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HYPERELLIPTIC VARIETIES
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Abstract. A hyperelliptic variety is by definition a complex projective variety, not iso-
morphic to an abelian variety, which admits dehan variety as a finite étale covering. The
main contribution of this paper is a classification of hyperelliptic threefolds.

Introduction. A hyperelliptic surface (in the sense of [BPV], [GH]) is a compact com-
plex surface, not isomorphic to an abelianfaae, which admits a finite étale covering by an
abelian surface. These surfaces were classified by Enriques—Severi and Bagnera-de Franchis
in their fundamental papers, for which thesceived the Bordin prize of the French Academy
of Sciences in 1907 and 1908, respectively. There are exactly five one-dimensional and two
two-dimensional families of such surfaces. It seems reasonable to define more generally a
hyperelliptic variety of dimension n to be a complex projective variety, not isomorphic to an
abelian variety, but admitting an abelian variety as a finite étale covering. It is the aim of this
paper to classify hyperelliptic threefolds and to give many examples of hyperelliptic varieties
in any dimensions.

The starting point of Enriques-Severi and Bagnera-de Franchis is a theorem saying that
for any hyperelliptic surfacé there is an abelian surfageadmitting a finite group of biholo-
morphic mapd™ acting fixed point freely o, such thatS is isomorphic to a desingulariza-
tion of A/I". Theorem 1.1 below implies that this result is valid for hyperelliptic varieties in
any dimensiom. Hence in order to classify hyperelliptic varieties it suffices to classify the
pairs(A, I') with an abelian varietyl and a finite groug™ acting holomorphically and fixed
point freely onA.

In [UY] Uchida and Yoshihara showed with a very elegant group theoretical proof that
in the threefold case any such grodipis either cyclic of order 2, 3, 4, 5, 6, 8, 10, 12 or
abelian of type(2, 2), (2, 4), (2, 6), (2,12), (3, 3), (3, 6), (4, 4), (6, 6) or the dihedral group
Dy of order 8. Moreover they gave examples for these threefolds.

In this paper it is shown that the dihedral grofig does not occur in this list. So, if
we call the finite groug™ associated to the hyperelliptic variety, we can say that any group
I" associated to a hyperelliptic threefold is abelian (see Theorem 6.1). For the remaining
groups mentioned above we construct families of hyperelliptic varieties of dimensio
associated to these groups, which in the threefold case comprise all such families. To be more
precise, any biholomorphic map: A — A of an abelian varietyA can be uniquely written
asf = t, o gwith an automorphisng and a translation, of A. The elementg form a finite
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group of automorphism&. We may assume that the groupsandG are isomorphic. In the
threefold case we compute the list of all pairs, G), A an abelian threefold and a finite
group of automorphisms for which there exists a finite groupf biholomorphic maps of
acting fixed point freely o and such thaf” >~ G under the canonical map=1t,0g+— g.

In order to determind” one has to write down only the corresponding groups of translations.
This is easy for any paitA, G), but since there are many groups of such translations, the list
would just be too long. So we omit writing down.

The contents of the paper is as follows: In Section 1 we generalize the above mentioned
theorem of Enriques-Severi and Bagnera-de Franchis to arbitrary dimensions. Section 2 gives
some preliminary properties of hyperelliptic varieties. Sections 3 and 4 classify cyclic and
abelian hyperelliptic varieties. In Section 5 all hyperelliptic varieties of type (2, 2) are con-
structed, and finally in Section 6 we complete classification of hyperelliptic threefolds.

Notation: If g is an endomorphism of an abelian variety= V/A, p,(g) : V — V
denotes the analytic representationyoff K denotes an algebraic subgroupafk © denotes
its connected component of 0, which is an abelian subvariety. ¢finally A(n) denotes the
group ofn-division points ofA for any integen > 2.

| am grateful to the Mathematical Institute of Tohoku University for its hospitality during
the preparation of this paper.

