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ON A FAST DIFFUSION EQUATION WITH SOURCE
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Abstract. We study in this paper the positive solution of the Cauchy problem for a
fast diffusion equation with source. We derive a secondary critical exponent of the behavior
of the initial value at infinity for the existence of global (in time) and nonglobal solutions of
the Cauchy problem. Furthermore, the large time behaviors of those global solutions are also
studied.

1. Introduction. In this paper, we study the positive solution of the Cauchy problem
for the equation

(1.1) ut = �(um) + up , x ∈ Rn, t > 0 ,

with the initial condition

(1.2) u(x, 0) = u0(x), x ∈ Rn ,

wherem > 0, p > 1, andu0 is a bounded positive continuous function inRn.
Form = 1, the equation (1.1) is the standard heat equation with a source term. A solution

is said to blow up in finite time if its sup norm tends to infinity in finite time. In a paper by
Fujita [5], it is shown that there is a critical exponentp∗

1 = 1 + 2/n such that the solutionu
of (1.1)–(1.2) blows up in finite time for allu0, if 1 < p < p∗

1; and there are global (in time)
solutions and nonglobal (i.e., blowing-up in finite time) solutions, ifp > p∗

1. This valuep∗
1

is the so-called Fujita exponent. In fact, the Fujita exponent for (1.1)–(1.2) for anym > 0 is
given byp∗

m = m + 2/n. For more references on this topic, we refer the readers to two nice
survey papers [11] and [1].

Recently, Mukai, Mochizuki, and Huang [12] have studied the case when 1< m < p.
It is shown, among other things, that forp > p∗

m there is a secondary critical exponent
a∗ = 2/(p − m) such that the solutionu of (1.1)–(1.2) blows up in finite time for any initial
valueu0 which behaves like|x|−a at |x| = ∞, if a ∈ (0, a∗); and there are global solutions
for initial valueu0 which behaves like|x|−a at |x| = ∞, if a ∈ (a∗, n). Motivated by their
work, we shall extend these results to the case when(1 − 2/n)+ < m < 1 andp > p∗

m.
We also study the large time behaviors of global solutions of the Cauchy problem (1.1)–

(1.2) for the casem < 1. The casem > 1 is treated in [12]. For more references on the large
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time behaviors for various problems, we refer the readers to the references cited in the paper
[6].

This paper is organized as follows. First, some preliminaries are given in Section 2.
We study the forward self-similar solutions of the equation (1.1) without the source termup.
Also, we prove a comparison principle. In Section 3, we derive the secondary exponent which
is given bya∗ = 2/(p − m). Finally, we study the large time behaviors of global solutions.
It is shown that ast → ∞ the solutionu of (1.1)–(1.2) behaves like the self-similar solutions
which are derived in Section 2.

2. Preliminaries. In the sequel, we always assume that(1 − 2/n)+ < m < 1 and
p > m + 2/n. Setl = 2/(1 − m). Note thatn < l. First, we recall from [9] that for any
a ∈ (0, n) and anyM > 0 there is a unique positive global solutionUM,a(x, t) to the Cauchy
problem

(2.1) ut = �(um), x ∈ Rn, t > 0 ,

(2.2) u(x, 0) = M|x|−a, x ∈ Rn .

Here the initial functionM|x|−a is locally integrable inRn, sincea ∈ (0, n). Indeed, this
solution is the so-called forward self-similar solution of (2.1) given by

(2.3) UM,a(x, t) = t−βagM

( |x|
tβ

)
, β = 1

2 − (1 − m)a
,

for some positive functiongM satisfying the following boundary value problem:

(2.4) (gm)′′ + n − 1

ξ
(gm)′ + βag + βξg′ = 0, ξ > 0 ,

(2.5) g′(0) = 0, lim
ξ→∞ ξag(ξ) = M .

Note thatβ > 0, sincea < n < l.
We remark that the existence and uniqueness of the self-similar solution can also be

derived by the following ordinary differential equation approach (cf. [7]). In this approach,
we can derive more properties of the solutions. We shall outline the main idea as follows.

