x (M) —/ KdA = 2rk,
M

wherek is the number of ends, see also [38] for the case of immersed minimal surfaces and
“multiplicities” at the ends. This result was generalized by White [68] to the case of complete
surfaces irE” such that the norm of the second fundamental form is square integrable. Note
that this norm square equad% + /<22 = —2k1k2 = —2K for minimal surfaces.

For an arbitrary complete surface E? the asymptotic behavior of the metric near the
ends was used by Rosenberg [49] for obtaining a short proof of the Cohn-Vossen inequality.
The curvature defect was further studied by Shiohama. He obtained the following result:

THEOREM 2.3 ([56]). Let (M, g) be a complete 2-dimensional Riemannian manifold
of finite topology and finite total curvature. Then
L 2A
27 x (M) —/ KdA = tim £ _ jim 240
M

t—oo f —00 t2 ’

where L(¢) denotes the length of the geodesic distance circle in distance r and A(¢) denotes
the area of the geodesic disc with radius¢. The center point of the disc isarbitrary.

For special cases of Shiohama’s result compare the preceding papers [30, 26, 24]. Again
the Cohn-Vossen inequality follows from Shiohama’s theorem because length and area are
nonnegative quantities.

Wintgen [70] suggested that the curvature defect of a complete and properly immersed
surface in Euclidean 3-space is the length of theMgt of the so-calledimit directions
lim,— o f(x2)/Ilf(xx)|l. He conjectured that one can always assign a finite length to this set
if the total curvature is finite. Unfortunately, this is not true in general, not even if the norm
of the second fundamental form is square integrable, a stronger assumption. White [68] gave
the following example: Take the surface which over they)-plane is parameterized as the
graph of the function = x sin(log log(1++/x2 + y2)). Here the set of limit directions covers
an open part of the unit 2-sphere.

Intrinsically, one can relate the curvature defect with the so-cadleal boundary in the
sense of [6]. The following theorem was obtained by Shioya [58, 59], compare [42, 72]:
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THEOREM 2.4. For the curvature defect of a complete Riemannian 2-manifold M with
finitely many ends E1, . . ., Ej and finite total curvature the following formula holds:

k
21 x (M) —/ KdA=>"1;,
M i=1

where [; denotes the length of the ideal boundary associated to the end E;.

Again the Cohn-Vossen inequality is a corollary because a length is always nonnegative.
Yim [72] interpreted this nonnegativity in terms of the convexity of the ideal boundary of the
surface at infinity. More information on Section 2 can be found in [73].

3. Theextrinsic Gauss-Bonnet theorem. For investigating higher dimensional ana-
logues of the classical Gauss-Bonnet formula for 2-manifolds, one can first look at the in-
tegrated extrinsic curvature of a compact hypeface. Here an appropriate curvature is the
Gauss-Kronecker curvature K = K, which is defined as the determinant of the shape oper-
ator, wheren is the dimension of the manifold. In the even-dimensional case this curvature
is independent of the unit normal, while in the odd-dimensional case its sign depends on the
unit normal. It is well-known thaK is intrinsic if n is even. For the history of the following
theorem compare [29].

NOTATION. The constant, denotes the volume of the standard ungphere. This
can be expressed in terms of the Gamma function as folleys; = 27"/?/I"(n/2). The
symboldV denotes the volume element of a submanifold, sometimes in theddfinfor
specifying the manifold on which it is defined.

THEOREM 3.1 (Gauss-Bonnet-Hopf [31], [32], Satz VI)L.et M" c E"*1 be an em
bedded compact hypersurface such that M is the boundary of itsinterior Miny c E"*+1, and
let K denote the Gauss-Kronecker curvature of M with respect to the inner normal (pointing
to Mint). Then the following hold:

(i) fM KdVy = cp - x (Miny).

(i) 1f niseven, then x (M) = 2x(Min) and, consequently, [,, KdVy = (c,/2) -
x (M). Moreover, this equality holds for arbitrary immersions f: M — E"*1 of a compact
orientable n-manifold, even if M is not the boundary of any (n + 1)-manifold.

Hopf called the type of hypersurfaces in Jgrdan hypersurfaces. The essential differ-
ence between even and odd dimensions is that for odd dimensions the total curvature is not
a topological invariant of the hypersurface, whereas for even dimensions the Gauss-Bonnet
equation (ii) holds independently of the nature (or even the existence) of an intggioin
the non-orientable case in (ii) one can pass ®2ksheeted orientable covering. (i) can be
extended to the case of immersiofis Miny — E"t1if Min is a given(n + 1)-manifold
with boundary. As a matter of fact (already mentioned in [32]), for odd dimensions the total
curvature does depend on the choicéf;, i.e., on the choice of the embedding.
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ExAMPLE 3.2. LetS! ¢ E? ¢ E* be the standard unit circle arid?), its e-tube in
Euclidean 4-space. Similarly, 16 ¢ E3 ¢ E* be the standard unit sphere af®). its -
tube in Euclidean 4-space. Thest), and(S?), are both diffeomorphic t61 x $2. However,
the total Gauss-Kronecker curvature is zero in the first case and positive in the second case,
according toy (1<) = x(51) = 0 andy (($%)<¢) = x(5%) = 2.

Nevertheless, we have the following folklore result:

PrROPOSITION 3.3. Wthin theclassof all immersions f: M" — E"*1 of a fixed com-
pact manifold M, thetotal Gauss-Kronecker curvature [,, K d V), dependsonly on theregular
homotopy class of f.

This follows from the variational formula for the total curvature, see Section 5. The
gradient of the curvature functiong|, KdV is identically zero. Of course, Proposition 3.3
is interesting only for odd. In this case it reduces the problem of determining all possible
values for the total curvature to determining all regular homotopy classes of immersions to-
gether with examples in each class for which the total curvature can be calculated. See [74] for
interesting results. In the case of planan@as Proposition 3.3 is well-known by the Whitney-
Graustein theorem becaugk/'2r) fc/cds of a closed curve equals the rotation index af
The theorem on turning tangents (the “Hopf ldonfsatz”) can be regarded as the special case
n = 1in Theorem 3.1 (i).

In the case of submanifolds of higher codimensions one has to regard the so-called
Lipschitz-Killing curvature, which is defined as the determinant of the shape opergtor
in direction of a specific unit normgl (for the background compare [40])

(Ag(X), Y) = (VxY, §).
Therefore integrating the curvature requires the space of all unit normals at all points
LHM) ={(p.&) I pe M, El =1, & LT,M},

which is nothing but the total space of the unit normal bundle of an embedding or immersion.
For a submanifoldy” c E™+1, 11 (M) can be regarded as a submanifold of the tangent
bundle ofE”*1, or as a submanifold aff x E”*+1. This spacel! (M) carries a canonical
orientation (induced by the outer normal) which is compatible with the orientation of the
ambient space, and it carries a so-caltadonical volume form d Veanwhich is induced from

this orientation, see [21]. Locally we hadé/can = dVy A dVgn—n. Note that the manifold
11is orientable even for immersions of non-orientable manifolds. An orientation'aé
obtained by the choice of either of the following:

(p, &) — & (theouter normal),
(p, &) — —& (theinner normal) .