1. The Theorem of Enriques-Severi-Bagnera-de Franchis. In [ES] Enriques and
Severi and in [BdF] Bagnera and de Franchis proved independently the following theorem:
Let S be a smooth complex projective surfagenot rational and not an elliptic surface,
admitting an abelian surfaceas a finite cover. Then there exists a grdupf biholomorphic
maps ofA onto A such thatS is a desingularization o /I". In this section this theorem will
be generalized to varieties of arbitrary dimension in the following form:

THEOREM 1.1. Let X be a compact normal complex space such that there exists a
complex torus T and finite holomorphic map = : T — X of degree d ramified at most in
codimension > 2. Thenthereisafinitegroup I" of biholomorphic mapsof T onto 7' such that

X~T/I.

REMARK 1.2. Bagnera and de Franchis show that if the surfaisenot rational and
not elliptic, the mapr : A — S is automatically ramified at most in finitely many points. So
Theorem 1.1 may be considered as a direct generalization of the Theorem of Enriques-Severi-
Bagnera-de Franchis.

For the proof we need some preliminaries. First of all, without loss of generality we may
assume that : T — X does not factorize via an isogerfy: T — T’ of complex tori.
Let T = V/A with a complex vector spacgé of dimension: and a latticeA € V. Fix a
pointx; € X which is not a ramification point of, letrs, ... , t; be its preimages i and
consider representatives, . .. , vy of ; in V. Choose open neighbourhoo#ls of x1 in X,
disjoint open neighbourhoods of #; andV; of v; in V, such that
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(i) m|T; — X1 is biholomorphic, and
(i) p|Vi = T; is biholomorphic for alk.
For any open sdi/ C V let gy denote the composite

qu =moplU:U — X.

We mostly consider open sets such thatyy is biholomorphic onto its image such that its
inversequl :qu(U) — U is well-defined. For abbreviation we writg = gy, andg = gv.

LEmMmMA 1.3. Themaquloql : V1 — V; extendsto a biholomorphicmap ¢; : V —
V.

PROOF Let B C X be the ramification locus of andA = ¢~(B), such thaig :
V — A — X — Bis étale. Lett be a path inV — A starting atvy andUp, ... , U; any chain
of overlapping open sets with the following properties:

() Uo,...,U; areballscentered &t

(i) Uop c V1 with center awy, U; is centered at the endpoint &f

(i) Let X; :=1Im(q;). Thengy,uv,,, : Vi U Vi;1 — X; U X; 11 is biholomorphic.
Let W := qi_l(Xi) C V;. Inductively one sees fof = 1, ..., ¢ that there is a unique open
setW; in V such that

i wW;NnW;;1#60, and

(i) gqw, : W; = X; isbiholomorphicfor j =1,...,¢.
Then we can define the holomorphic extensipmof ql._lql Vi — VitoVpu (U;:l Uj)to
be the composite

-1
qu; dw;
Ui— X; — W;

onU;. So we have the following picture:

Uj Uj+1 N Wi Wj+1
Pi
-1
qU;uUj N /" qwjow; i)
Xj Xj+1

Doing this for every path iV — A starting atv; and noting tha¥ — A is simply connected,
sinceA is of codimensior> 2 in V, we see thaz[yl.‘1 o g1 extends to a holomorphic magp :
V — A — V. By Riemann’s extension theorgpp extends holomorphically tp; : V — V.
In the same way one shows that there is a holomorphic hapV — V extending
quoqi 1 Vi — V1. Sincey; ¢; andg; ¢; are holomorphic extensions of the identity mapian
andV; respectively, they are both the identity maplonThis implies that; is biholomorphic.
(I
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The mapy; depends of course on the choice of the representatioéz;. In particular,
the mapsps, ..., ¢4 do not necessarily form a group of biholomorphic maps—> V. In
order to obtain a group we consider all translations by lattice points of all maefine for
i=1,...,dandallx € A the biholomorphic map

etV >V by ¢ =@+,

i.e., ¢} = 1, o ¢;, wherer, denotes the translation by

LEMMA 1.4. The maps<p},i =1,...,d, » € A, formagroup Ip of biholomorphic
mapsV — V.