Given a fixedη > 0. We consider the following initial value problem:

(2.6) h′′ + n − 1

ξ
h′ + βahq + βξ(hq)′ = 0, ξ > 0 ,

(2.7) h′(0) = 0, h(0) = η ,

whereq = 1/m. The existence and uniqueness of local solutionh = hη of (2.6)–(2.7) follows
from the standard theory of ordinary differential equations. Define

(2.8) ρ(y) = exp

{
βq

∫ y

0
ξh(ξ)q−1dξ

}
.
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Then (2.6) can be rewritten as

(2.9) h′(ξ) = − βa

ξn−1ρ(ξ)

∫ ξ

0
sn−1ρ(s)h(s)qds, ξ > 0 .

Henceh is decreasing as long ash is positive.
We claim thath > 0 for all ξ > 0. Suppose for the contradiction thath > 0 in [0, R)

andh(R) = 0 for someR > 0. Set

H(ξ) = 1

2
[h′(ξ)]2 + βa

∫ h(ξ)

0
sqds.

SinceH ′(ξ) ≤ 0 for ξ ∈ [0, R), we obtain thath′(ξ) is bounded forξ ∈ [0, R). Now,
multiplying the equation (2.6) byξn−1 and integrating it over[0, y] for y < R, we obtain that

(2.10) βynh(y)q + β(a − n)

∫ y

0
ξn−1hq(ξ)dξ + yn−1h′(y) = 0 .

Letting y → R− and notingh′ < 0 in (0, R), we reach a contradiction, sincea < n.
Therefore, the local solution can be extended to a global solution.

Next, by applying a method used in [7], we can show thath(ξ) → 0 asξ → ∞.
Moreover,

(2.11) lim
ξ→∞ ξahq(ξ) = M

for someM = M(η) > 0. It remains to show that there is a one-to-one correspondence
betweenM ∈ (0,∞) andη ∈ (0,∞). Indeed, this can be seen from the relation

hη(ξ) = ηh1(η
σ ξ), σ = 1 − m

2m
> 0 .

Hence

(2.12) M(η) = η1/(2βm)M(1) .

We conclude that for eachM > 0 there is a unique positive solutiongM satisfying (2.4)–(2.5).
We also need a comparison principle which is similar to Proposition 2.1 in [6].
Let φ ∈ C∞

0 (Rn) be fixed such that 0≤ φ ≤ 1, φ ≡ 1 for |x| ≤ 1, φ ≡ 0 for |x| ≥ 2,
and

E(φ) =
(∫

Rn

|�φ|1/(1−m)φ−m/(1−m)dx

)1−m

< ∞ .

For the existence of such functionφ, we refer the readers to [9] or [8, p. 1356].
For thisφ and for anyR > 0, letφR(x) = φ(x/R). Notice that

(2.13) E(φR) = R−2+n(1−m)E(φ) .

Denote

Lu = ut − �(um) − up.

For anyR > 0, let BR = {x ∈ Rn | |x| < R}. We now prove the following comparison
principle.
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PROPOSITION 2.1. Let u, v ∈ C∞(Rn × (0, T ])∩C0(Rn ×[0, T ]) and 0 < u, v ≤ M

in Rn × [0, T ] for some M > 0 and T > 0. Suppose that Lu ≤ Lv in Rn × (0, T ] in the
classical sense and u(x, 0) ≤ v(x, 0) for x ∈ Rn. Then u ≤ v in Rn × (0, T ].

PROOF. Let g be the characteristic function of the set{u > v}. It follows from Kato’s
inequality [10] that

(2.14) �[(um − vm)+] ≥ g�(um − vm) ,

wherez+ = max(z, 0). SinceLu ≤ Lv and

g(up − vp) ≤ pMp−1(u − v)+ ,

it follows from (2.14) that

(2.15)
∂

∂t
[(u − v)+] ≤ �[(um − vm)+] + pMp−1(u − v)+ .