REMARK 3.4. Inthe sequelk or K, denotes the Lipschitz-Killing curvature, where
n indicates the dimension of the manifold on which it is defined. More precisely, we use the
symbolK (¢) or K,,(¢) for the Lipschitz-Killing curvature in the direction of a unit norngal
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THEOREM 3.5 ([1, 20]). Let M" c E™*+! be an embedded compact submanifold with-
out boundary (or an immersion of M), and let K denote the Lipschitz-Killing curvature,
defined on the unit normal bundle L1 (). Then the Gauss-Bonnet formula holds in the
following form:

/J_l(M) KdVean=cm - x (M) .

Moreover, if m is even, we have x (L1 (M)) = 2x(M).

Note that by a linear standard embeddiEg™? — E™*2 one can always make the
dimension of the ambient space an even numbei. i$f odd, then by the obvious equation
K(—&) = (=1)"K (&) the total Lipschitz-Killing curvature is pointwise zero, and hence the
equation above becomes trivial. On the other hand, it leads to a geometric interpretation for
the equationy (M) = 0 for odd-dimensional manifolda/, if one uses the fact that every
manifold can be embedded somehow into some Euclidean space.

A “modern” proof reduces Theorem 3.5 to the Hopf index theorem for nondegenerate
height functions, see [21, p. 28]. Neverthelasis kind of interesting that independently Al-
lendoerfer and Fenchel proved this at about the same time and by essentially the same method,
namely, by the method of tubes, thus by reducing it to the Gauss-Bonnet-Hopf theorem. We
briefly sketch this proof, for later use in Theorem 3.7.

PROOF. For an embedding or immersigh: M" — E™*1 of a compact manifold/
and for sufficiently smalk > 0 thee-tube defines an embedding or immersign: 11—
Em+l by
Je(p, &) = f(p) +¢&&.
If M* c E"*1is an embedded or immersed manifold, then the Gauss-Bonnet-Hopf theorem
3.1 for the tubeV, (or f,) and for the inner unit normal states that

./J_l(M) KndVe =cp - x (M),

becauseM, is the boundary of the solid (embedded of immerseti)be M-, which has
the same Euler characteristic #&itself. Here we use the fact that the Gauss-Bonnet-Hopf
theorem remains valid for immersions of the manifdldounding the gived/. Furthermore,
from the additivity of the Euler characteristic we obtain the relation

XY = x(8"") - x (M),
which for evenm leads to
X(LY = 2x(M)
becauseg( (M) = 0 if n is odd. Therefore the proof of the Allendoerfer-Fenchel theorem is

completed by the equation
/ Kmdva = / Knchan’
11 11

which holds for embeddings and immersions and for an arbitrary dimension and codimension
by the following pointwise observation.
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If k1(¢), ..., Kk, (&) denote the principal curvatures &f at p in direction&, then the
principal curvatures oM, at(p, &) in direction—¢ are
—k1(§) —ka(§) 1 1
1—ex1(§) " " l—exu(®) e e
m-—n

The volume formslV, andd Veanon L1 are related by the equation

n
dVe = [ [(1 - exi(€))e™ "dVean,
i=1

and henceK,,dV, = (—1)"K,d Vcan However, for odd:, the integralf | ; K, d VcanVvanishes
pointwise, and thus we have

/ Kdeg = / KndVCan
11 11

in any case. ]

In order to extend the extrinsic Gauss-Bonnet theorem to compact submanifolds with
boundary, one has to find an appropriate analogue for the right hand side boundary term in
the classical formula

27rx(M)—/ KdA:/ Kk(s)ds .
M oM

In any case we have to distinguish betwéemer points p € M \ M andboundary points
p € dM. In the interior the curvature will be defined as above, i.e., at a poatM \ oM
we consider the curvature

K(p) = / Ko (€)dVgnn
gell

P
and the total Lipschitz-Killing curvature

/ K(p)dVy = / Knd Vean
peM\OM L(M\oM)

At the boundary it is quite natural to consider only theer unit normals and to integrate
only over the set

L5 @M) ={(p,&) | p € IM, €]l = 1,& L T,0M, (£, vou) > O},

wherevgy: denotes the uniqueuter unit normal vector, which is tangent taV/, which is
perpendicular té M and which points away fromd. Hence(p, &) eJ_}L (0M) if and only if
& has a nonpositive inner product with the tang&i® of any smooth curve: [0,1) — M
with ¢(0) = p € M.

DEFINITION 3.6 (unit normal space, total curvature). For a compact submanifold
M" c E™+1 with boundaryd M we define theunit normal space N1 by

Nt =1t u Lt om).
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It carries a canonical volume foraVcan as in the case of a submanifold without boundary.
Then thetotal curvature of M is defined as the sum of the total curvatures of the two parts
from L1 (M \ M) and from LY (3M):

TC(M, IM) = /

Kchan= / Kn(g)dvcan‘f‘/ Kn—l(—g)dvcam
N1 el (M\oM)

gell @M)

The signs are chosen in view of the Gauss-Bonnet-Hopf theorem 3.1 for the interior of the
tube M, = {p + & | (p.&) € N1}, where we have to take the inner normal along the
boundary. The analogous definition applies to immersipngM, M) — E™+1 with the

tube f:(p, §) = f(p) +¢§.

With this definition the Allendoerfer-Fenchel tube argument can be carried over to the
case of compact submanifolds with boundary (and immersions of such) as follows.

THEOREM 3.7. For a compact submanifold M” ¢ E™+1 with boundary 9M (or an
immersion of M) the Gauss-Bonnet formula holds as follows:

TC(M,0M) =cp - x(M).
Moreover, if m is even, then we have x (N1) = 2x (M).