PROOF Consider the set 1(x1) = {vi + Al i = 1,...,d, » € A}. Any biholomor-
phic mapgol.A induces a permutation of the ggt!(x1). Moreover, by construction the m:-pp
is uniquely determined by the image @f under this permutation and for everye ¢ ~1(x1)
there is exactly one biholomorphic map such thai?(v1) = 9. Hence, if<pf1 and<p§2 are

two such biholomorphic maps, andcpigf2 o <pl.“(u1) = v; + A3, then we have
A A A
(pjzo(pil :(pks'
Similarly, given<pl.“, if vx + Ao is the element of ~1(x1) with <p;\1(vk + Ag) = v1, then

a1y —1 A
(0!) = e"
This implies the assertion. O

The mapso;\ do not necessarily descend to biholomorphic méps- T. A necessary
and sufficient condition for this is tha»;.‘(vl + A) C v; + A. But this need not be the case.
However we have

LEMMA 1.5. Thereisa positive integer m such that <pl.A descends to a biholomorphic

map
@ V/mA— V/mA

fori=1,...,dandall » € A.

PrRooOF It suffices to show that for every= 1, ..., d there is a positive integen;
such that
(1.1) pi(v1+miA) Cvi +m;A.
For every)r € A the mapg; induces a permutation} of the setr ~Y(x1) = {r1,..., 1)
defined bypg; (v; + &) =1, for j = 1,....d. If S; denote the symmetric group on the

setr ~1(x1), we obtain a permutation representation A — S;. Since Imo; is finite, there
is a positive intege#:; such that

m; A C keroj; .

By constructionm; satisfies (1.1). O
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PROOF OF THETHEOREM. The maplp — Bihol (V/mA, V/mA), ¢} — g, is a
homomorphism of groups. Ldt denote its image. By constructidn is a group of biholo-
morphic maps o’ = V/m A. Since moreoveK = V /Iy, we obtainX = T/TI". O

2. Hyperédliptic varieties. A hyperelliptic surface is a complex projective surface,
not isomorphic to an abelian surface, but admitting an abelian surface as an étale covering
(see [GH], [BPV]). More generally, ayperelliptic variety of dimension n is defined to be
a complex projective variety, not isomorphic to an abelian variety, but admitting an abelian
variety of dimensiom as an étale covering. In this section some preliminaries on hyperelliptic
varieties shall be given.

REMARK 2.1. (i) More generally ayperelliptic manifold is defined to be a compact
complex manifold, not isomorphic to a complex torus, but admitting a complex torus as an
étale covering. There are no nomge@braic hyperelliptic surfaces. So, for dimension two both
definitions coincide. However, for dimension three we will see examples of non-algebraic
hyperelliptic manifolds in Remark 3.9. Since the classification of hyperelliptic threefolds
given below only works in the algebraic cases mainly stick to hyperelliptic varieties.

(i) The notion of hyperelliptic varieties is not a generalization of the usual notion of a
hyperelliptic curve. According to the genus formula of Riemann-Hurwitz there are no hyper-
elliptic varieties of dimension one in the above sense.

Let X be a hyperelliptic variety of dimension According to Theorem 1.1 there is an
abelian varietyA of dimensiorm and a finite groug™ acting holomorphically and fixed point
freely onA such thatX ~ A/I". For everyy € I" there is a uniqgue decomposition

(2.1 Yy =1Ils0g
with translatiory,;, a € A and an automorphisgof A. This givesamap’ — Aut(A), y —
g, which is easily seen to be a homomorphism. Gedenote its image in A¢#). Then there

is an exact sequence
O—-T—->TI—>G—0,
whereT denotes a finite group of translations. Passing to the quotient abelian vafiety
A/T, we may assume thdat = 0, i.e., the mag” — G, y +— g, is anisomorphism. We
call G thegroup associated to the hyperelliptic variety X.
For any abelian variety there is a canonical exact sequence

2.2) 0— A -5 Bihol(4) 5 Aut(4) — 0,

where BiholA) denotes the group of biholomorphic maps4bnto A, the map is defined

by a — t, andp is the canonical map derived from (2.1). Obviously (2.2) is a split exact
sequence, i.e., Bihgh) = A x Aut(A). For any subgrou € Aut(A), the sequence (2.2)
induces by pullback a split exact sequence

(2.3) 0>A—>T25G6-o0.