Multiplying (2.15) byφR and integrating it overRn, we get

∂

∂t

[∫
Rn

(u − v)+φRdx

]

≤
∫

Rn
(um − vm)+|�φR|dx + pMp−1

∫
Rn

(u − v)+φRdx

≤
∫

Rn
[(u − v)+]m|�φR|dx + pMp−1

∫
Rn

(u − v)+φRdx(2.16)

≤ CR−2+n(1−m)

[∫
Rn

(u − v)+φRdx

]m

+ pMp−1
∫

Rn
(u − v)+φRdx

for anyR > 0, whereC is a universal constant.
Let L = pMp−1 and set

h(t) =
∫

Rn

(u − v)+(x, t)φR(x)dx .

Then by (2.16) we have

h′(t) − Lh(t) ≤ CR−2+n(1−m)hm(t)

and so

(e−Lth(t))′ ≤ CR−2+n(1−m)e−Lthm(t) ≤ CR−2+n(1−m)[e−Lth(t)]m .

By integrating the above inequality from 0 tot , we end up with∫
Rn

(u − v)+(x, t)φR(x)dx ≤ CR−2/(1−m)+nt1/(1−m)eLt .

Hence we obtain that

(2.17)
∫

BR

(u − v)+(x, t)dx ≤ CR−2/(1−m)+nt1/(1−m)eLt .
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Since 2/(1 − m) > n, by lettingR → ∞ in (2.17), we obtain that∫
Rn

(u − v)+(x, t)dx = 0 .

This completes the proof of the proposition. �
We remark here that any positive (classical) solution of (1.1) for 0< t ≤ T is in

C∞(Rn × (0, T ]). Indeed, this follows from a bootstrap argument by applying the stan-
dard differentiability theory of parabolic equations (cf. for example [3, p. 74]). Notice that
u > 0 and sou has a positive lower bound in any compact subdomain ofRn × (0, T ]. Fur-
thermore, ifu0 is continuous, then the solutionu of (1.1)–(1.2) is continuous up tot = 0, i.e.,
u ∈ C0(Rn ×[0, T ]). This can be seen by a regular approximation procedure and the standard
regularity theory of parabolic equation.

3. Secondary critical exponent. Givena > 0, we define

	a =
{
φ ∈ B(Rn)

∣∣∣∣ lim inf|x|→∞ |x|aφ(x) > 0

}
,

	a =
{
φ ∈ B(Rn)

∣∣∣∣ lim sup
|x|→∞

|x|aφ(x) < ∞
}

,

whereB(Rn) denotes the space of bounded positive continuous functions inRn. Let a∗ =
2/(p − m). Note thatp > m + 2/n implies that 0< a∗ < n.

First, we derive a blow-up result as follows.

THEOREM 3.1. Suppose that u0 ∈ 	a for some a ∈ (0, a∗). Then the solution u of
the Cauchy problem (1.1)–(1.2)blows up in finite time.

PROOF. Multiplying the equation (1.1) byφε(x) = Ae−ε|x|2, whereε > 0 andA =
A(ε) = (

√
ε/(4π))n, and integrating it overRn, we obtain

d

dt

∫
Rn

u(x, t)φε(x)dx =
∫

Rn
�(um)(x, t)φε(x)dx +

∫
Rn

up(x, t)φε(x)dx .

Since∫
Rn

�(um)(x, t)φε(x)dx =
∫

Rn
um(x, t)�φε(x)dx ≥ −2εn

∫
Rn

um(x, t)φε(x)dx ,

and by Jensen’s inequality∫
Rn

up(x, t)φε(x)dx ≥
(∫

Rn
u(x, t)φε(x)dx

)p

,

∫
Rn

um(x, t)φε(x)dx ≤
(∫

Rn
u(x, t)φε(x)dx

)m

,

we derive that

(3.1) h′(t) ≥ hp(t) − 2εnhm(t), t > 0 ,

where

h(t) =
∫

Rn
u(x, t)φε(x)dx .
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If

(3.2) h(0) > (2εn)1/(p−m) ,

then by (3.1)h blows up in finite time, sincep > 1. Therefore, the solutionu blows up in
finite time.

It remains to verify the condition (3.2). Sinceu0 ∈ 	a for somea ∈ (0, a∗), there are
positive constantsM andR such thatu0(x) ≥ M|x|−a for any|x| ≥ R. We compute that

h(0) =
∫

Rn
u0(x)φε(x)dx ≥ MA

∫
|x|≥R

|x|−ae−ε|x|2dx

= M(
√

4π)−nεa/2
∫

|y|≥R
√

ε

|y|−ae−|y|2dy.