PrROOF. The key observation is the equation

TC(M, 0M) =/ KndV;

&

for sufficiently smalle > 0, wherek,, is taken with respect to the inner normal of the tube
M.. Then in the second step we obtain

/ KndVe = o - X (M<e) = - x (M)
M,

from the Gauss-Bonnet-Hopf theorem 3.1. Finally, we need the equation
X(ND = L+ (=)™ (M),
which we obtain as follows: From the additivity of the Euler characteristic we get
XIND = x(M)(L+ (=)™ ") = x(@M)(=1)" "

For evenm this leads tog (N1) = 2y (M).
For the first step TQM, 0M) = fME K,,dV,, we use the formulae for the tube above.
For any(p, £) el (M \ 9M) we have the same situation as in the proof of Theorem
3.5above. If(p, &) L1 (M), then we similarly have

Kn(=§)dVe = (=1)""Ky-1(6)d Voan = Kn—1(=§)d Voan.
Again, for oddn, the integralful)p K,dVsn—n vanishes pointwise at any interior poipte
M \ 9M, and we obtain

(3-1) /M Kdes = Kn(f)dvcan‘f‘/ s Kn—l(—g)dvcan

~/§eJ_1(M\3M) gelt@m)
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1 1
(3.2) =3 (Kn-1(=§) + Kyn—1(8))dVean= Ky—1dVean. O
2 Jeellom) 2 Jee1room

For an intrinsic version of Theorem 3.7 see [2, 53].

COROLLARY 3.8. (i) Ifnisodd,thenwehave x (dM) = 2y (M) and, conseguently,

TC(M, dM) = %/

C,
Ky—1dVean= —x (M) = cpyx (M) .
J_l(E)M) 2

Therefore, in thiscase Theorem 3.7is equival ent to the statement of the Gauss-Bonnet theorem
3.5for the boundary d M.
(i)  Wehave

1
TAC(M. 9M) = TAC(M \ 0M) + STAC(OM) .

where TAC denotesthetotal absolute curvature defined astheintegral over the absolute value
of the Lipschitz-Killing curvature.

The formula in (ii) is useful for studying tight immersions, i.e., such immersions for
which the TAC attains its minimum value, see [7]. The problem of minimum total absolute
curvature was investigated [17], compare [11]. Tightness for complete non-compact subman-
ifolds was studied in [28].

By Definition 3.6 and by Theorem 3.7 the Gauss-Bonnet difference term

cmx (M) —/ K, dVean
1L (m\aM)

can be expressed as the integrakf 1 over the set of outer unit normals@w/. Obviously,
anyé e (L1), can be uniquely written as

£ = COSp - vout + Sing - £,

where 0< ¢ < m/2 andé& is a unit normal vector tdf at p € dM. Vice versa, any such
leads to & in (J_}r),, for any g with 0 < ¢ < 7/2. This enables us to compute this integral
by Fubini’s theorem, pointwise evaluated for the normal spisére’ on the one hand and
half the normal spher&"~"+1 on the other hand.

In view of an exhaustion of a noncompact manifold by compact manifolds with bound-
ary, the Gauss-Bonnet defegtx (M) — le(M\aM) K, dVceanis closely related to this “outer
curvature” of the “ideal boundary” in the sphere at infinity. For this purpose we first formulate
the following theorem for submanifolds in the unit ball which can be regarded as a model for
the Euclidean space after compac#fion by a unit sphere at “infinity”.

THEOREM 3.9 (Gauss-Bonnet theorem for submanifolds in the closed unit balljt
(M",9M™) c (B™+1, §™) be a compact submanifold which is orthogonal at the bound-
ary, i.e., the outer normal voy of M at each boundary point coincides with the outer normal
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of $™. Then for the Gauss-Bonnet defect the equation

C
cm X (M) — / KdVean= ), ———— f K2idVean
1LY(m\aM) 0<2i<n—1 Cm—n+2iCn—1-2i J11(OM)

holds, where K ; denotes the j'" elementary symmetric function of the eigenvalues of the
shape operator of the embedding oM — S™.

The right hand side was called theter curvaturein [27]. The total curvatures

K, =/ K;jdVean
11

themselves play an important role in integral geometry and differential geometry, see [52]. In
particular they are intrinsic invariants jfis even, see [36] and Section 4.

PROOF. At each boundary point € 9 M we compute the boundary term as follows:

ﬁ Kn_]_(_g)dVSm—n+1 = / Kn_l(SIn(p . S — COSy - Vout)dVSm—n+1
ge(ll), gell 0<p=m/2
/2
=/¢1 /0 det(sing - Az — cosg - A,y )dVem—n A SIN'™" pdy
P

/2
=/ / sit" 1 p det(A; + coty - Id)d Ven—n A dg
13 Jo
14

/2 n—1 4
= / / sirﬂ’—1¢ZKj(g)cof1—1—f @dVenn Ady
13 Jo 0
J
n—1 /2 4 ‘
:Z / sin" "+ g cod 17 pde / Kj(&)dVgm-n .
=0 0 Eell

1

Note that in our case the shape operaterof d M in the ambient Euclidean space coin-
cides with the shape operator@#/ in S and thatA,, is nothing but the negative identity,
namely, the shape operator §f c E”*. The last integral vanishes for ogg and so we
obtain the sum over all eveh= 2i. The proof is completed by the equation

/2 ) ) c
/ sin" "t g cod 1 pdp = ——— m]
0 Cm—n+jCn—1-j

The key observation for this proof has been used for similar problems, e.g., for the study

of tubes, see [67]. For the case= m the statement of Theorem 3.9 can be found in [27].

COROLLARY 3.10 (Special cases). (1)For acompact surface (M2, dM?) c (B3, 52)
of this type we have

Ao x (M) — 2/ KdVy =2 lengthoM) .
M
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(2) For acompact hypersurface (M4, dM*) c (B®, $%) of this type we have

8 1
—nzx(M)—Z/ KadVy == | (S —2)dVyu,
3 M 3 Jom

where S denotes the scalar curvature of 9 M+ .

PrROOF. From the formula in Theorem 3.9 we obtain
cox(M) —TC(M \ aM) = -2 | 2KodVyy = 2/ dVau
CoC1 Jom oM
in the case (i). For (ii) we have

8 , 8 » 2 2K>
= M) — K4dVean= = — + - )dV
37T x (M) /J_l(M) 4d Vcan 371' /3M (4772 + 871’2) oM

1 1
:—/ (4+2K2)dV3M=—/ (S —2dVyy,
3 Jom 3 Jom
whereS = 6 + 2K is the scalar curvature ofM . O

If nis odd then in Theorem 3.9 the contributionif\ d M is zero, and for the boundary
we can express the total outer curvature in thifeerent ways. This leads to the following

COROLLARY 3.11 (Integral formulae for total curvatures§ft). Let N"~1 c S™ be
an even-dimensional compact submanifold. Then
C C
7mX(N) = Z —m/ K2idVean,
0<2i<n—1 Cm—n+2iCn—1-2i J1Y(N)

where K,; denotes the 2i’" elementary symmetric function of the eigenvalues of the shape
operator of N C S™.

This equation is often called the Allendoerfer-Weil formula in the sphere, although it is
not explicitly given in [2]. It can be found in [36, p. 248], and for hypersurfaces it is stated in
[62, p. 261] together with a differential topological proof.