Together with the above remarks this proves
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PROPOSITION 2.2. For any hyperelliptic variety X there is an abelian variety A, a
finite group of automorphisms G of A and a section o : G — I of (2.3) such that the group
I' = o(I') actsfixed point freelyon A and X ~ A/TI".

Itis well-known and easy to see that the set of section&s — I of (2.3) is canonically
in bijection to the set of cocycleg(G, A). The following proposition gives a criterion for
the cocycle to yield a fixed point free action dn

PROPOSITION 2.3. Leto : G — I’ C I" be a section of (2.3) with corresponding
cocyclep € Z1(G, A). Thefollowing conditions are equivalent:

(i) I actsfixed point freely on A.

(i) The restriction of the cohomology class ¢ € H(G, A) of ¢ to every nontrivial
cyclic subgroup of G is nonzero.

PrROOFE I' does not act fixed point freely if and only if there ig& G, g # 1 and an
a € A such thab (g)(a) = a. Sinceo (g) = 1,y © g, this means that there isgge G, g # 1
and amz € A such thaty(a) + ¢(g) = a or equivalentlyp(g) = (1 — g)(a). This means that
¢ restricted to the cyclic subgroup generatedyliy a coboundary. O

3. Cyclichyperdlliptic varieties. A hyperelliptic variety is calledyclic if the group
G associated to it is a cyclic group. In this section we prove a theorem classifying cyclic
hyperelliptic varieties and use it to determine all such varieties in low dimensions.

So, letX denote a cyclic hyperelliptic variety. We may assume that the cyclic covering
7 : A — X is minimal, that is, does not factor via an isogetiy—> A’ of abelian varieties.
According to Proposition 2.2 there is a biholomorphic map A — A of orderd = degr
such that

(i) f¥ admits no fixed point and is not a translation foxlv < d, and

(i) X = A/(f), where(f) denotes the group generated py
There is a unique decomposition

(3.1 f=tiog

with a translatiorr, andg € Aut(A). This implies

3.2) I" =t gy tg i © 9
for all v. In particular,g is an automorphism of orderof A and

d—1
(3.3) Z ¢"(x) =0.
v=0

To be more precise] — 1 is the smallest intege¥ such thaty"™_; ¢"(x) = 0, otherwise a
power of f would not act fixed point freely.
(3.2) immediately implies

LEmmMA 3.1. Thefollowing conditions are equivalent:
(i) Thegroup (f) actsfixed point freely on A.
(i) Yo dx) giml—g)forallv=1,...,d—1
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We need the following lemma which is well-known and easy to see.

LEMMA 3.2. (a) For any endomorphisma of A the addition map u : (Ker(a))? x
Im(e) — A isanisogeny.
(b) «allm(a) : Im(ax) — Im(«) isanisogeny.
Consider
B1:=Ker(l—¢° and Br:=Im@1-yg).

According to Lemma 3.2 the addition map: B1 x B — A is an isogeny. Moreover we
have

LEmmMA 3.3. (a) Bjand B; areabelian subvarieties of A of positive dimension.

(b) f|B1: B1 — tyBjisatrandation.

() g|B1=1p.

(d) ¢|Bz isanautomorphism of By with finitely many fixed points.

(e) BiN By C Fix(g|B2) which isa finite set.

() (1 — ¢g)|B2isanisogeny of B>.

ProOoOE (@) If 1 — gis an isogeny, thery always admits fixed points according to
Lemma 3.1. Hence diB; > 0. On the other hand, 4 g # 0, otherwisef would be a
translation. Hence diml; > 0. (b) and (c) are obvious.

(d) and (e). Suppose € Bo. Thereisay € A with x = y — g(y) implying g(x) =
1—-9(9(y) € Im(1l— g) = B2. Sog|Bz is an automorphism oB», sincey is injective
as an automorphism of. The fixed points ofy| B> are just the points of the intersection
Ker(1 — g) N B2, which is finite. (f) is a consequence of Lemma 3.2 (b). d

Choose a decomposition= x1 + x2 with x1 € B1 andx, € B, and define

(3.4) fi=tuaxnyo@dxg).
Then the following diagram is commutative

Bix By -1 Bix By

wl Lu
A Loooa
LEMMA 3.4. LetT denotethegroupoftrandationsz, _yy of B1x Bz withy € B1NB>

andG :=(f)® T. Then
X ~B1 x B2/G.