Sincea < a∗, we may chooseε > 0 so small that (3.2) holds. Hence the theorem is proved.
�

We shall show that the exponenta∗ gives the secondary critical exponent for the existence
of global and nonglobal solutions of the Cauchy problem (1.1)–(1.2).

Suppose thatφ ∈ 	a for somea ∈ (a∗, n). Sinceφ ∈ 	a , there is a positive constantK

such that
φ(x) ≤ K(1 + |x|)−a for all x ∈ Rn .

ChooseM > K. Consider the self-similar solution

UM,a(x, t) = t−βagM

( |x|
tβ

)
, β = 1

2 − (1 − m)a
.

Since
lim

ξ→∞ ξagM(ξ) = M > K ,

there is a positive constantR such that

ξagM(ξ) > K for anyξ ≥ R .

Let γ = gM(R). Note thatgM(R) = min{gM(ξ) | ξ ∈ [0, R]} > 0. Chooseτ ∈ (0, 1) such
thatτ−βaγ > ‖φ‖∞. Then it is easy to verify thatφ(x) ≤ UM,a(x, τ ) for all x ∈ Rn.

Let λ > 0. Thenw(x, t) = λUM,a(x, λm−1t + τ ) is the solution of the problem

wt = �(wm), t > 0, x ∈ Rn ,

w(x, 0) = λUM,a(x, τ ), x ∈ Rn .

Let η = gM(0). Then

(3.3) ‖w(·, t)‖∞ = ηλ(λm−1t + τ )−βa .

Introduce the functionv(x, t) = A(t)w(x,B(t)), whereA(t) andB(t) are solutions of
the following problems:

(3.4) A′(t) = ηp−1λp−1[λm−1B(t) + τ ]−βa(p−1)Ap(t), t > 0; A(0) = 1 ,

(3.5) B ′(t) = Am−1(t), t > 0; B(0) = 0 .
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PROPOSITION 3.2. There is a positive constant λ0 = λ0(φ) such that the problem
(3.4)–(3.5)has a global solution (A(t), B(t)) with A(t) bounded in [0,∞), if λ ∈ (0, λ0).

PROOF. Let q = βa(p − 1) − 1. Note thatq > 0, sincea ∈ (a∗, n). Let λ0 be a
positive constant defined by

(
p − m

1 − m

) (
1 − m

q
ηp−1λ

p−m

0 τ−q

)(p−1)/(p−m)

= 1 .

Given a fixedλ ∈ (0, λ0), we define

D = D(λ) = 1

q
ηp−1λp−mτ−q ,

A∞ = A∞(λ) = [(1 − m)D]1/(m−p) ,

g(x) = gλ(x) = 1 − [(p − 1)Dx1−m + x1−p], x ≥ 1 .

Note thatD > 0 andA∞ ∈ (1,∞). Moreover,g is continuous on[1,∞) such thatg(1) < 0,
g(+∞) = −∞, and maxx≥1 g(x) = g(A∞) > 0, since 0< λ < λ0.

The local existence and uniqueness of solution(A(t), B(t)) of (3.4)–(3.5) follows from
the standard theory of initial value problem. We haveA′(t) > 0 andA(t) > 1 for t > 0 as
long as the solution exists. Notice that the solution of (3.4)–(3.5) can be continued as long as
A(t) is finite. Also,B(t) is uniquely defined by

B(t) =
∫ t

0
Am−1(s)ds

whenA(t) exists in[0, t].
From (3.4), it follows that

1 − A1−p(t) = (p − 1)ηp−1λp−1
∫ t

0
[λm−1B(s) + τ ]−βa(p−1)ds .

Since

B(s) =
∫ s

0
Am−1(y)dy ≥ Am−1(t)s for anys ∈ [0, t] ,

we obtain that

1 − A1−p(t) ≤ (p − 1)DA1−m(t) .