In the case where = m = 3 the equation in Corollary 3.11 is nothing but the integral
of the classical Gauss equatidh= 1 + K», whereK denotes the inner Gaussian curvature
and K, the extrinsic determinant of the shape operator. Hence the extrinsic “total curvature
defect” 2t x (N) — |, ~ K2dVy becomes strictly positive.

Forn = m = 5 this equation takes the form

4 1
—nzx(N)—/ KadVy = —/ (S —6)dVy,
3 N 6/~

whereS denotes the scalar curvature 8f. Hence the integral mean value 6 for the scalar
curvature is the critical value which determines #xtrinsic “total curvature defect”. Compare
the critical value 2 in the 3-dimensional case in Corollary 3.10.

PrRoOF 0F3.11. Itis sufficient to consider the case that two congruent copigsare
the common boundary of an immersed cylinder= N x [0, 1] in the ball B"*1, which is
orthogonal at the two boundaries. Then the total curvature of the interior part vanishes, and
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the assertion follows dirdly from Theorem 3.9, since each of the two boundary components
contributes the same value. O

4. The pointwise intrinsic nature of the total curvature. It is known that the
Lipschitz-Killing curvature of an even-dimensional submanifold is an intrinsic quantity when
integrated over the unit normal bundle at a pgintsee [67], [52]. The same holds for the
even total curvatures, see [36], [14]. In this section we give an independent and elementary
proof for the fact that the even total curvatures

/ Kz (8)de
1

indeed are intrinsic invariants. In particular, this applies to the Lipschitz-Killing curvature of
even-dimensional submanifolds. We give a detailed proof for the latter case which is based
on a formula for the Laplacian of the determinant. The general case is proved similarly, we
will only sketch it.

4.1. The Lipschitz-Killing curvature. Le¥/?* be a submanifold ifE”+1 = E21+k
and letp € M. Let J_}, be the unit sphere in the normal spacepatLet w be the volume
elementofV atp, and let{ey, . . ., e2,} be an orthonormal basis @f, M. We define a function

f :J_;—> R: & w(Age1, ..., Asezy) .

Note thatf(§) = detA;. Foré eLl, let{, ..., & 1} be an orthonormal basis Gt L.
Puttingé = &, we obtain an orthonormal badis, ..., &_1, &} of the normal space at.
If A denotes the ordinary Laplacian mﬁ, then we have

k=1 .o

d
Af® =) -5

a=1

f(cost - & +sint - &) .
0

1=l

Then, by a straightforward computation, it follows that

k—1
AfE) =) ((—2n)f<s) + 3 w(Ager. ... Ageir ..., Ageej ... Asezn)>
a=1 i#j
k-1
= (—2n)(k — D detAs + Y > w(Ager, ..., Ag,eir.... Agej, ..., Aze)
i#j a=1

= ((—2n)(k — 1) — 2n(2n — 1)) detA¢

k
+ ZZw(Agel, o Aggei, o Ageg, o, Ageoy)
i#ja=1
k
= (—2n)(k+2n — Q) detAs + Y > w(Aeer, ..., Ag,eir.... Ageej, ..., Azea).
i#j a=1
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If we denote
k
[i®) =) w(Ager,.... Agei, ... Agej, ..., Are,),
a=1
then similarly we can compute
Afij€) = (=2(n = D)k +2(n — 1) — 2) f;j
+ ZZw(Agel, e Agﬂer, ooy Ageei, oo Ageg, Agﬂes, oo Agey) .

a,B r#s

If we continue this procedure and integrate oskér, we obtain

1 1
e .
/L,% e = okt 2 - D20 Dkt 20 -1 -2 %
where
k
H(p)= Y > (sgnm)o(Ae, ey Az, er2):-- -

TEO02 wy,...,0n=1

which does not depend on the choice of an orthonormal basis, the first sum ranging over all

permutations of 2 elements. From the equation

1
= H(p)ck-1,

Ag,, €r(2n-1), Ag,, €r(2n)) 5

cm =¢ =c = = (co? c
m = Contk—1 = 2n+k—32n+k_2 T it k— 2tk & k—1,
we obtain that L
Cm
/J_l detdgds = 2l 2 1 (P)-
P
Since
2 nl(27 )" = %(2;1)!,
we can write this as
1 2
(4.1) —/ detAsdé = ———H(p).
Cm J_}) co,(2n)!

We still have to prove that the right hand side(4f1) is of intrinsic nature. Introducing the

usual notatior; = (Ag,e;, ¢;), we compute that

H(p) =

T,N€02 ay,.

This can be rewritten as

=1

H(p) = o
T.N€02 ag,...,ap=1

Ay Ap
(hr(Zn—l)r](Zn— h

o

> Z (SgNT) (ST, 1) iz 22 -

Ap
Dt @2n)n2n) — h

oy o7
hr(Zn—l)n(Zn—l)hr(Zn)n(Zn) .

k
o [073
Yo > ey sgn ity bt — M ht )

han

w(2n)n(2n—1) T(Zn—l)r](Zn)) ’
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which, using the Gauss equation, amounts to

H(p) =

1
o Z (sgnz)(sgnm) Rz 1)z 2)n(mn(2) - - Rr@n—1r@nn@a—-1n(2n) -
( ) T,nN€02,
It is now clear thatH is an intrinsic invariant. Up to scaling, it is the usual Gauss-Bonnet
integrand. If we put
(4.2) G(p)= Y (SINT)(SYNN) Re(1yr@n@n(@ " ** Re(@n—1yr@nn@n—Dn(@n) -

T.N€02,

then

H(p) = G .
(p 2 (»)
Hence we have proved the following theorem.

THEOREM 4.1. Let M?%* bea submanifoldin E”*1 andlet p € M. Then

1
— [ detAgdt = (P,

—— G
cm J13 c2n(2m(=2)"
where G isgiven by (4.2).
In particular, for surfaces this gives the following

COROLLARY 4.2. Let M2 beasurfacein E”*+1andlet p € M. Then
1 1
_/ detAsde = —K(p),
cm J1y 21

where K isthe Gauss curvature of M?2.

Looking at the proof of Theorem 4.1, we may notice that almost the same proof holds
for submanifolds of Riemannian manifolds of constant sectional curvature, obtaining in this
way the following theorem.

THEOREM 4.3. Let M?* be a submanifold in a real space form N”*1(¢) and let p
M. Then

L / detAcds = — > G.(p),
cm J13 c2n(2n)!(=2)"
where G isgiven by
4.3)
Ge(p) = Z (sgnT) (sgnn) (R )z @nyy@ — ) -+ (Re@u—1yr@n@n—1yn@n) — ©)-

T.n€02

For surfaces this again becomes the following:

THEOREM 4.4. Let M? be a surface in a real space form N”*1(¢c) and let p € M.
Then

i/ detA:dé = i(K(p) —0).
cm J1y 2
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If now M?" is compact and oriented, then intetimg (4.1) and using Theorem (3.5), we
obtain that

/ G(PYAM = c2,(2m)(=1)"2" 1y (M) .
M
From the Nash embedding theorem one obtains the following corollary.

THEOREM 4.5 (Gauss-Bonnet-Chern)Let M?" be a compact oriented Riemannian
manifold, then

| Gam = ca@nn-1r2 .
M
For an intrinsic proof compare [15] or [69, Sect.2.7].

4.2. The even elementary symmetric functions. M&tbe a submanifold ife”+1 =
Etk andletp € M. LetJ_}, be the unit sphere in the normal spacgatetw be the volume
element ofM at p, and let{es, .. ., e,} be an orthonormal basis @, M. Let! be any integer
suchthatl< 2/ < n. If ¢ eJ_}], then

Ka€) = Y wlen....Aceiy, ... Ageiy, ... n).

i1<---<iy
Using the same method as above, we obtain
2co1 1 k—
(4.4) |, Katerde = =25k ).
11 ca(2)!

P
where

k
Hy(p)= > Y > (sgnm)w(en..... Az, €i g - Ag, Ciryn -

i1<--<ig TE0Y ay,...,ay=1
AS&[ Cira—1ys - AS&[ Ciranys o en) .

With the same notation as above we obtain

k
_ a1 o L pa a
Ha(p) = Z Z Z (ng")(Sgnn)hiru)in(bhiz(2>iu<2) hiz<2171)iu<2171)hlz(znln(zn ’

i1<---<ip T.N€02 aq,...,0p=1

which, using the Gauss equation, can be written as

1
Hy(p) = @ Z Z (Sgnf)(Sgnn)Rizu)ir(z)in(l)i,;(z) T Rir(Z[—l)ir(Zl)in(2[—1)i)7(21) :

i1<--<ig T.NE0Y
It is now clear thatfly; is an intrinsic invariant. If we introduce
(4.5) Ga(p) = Z Z (SANTY (SN R 1yi 2y inayinz) =~ Rivai—pyizayin@-vina) »
i1<--<ig T,NE0Y
then
Hy(p) = iGzz(P) :
(=2
Hence we have proved the following theorem.
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THEOREM 4.6. Let M" be a submanifold in E”*1, and let p € M and [ an integer
suchthat 1 < 2/ < n. Then,

1
(4.6) /L K2(§)dé = Ga(p).

2
C2+m—n J 11 ca(2)!(—2)!
where Gy isgiven by (4.5)
Similarly, this carries over to the case of submanifolds in real space forms as follows.

THEOREM 4.7. Let M" beasubmanifoldinareal spaceform N 1(c), andlet p € M
and/ aninteger suchthat 1 < 2/ < n. Then

1 2
- /L K61 = Gt

where Gy - isgiven by

GZ],C(p) = Z Z (Sgnf)(Sgnn)(Riz(l)if(z)in(l)in(z) - C)' . '(Riz(gl,]_)ir(z)i,,(g],l)in(gl) _C) .

i1<--<ipy T,NE0Y

5. Limit directions of complete open submanifolds and submanifolds with cone-
like ends. It was the idea of Wintgen [70] to study the total curvature and total absolute
curvature of complete open submanifold€ifit! by means of limit directions. A unit vector
e € §™ is called dimit direction if there is a sequend@,),<n Of points inM converging to
one particular end such that
Pn
n=>00 || pu |’
The set of all limit directions oM is denoted byW,,. One of Wintgen’s results states that
the Gauss-Bonnet theorem

/ KdVean= cmx (M)
J_l

holds if M is even-dimensional, iK is absolutely integrable and if there are only finitely
many limit directions. Especially, this s#f, of limit directions inS™ provides an extrinsic
analogue of the ideal boundary, provided th&at, has a reasonable structure, e.g., as a smooth
submanifold of lower dimension.

DEFINITION 5.1 (Conical end). LeM,, c $™(1) be a compactn — 1)-dimensional
submanifold. Then for fixep € E” 1 the setlC(My,) := {p+t-x | x € Moo, t > 0} Cc EH1
is called the (simplegone over M., with apex p. An n-dimensional complete submanifold
M of E™+1 with finitely many ends is said to hawenical ends if for a certain radiusk > 0
the setM \ B"*+1(R) consists only of the union of open subsets of cones, where the apex may
vary from one end to another. In this cas¢) B”+1(R) is the union of open subsets of cones
over the components @, each counted with multiplicity.
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PROPOSITION 5.2. For a complete submanifold M” < E™+1 with conical ends the
Gauss-Bonnet defect equals the total outer curvature of M, C $™, where one hasto sum up
over the set of ends separately:

C
mx (M) — / KdVean= ) —————Ka(M),
1Y 0<2i<n—1 Cm—n+2iCn—1-2i

where K j (M) = [|1 (Mo KjdVean denotes thetotal j** curvature of the set M, (for each
end separately), regarded as a submanifold of the unit sphere.

First of all, the total curvature converges, since the curvature is zero on the cones, i.e.,
outside a compact set. If the apex of each centhe origin, the assgon follows from
Theorem 3.9 because the total curvature is scale invariant (thus we can a®suni¢ and
because the various cones have vanislimyature, i.e., the total curvature df equals the
total curvature of\f N B™t1(1). If an apex is not the origin, then we can use the fact that by
the Gauss-Bonnet formula the total curvature is invariant under changes in a compact part and
that it is also invariant under translations of the cones. This implies that the total curvature
and the right hand side of the equation in 5.2 behaves like in the case where each apex is the
origin.

For this argument it is not necessary that the ends are exactly cones. We have the same
geometric phenomenon if the ends are (asymptotically) cone-like in a sense to be made more
precise below. Recall that the following characteristic property of a ¢boger a manifold
with apex 0: All the intersections wit” (R) are homothetic to one another, tangent and
normal spaces at corresponding points arelfeta each other, and at each point the outer
normal ofC N B™+1 coincides with the position vector (up to scaling).

DEFINITION 5.3 (Cone-like end). An end of a complete submanifold/” c E™+1
with associated componeM £ in the set of limit directions is said to b@symptotically)
cone-likeif the following conditions are satisfied:

(1) There is a poing such that for sufficiently larg& the intersectiortE N S (R; q)
is an(n — 1)-dimensional submanifold of the sphere of radRuaroundg, and

1
lim =(ENS"™(R;q)) = ME
Jim (B0 S"(R: q) = MY

in the C?-topology. This property is actually independent of the choicg,afo that we may
assume thaj is the origin 0.

(2) For everye there is a numbeRg such that for eacl®R > Rg the angle between
outer unit normal of the submanifold N B™+1(R; 0) at any pointp € E, ||p|| = R, and the
position vectorp is at most.