Henceg(A(t)) ≤ 0 as long asA(t) exists. By the properties ofg andA, A(t) < A∞ as long
asA(t) exists. Otherwise, ifA(t) ≥ A∞ for somet , then there iss ≤ t such thatA(s) = A∞
and sog(A(s)) > 0, a contradiction. Therefore, the solution exists for allt ≥ 0 andA(t) is
bounded byA∞. The proof is completed. �

We are ready to prove the following theorem.

THEOREM 3.3. Suppose that u0 = λφ for some λ > 0 and φ ∈ 	a for some a ∈
(a∗, n). Then there is λ0 = λ0(φ) > 0 such that the solution u of the Cauchy problem
(1.1)–(1.2)exists for all t > 0, if λ < λ0.
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PROOF. Let λ0 = λ0(φ) be the positive constant in Proposition 3.2. Definev(x, t) =
A(t)w(x,B(t)), where(A(t), B(t)) is the solution of the problem (3.4)–(3.5). Then it is easy
to check thatv satisfies

vt ≥ �(vm) + vp, t > 0, x ∈ Rn ,

v(x, 0) = w(x, 0) = λUM,a(x, τ ) ≥ λφ(x), x ∈ Rn .

Hence by Proposition 2.1 the solutionu of the Cauchy problem (1.1)–(1.2) withu0 = λφ

exists globally andu ≤ v in Rn × [0,∞), if λ < λ0. �
We remark that by (3.3) there is a positive constantC such that

(3.6) ‖u(·, t)‖∞ ≤ Ct−βa for all t > 0 ,

for the solutionu in Theorem 3.3, sinceAm−1∞ t ≤ B(t) ≤ t .

4. Large time behavior. In this section, we shall always assume thata ∈ (a∗, n) and
that

(4.1) lim|x|→∞ |x|aφ(x) = M

for someM > 0. Recall from Theorem 3.3 that the solutionu of the Cauchy problem (1.1)–
(1.2) withu0 = λφ exists globally in time, ifλ < λ0, whereλ0 = λ0(φ) > 0. We shall study
the behavior ofu(x, t) as t → ∞ in this section and obtain the following result. The idea
of the proof is based on the well-known rescaling method of Friedman and Kamin [4]. As
before, letβ = 1/[2 − (1 − m)a] > 0.

THEOREM 4.1 As t → ∞, we have

tβa |u(x, t) − UλM,a(x, t)| → 0

uniformly on any compact set {(x, t) | |x| ≤ Ctβ } for all C > 0.

PROOF. Forσ > 1, let

uσ (x, t) = σβau(σβx, σ t).

Thenuσ satisfies
(uσ )t = �(um

σ ) + σ−νup
σ , t > 0, x ∈ Rn ,

uσ (x, 0) = σβau0(σ
βx) ≡ u0σ (x), x ∈ Rn ,

whereν = [(p − m)a − 2]β > 0, sincea ∈ (a∗, n).
Recall (3.6). We have the estimate

uσ (x, t) ≤ Ct−βa for anyt > 0, x ∈ Rn andσ > 1 .

Hence{σ−νu
p
σ | σ > 1} is uniformly bounded in any compact subset ofQ ≡ Rn × (0,∞).

Using the regularity theory of quasilinear parabolic equations (cf. [2] and [13]),{uσ } is
equicontinuous on any compact subset ofQ. Then by a diagonal process there is a subse-
quence{uσk } such that

(4.1) uσk → U uniformly in any compact subset ofQ ask → ∞
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for someU ∈ C0(Q). It is easy to verify thatU satisfies the equation

(4.2) Ut = �(Um) in Q

andU(x, 0) = λM|x|−a, x ∈ Rn. Hence the uniqueness implies that

U(x, t) = UλM,a(x, t) = t−βag
( |x|

tβ

)
,

whereg is the solution of (2.4–5) with

lim
ξ→∞ ξag(ξ) = λM .

Indeed, (4.1) holds asσ → ∞. In particular, we have

σβau(σβy, σ ) = uσ (y, 1) → g(|y|)
asσ → ∞ uniformly on compact subsets ofRn. Takeσ = t and setx = σβy. Then we
obtain

tβa |u(x, t) − UλM,a(x, t)| → 0

uniformly on any compact set{(x, t) | |x| ≤ Ctβ } for all C > 0. �
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