THEOREM 5.4. For a complete submanifold M" c E™*+1 with finitely many cone-like
ends the Gauss-Bonnet defect is given by the same formula for M., C $™ asin Proposition
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5.2
C
(5.1) Cmx (M) — / KdVean= Y —————Ka(Mx).
11 0<2i<n—1 Cm—n+2iCn—1-2i

If we divide the equation (5.1) by, we see from Theorem 4.1 that the left hand side of
(5.1) is intrinsic forM, and from Theorem 4.7 we obtain that the right hand side is intrinsic
for M. The right hand side was called ttatal outer curvaturein [27].

PrROOF The proof follows from the extrinsic Gauss-Bonnet formula 3.9 and Proposi-
tion 5.2 above. For sufficiently large the subspaces

Mg := M N B"Y(R; 0)

are diffeomorphic to one another. We would like to apply Theorem 3.8/fobut this is

not literally possible since it is not orthogonal at the boundangfiR; 0). However, by
Definition 5.3 the tangent and normal spacéff converges to the tangent and normal space
of M, and in the limit the orthogonality is satisfieThis implies that Theorem 3.9 holds for
Mpg in the limit R — oo. Because of scale invariance the total curvature of the interidfof
converges to the total curvature &f for R — oco. By Definition 5.3 the total outer curvature

of My converges to the total outer curvatureMj,. Thus the formula in Proposition 5.2 can
be applied. As an appropriate geometric picture, we can thirl{ @& sitting in the unit ball
with the same boundary behavior as in Theorem 3.9, together with a cone over the boundary
to infinity. This cone has vanishing Lipschitz-Killing curvature and thus does not contribute
to the total curvature. Note, however, that ®r— oo the “sequence(l/R)Mg does not
converge to a smooth submanifold but rather to a cone dgr For 2-dimensional surfaces
this is also intrinsically true, see [42]. O

COROLLARY 5.5. (1) Ifinadditionall curvatures K»; of M., are nonnegative, then
the Cohn-Vossen inequality holds.
(2) Ifinaddition for each end ME istotally geodesicin S™, then we have

1

X(M)——/ KdV =k,
Cm J11

where k denotes the number of ends.

COROLLARY 5.6. For a 2-dimensional open surface M2 c E™+1 with cone-like ends
we have

(5.2) Cmx (M) — / K2dVean= = lengthMag) = 0.
11 2
From Corollary 4.2 we the obtain the following.

COROLLARY 5.7. For a2-dimensional open surface M2 c E3 with cone-like ends the
Gauss-Bonnet defect equals the total length of My, C S2 (counted with multiplicity, i.e., for
each end separately) :

2 x (M) —/ KdA =length M) > 0,
M

O — ©



——

TOTAL CURVATURE OF COMPLETE SUBMANIFOLDS OF EUCLIDEAN SPACE 191

where K isthe Gauss curvature. Thisimplies the Cohn-Vossen inequality.

COROLLARY 5.8 ([27]). For an open hypersurface M* c E® with cone-like ends the
Gauss-Bonnet defect is

4 1
—n2x<M>—/ K4de=—/ (S — 2V, .
3 M 6 Ju,,

where the integral has to be taken for each end separately.
The proof follows directly from Theorem 5.4 and Corollary 3.10.

COROLLARY 5.9. For a4-dimensional complete open hypersurfacewith cone-likeends
the Gauss-Bonnet equality holdsif and only if the average (= integral mean) of the scalar cur-
vature of theideal boundary in §* is 2. The Cohn-Vossen inequality remainsvalid if and only
if thisaverageis greater than or equal to 2.

Under the assumption of nonnegative sectional curvature the validity of the Cohn-Vossen
inequality was established in [65] for hypersurfaces and in [39] for codimension two. By a
theorem of Sacksteder [51] and Wu [71], suchypersurface is necessarily convex. Then
the total curvature ranges between 0 apd2, just as in the classical case for surfaces with
positive Gauss curvature in Theorem 2.1.

Note that the value 2 for the scalar curvathias a special meaning by the following gap
theorem: It is known that a compact hypersurfac§4fl) with constant mean curvature and
constant scalar curvature can satisfy< 2 only if it is a member of Cartan’s isoparametric
family of hypersurface witht§ = 0, see [4], [12]. The other examples with constant mean
curvature and constant scalar curvature are the round 3-spheres and the pséducts
$2(x/1—r2), the latter ones satisfy > 2 and lim-_.0 S = 2, compare Corollary 5.12 below.

COROLLARY 5.10. The Cohn-Vossen inequality does not hold in general for complete
open 4-dimensional hypersurfaces in Euclidean 5-space.

This can be seen from the following key example with vanishing scalar curvature at
infinity. It is mentioned in [10] that certain examples have been constructed, and in [47] an
example is intrinsically given, where the end involves a ffat — 1)-torus. The following
example seems to be quite simple.

ExAMPLE 5.11 (Key Example: Cone over Cartan’s hypersurface). x:eRP2 — §4
be the Veronese surface. The family of tubes around it defines an isoparametric family [11,
pp. 296-299], in particular, the tube with radimg2 is Cartan’s minimal isoparametric hy-
persurface with principal curvatureé3, 0, —+/3, and hence

K1=0,Ko=-3,§=6+2K>=0.

However, one has = 0 for each member in the whole isoparametric family. Furthermore,
note that in this special case the tube with radiy8 coincides with Cartan’s isoparametric
hypersurface, so that the entire 4-sphere decomposes into thie téptubes as disc bundles
over the Veronese surface and its antipodal copy. LetXiow S* be a solid open tube around
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the Veronese surface with radiag6, bounded by Cartan’s isoparametric hypersurface. We
define an embedding : X — R® locally by

F(s, 1, p) := @(t)(COg¥ (1)) - x(p) + Sin(¥ (1)) - (coss - £(p) + sins - n(p))) .

wheres,t > 0, p € RP?. Hereg, n denote orthogonal unit normal vector fieldsatpand
@, ¥ are smooth real functions as follows: An even function

¢: [0, 00) — [0, 00)

such thatp(0) > 0, ¢’(0) = 0, ¢’ > 0 otherwisegp(t) =t +1— 7/6 forr > 7/6, and an
odd function

Y [0, 00) — [0, /6]
such thaty(0) = 0,v'(0) = 1,v/(t) > Ofort < 7/6,¢¥(r) = n/6 fort > =/6. Then
F(s,0, p) = ¢(0) - x(p) is a scaled copy of the Veronese surface &iid /6, p) describes
Cartan’s hypersurface. This is true even thoggh are defined only locally. In different
local charts the various definitions fit together. For /6 the mappingF describes a cone
over Cartan’s hypersurface, and hericéor rather its image” (X)) has one conical end. The
correspondingX , is Cartan’s hypersurface itself with vanishing scalar curvature and non-
vanishing volume. This implies that the Galdsnnet defect is strictly negative, according to
Corollary 5.9.

COROLLARY 5.12. The (strict) Cohn-\Vossen inequality holds for 4-dimensional hy-
persurfaces with cone-like ends if each end is of the type “ cone over a round sphere S3(r)”
or “ cone over a Clifford torus S1(r) x S2(v/1—r?)".

PrROOF. If the end is of types3(r), 0 < r < 1, then the scalar curvature§s= 6r~2;
the volume element i8> Vs ), and so the Gauss-Bonnet defect of this end turns out to be

1 2
3 fss(ar—z —2)rddvg = énzr(G— 2r?) > 0.

Forr = 1 we obtain the values8%/3 = ¢4, compare Corollary 5.5 above. In the limit—> 0
we obtain a vanishing Gauss-Bonnet defect, in accordance with [70].

If the end is of the type of the Clifford torus with9 r < 1, then we havé = 2/(1—r?),
the volume element is(1 — r2)d V11, A dVgz(1), and so the Gauss-Bonnet defect is

! 2 2 16 , 5
3 S1x 82 (1— P2 2)r(1_ r9)dVsi AdVge = ?n r°>0.
The case of spherically-symmetric ends was also discussed in [47, p. 329]. O

6. The variational problem for the total curvature. The variational problem for
various curvature functionals has been studied during many years. One of the important results
is certainly the theorem of Hilbert stating that intrinsically the gradient of the total scalar
curvature functional (the Hilbert-Einstein functional) within the class of Riemannian metrics
on a given manifold is nothing but the Einstein tens$/2) g — Ric, see [9, Sect. 4C]. The
gradient of the area functional within a family of metrigs= ¢ + ¢ - h is known to be half
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of the trace ofz. In the classical case of surfaces in Euclidean 3-space or the 3-sphere this
gradient is nothing but the mean curvature of the surface. This had tremendous influence to
differential geometry and analysis, and the stationary surfaces (cailheaial surfaces) have
permanently been a field of intensive and extemsesearch. The variation of the extrinsic
higher mean curvature functionals

K:(M) =/ K:dVy
M

was studied much later. As in Theorem 3.9, h&redenotes theé!" elementary symmetric
function of the eigenvalues of the shape operatoof a hypersurface. The normalization
is chosen such that the characteristic polynomial isAlet A - I1d) = ), KU M s
n-dimensional. In terms of the principal curvaturg®ne hask; = -, .. _; Kjikj =« Kj.

THEOREM 6.1 (K. Voss [63], compare [46, 48])For any hypersurface in Euclidean
spacethe gradient of the i’ curvaturefunctional K; = [ K;dV isthefunction —(i +1)K; 1.

COROLLARY 6.2. The Hilbert-Einstein functional for a hypersurface in E**1 is sta-
tionary within the class of hypersurfacesif and only if K3 = 0.

REMARK 6.3. By a result of Fialkow [25] any Einstein hypersurfaces in Euclidean
space is either totally umbilical or developable. In particular, it has constant sectional curva-
ture in any case.

REMARK 6.4. Forn = 3 this conditionks = 0 just means that the rank of the shape
operator is at most 2. For amy> 4 there are non-developable examples of complete hyper-
surfaces satisfyings = 0 as follows: If a planar curve with curvatukerotates in(n + 1)-
space, then the principal curvatures ar@nd a certain. of multiplicity » — 1. Then

Ko — n—lk3+ n—1 52 n—l)\z n—3)\+
37\ 3 2 )T 2 3 “)

Hence we have&ks = 0 if the quotientd/« equals the constart3/(n — 3). Such curves

have been investigated and explicitly determined by Hopf in [33] for the study of rotational
surfaces with a linear relation between the two principal curvatures. The resulting surfaces
and hypersurfaces are complete and analytic.

THEOREM 6.5 (Reilly [48], compare [64]). For a hypersurface in the unit n-sphere the
gradient of the curvaturefunctional K; = [ K;dV isthefunction —(i +1) K1+ (n—i)Ki_1.

If we compare this to the Hilbert-Einstein functional, we obtain the following: Since the
scalar curvaturé is the sum of all sectional curvatur&s; (i # j), the Gauss equation

Kij = 1+ KiKj
leads to

S=nn-1 +ZK,'KJ‘ =nn—1Ko+ 2K>.
i#]
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Hence the gradient of the total scalar curvature functional is

nn —1)(—K1) + 2(—3Kz+ (n — 2)K1) = —6K3+ (—n’ + 3n — ) K1.

COROLLARY 6.6. The Hilbert-Einstein functional for a hypersurfacein $”(1) is sta-
tionary within the class of hypersurfacesif and only if 3K3 + ((”El) + 1K1 =0.

One example satisfying this equation is Cartan’s isoparametric hypersurfaéesee
the key example 5.11.

THEOREM 6.7. For even n the gradient of the total outer curvature functional (= the
right hand side in Theorem 3.9) of a hypersurface in S” is the negative Gauss-Kronecker
curvature — K, 1 of this hypersurface.

PrROOF. If § denotes the gradient, then we ha§; = —(i + 1)K; 11+ (n — i) K;_1
by Theorem 6.5 above. ifis even, this implies

5< 3 LK&)

0<oiy_1 C2Cn—1-2i

C . .
= Y ———(—Qi+DKa1+(n—2)Kz 1)
0<2i<n—2 C2iCn—1-2i

C
= - . (n— 1)Kn—l
Cpn—2C1

n—2i—2 2i+1
+ > Cn< ' - — — - | K2it1=—Kp1.
0<2i<n—4 C2i+2Cn—3-2i C2iCpn—1-2i

In the last step we used the equation
(j —Dcj =cicj-2,

which holds for arbitrary;. O

REMARK 6.8. Ifn is odd, then the same calculation shows that the gradient vanishes
identically becausthe leading ternk,, vanishes on thé: — 1)-dimensional boundary. This
is not surprising, since we know from Corollary 3.8 that in this case the total curvature is
constant, namely, the Euler characteristic.

COROLLARY 6.9. Thetotal curvature f,, K,dV of an even-dimensional open hyper-
surface M ¢ E"*+1 with cone-like ends is stationary (within the class of such hypersurfaces
having cone-like ends) if and only if each component of M, has vanishing Gauss-Kronecker
curvature in the sphere “at infinity” or, equivalently, if it has one vanishing principal curva-
ture at each point.

This follows from Theorem 6.7 and Elorem 5.4 because the gradient qugKndV is
the functionk,_1 on M. Note that fom = 2 the Gauss-Kronecker curvatureMf, is noth-
ing but the geodesic curvature of the boundary curve. Thus in the stationary 2-dimensional
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case we have the same behavior as in Ossésnfraimula for minimal surfaces: The Gauss-
Bonnet defect equals2times the number of ends. Note that the total curvature is stationary
for the key example 5.11. Corollary 6.9 raises the question what we can say about compact
hypersurfaces of even-dimensional spheres with vanishing Gauss-Kronecker curvature.

7. Hypersurfaces of §"+1 with vanishing Gauss-Kronecker curvature, and the
quantization of the total curvature. It seems that not too much is known about compact
hypersurfaces of the standard sphere with vanishing Gauss-Kronecker curvature. The case of
constant intermediate curvatukg is treated in [66] but the case &f, = 0 is excluded there.

In [23, Theorem 2] the following is shown: If the nullity indexx) of the second fundamen-

tal form at any pointx is always greater than a certain invariapf then the submanifold is
totally geodesic. Since in our case we asswiie > 1, we obtain this conclusion if, = 0.

For certain even values it is shown that indeed onevhas 0. In particular, this holds i is

a power of 2. However, in our case the variational problem in Section 6 is only interesting for
oddn.

In this section we examine the situation in particularifes 3.

DEFINITION 7.1 (Tube of radiusr/2). LetX : N* — §"*t1(1),k < n, be anisometric
immersion and let.! (N) be the unit normal bundle. Then thebe of radius 7 /2 over X is
defined as (the image of)

x 1P (N) = YD) s (pg) > &

LEMMA 7.2. Thetubeofradiusz/2isanimmersionif for each normal vector to N the
shape operator of X is nondegenerate. If the tube is an immersion, then its Gauss-Kronecker
curvature vanishes identically.

PROOF. Locally L1 N is the product ofN* and $”%(1). If p € N and¢ is a unit
normal toN at p, then the tangent space 10 (N) at (p, £) can be identified With, N x
T:S"*(1). Letv € T,N andX € Tz S"%(1), then

X:(v) = — T (A (v) + V&,
whereV+ is the normal connection & andA¢ is the shape operator af with respect ta,
and
x:(X)=X.
Thereforex is an immersion if and only if for eachthe shape operatet; is nondegenerate.
It also follows that
N(p,§) :==—-X(p)
is a unit normal vector ta at (p, &), the minus sign being taken to obtain the outer normal.
Let A denote the shape operatonofvith respect taV. Then
X (Av) = Xy (v)

and
xx(AX) =0.
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Therefore we conclude that dét= 0, and so every tube of radiag'2 has vanishing Gauss-
Kronecker curvature. O
Moreover, we have
1(AV) = Z,(0) = Ex(AcAg M)
_ -1 1
= x*(Ag v) + VAglvE

= —x.(A7 M) + x*(Vjs_le ),

and hence
AQ) = —A; v+ nglvs .
This equation implies that theth elementary symmetric function df is given by
Kr = (—1)f(detas) ™.
LEMMA 7.3. Thevolume element dV of the tube x of radius /2 satisfies
dV = (detAg)d Vean
at each point (p, &).

PROOF. Letw be the volume element 6¥+2. Then, writingv; for vectors tangent to
N andX; for vectors tangent t6" % (1),

dvy(, ..., v, X1, ..., Xn—k)
=wx(p), N(p, &), X501, ..., XUk, X5 X1, ..o, X5 Xp—k)
=wé, —X(p), —XiAgva, ..., =X Agvg, X1, ..., Xyk)
=w(X(p), XiAsv1, ..., DeAsvue, 6, X1, ..., Xpg)
= (detAg)(dVean (v, ..., Uk, X1, .., Xn—k) s
which proves the assertion. O
Let us now study the special case of a 3-dimensional hypersurface of the 4-sphere.

THEOREM 7.4. Let M3 be a compact hypersurface of $#(1) with vanishing Gauss-
Kronecker curvature. Assume that the rank of the shape operator is constant. Then

1
— S—2)dV eZ.
SNZ/M( Vv

PrROOF. If M3 is totally geodesic, thei = 6, volM = 272 and the proof is finished.
From [22] it follows that the rank of the shape operator cannot be 1, so that we can assume that
the rank is 2. Them/2 is a tube over an immersed surfa¥eand we can apply the formulas
obtained above. The Gauss equationibimplies that the scalar curvature &f is given by
S =6+ 2K>, so that

(S —2)dV =4dV + 2K2dV = 4(1/K2)d Vean+ 2d Vian.
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Under the assumptions we know th& is nowhere zero. Let be the sign oK. Then

/ (S—2)dV =4 / (1/K2)dVeant 2 / dVean
M 11(N) 1)

L)

= 48/ 7(K — 1)dN + 4mevol N
N
= 8% (N),

where we have used Theorem 4.4 and the ordinary Gauss-Bonnet theo®®m for ]

REMARK 7.5. Under the assumptions of the theorem above the topology of the 3-
dimensional hypersurface is essentially unique: Either it is totally geodesic and thus an equa-
torial 3-sphere or it must be diffeomorphic to Cartan’s isoparametric hypersurface, according
to [37]. However, the geometry is quite flexible in this case. One can slightly perturb the
Veronese surface and then consider the tube around it of radRis

Finally we return to the investigation of thetal curvature of complete hypersurfaces
of Euclidean space. If we combine the previdisorem with Corollary 3.10, we obtain the
following result.

THEOREM 7.6 (Quantization of the total curvature).et M* bea complete open hyper-
surface of E® with finitely many cone-like ends and with stationary total curvature. Assume
that for each end the rank of the shape operator in the sphere “ at infinity” is constant. Then
the normalized total curvature takes valuesin theintegers:

3
— KadV € Z.
4772./1\/1 adh €

This theorem can be considered as a kind of quantization of the total curvature for hyper-
surfaces with cone-like ends, under the additional condition that the total curvature is station-
ary (or, equivalently, that the Gauss-Kronecker curvature at infinity vanishes) and a condition
on the rank of the shape operator, which we conjecture to be superfluous. This conjecture is
formulated at the end of Section 1.

We remark that the conjecture holds fo& 2. Indeed, in that case each end is a great cir-
cle, such that the length &1, is a multiple of 2r. Corollary 5.7 implies thatl/2x) [,, KdV
is an integer.

QUESTIONS 1. One of the open questions is whether or not every compact hyper-
surface in the sphere with vanishing Gauss-Kronecker curvature j2-dube around some
other submanifold. If yes, then this would provide a strategy for proving the conjecture on the
quantization of the total curvature.

2. Since the Gauss-Bonnet difference term can be expressed by intrinsic curkgtures
of M, according to Theorem 5.4, the question arises whether this difference can be described
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purely intrinsically in the original manifold/. For 4-dimensional complete Riemannian man-
ifolds one would have to introduce a volume and an appropriate version of a scalar curvature
of the ideal boundary “at infinity”.
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