PrRoOOF It suffices to show that, _y andf commute for any € By N By, which is
an immediate computation usinge Fix(g|Bz). O

The decomposition (3.4) depends of course on the choice of the group structure, i.e.,
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on the choice of the zero point & x B». The following lemma uses this fact in order to
normalize the decomposition.

LEMMA 3.5. Choosing a suitable zero point of By x B2, we may assume that

f=ta,000 A xg)
with x1 € By asabove and g € Aut(B2).

PROOF  Let f = f(x, 1y © (1 X g) = (fij)ij=1.2 : B1 x B2 — B1 x Bz be asin (3.4).
Then f22 : B — B is given by f22(z) = ¢g(z) + x2. Let yo € B2 with (1 — ¢)(yp) = x2.
Then

f22(y0) = g(yo) + x2 = yo.
Chooseg(0, yo) as the new zero point &1 x Bz and letf = l(x).xh) © (1 x g) be the decom-
position of f with respect ta0, yo). We have to computéx;, x5). But § = t,, 0 gor_,, and
hence
1(x1,0)(1 X §)(z1, z2) = (z1 + x1, 9(z2) — g(yo) + yo)
= (z1 + x1, 9(z2) + x2)
= f(z1.22).
([

The elements o6 = (f) ® T are of the formy(,, ) o (1 x g') with 0 < i < d and
x1 € B1, x2 € By torsion points. To be more precise,= 0ifi > Oandxy; = —x1 € B1N B>
if i = 0. In particular, we have a well-defined map

¢:G — Bl, faapo(lx g x1.

LEMMA 3.6. ¢ : G — B isaninjective homomorphism of groups.

PROOF  #(x;,xp) (1 X ) Ol(yy,yp) (1% 9) = t(x1+)‘1,x2+9i()'2))(1 x g'*/), and hence is a
homomorphism of groups. Any element of Key is of the forme g ,) (1 x gH. If0 <i <d,
then this element has fixed pogntand hence is not containedah ]

COROLLARY 3.7. The group of trandations T is a finite abelian group with <
2dimB1 — 1 generators.

This follows from the fact that any finite torsion subgroupsBafis generated by
2 dimB; elements. O

According to Lemma 3.6 we may consid&ras a subgroup aB;. Moreover the map
o : G — Bihol(B2), x1+> txZgi ,

if o~ 1(x) = Ly, x0) (1 X g"), is a faithful representation. Combining everything we have:

THEOREM3.8. For avariety X of dimensionn the following statements are equival ent:
(i) X isacyclic hyperelliptic variety.



HYPERELLIPTIC VARIETIES 499

(i) There are abelian varieties By of dimension0 < n1 < n, By of dimensionny =
n—n1, afinitesubgroup G = (x1)®T of By, and afaithful representation p : G — Bihol(B2)
such that

(&) g¢= p(x1) isanautomorphismof B> of order d > 2 with Fix(g) finite, and

(b) p(T) isagroup of trandations of B2 by elements of Fix(g).

If an action of G on By x By isdefined by (x, (z1, z2)) — (t:(z1), p(x)z2), then X ~
B1 x B2/G.

PROOFE It remains to show that under condition (ii) the gratiacts fixed point freely
on By x By. Let f : By x B, — Bi1 x Bp be defined byf = 7,0 o (1 x g), and
T = {(x, p(x)(0)) € B1 x Bo|x € T} considered as a group of translationsBafx B,. Then
any element of f) @ T ~ G is of the form

S0 1 p )
with0 <i <d —1andx € T, and we have

ot pn©) (21, 22) = (214 x +ix1, ¢ (z2) + p(x)(0)) .

To see this one has to use thdk)(0) C Fix(g). Now supposéb1, bp) € By x By is a fixed
point of f7 o #(x. p(x)(0)). This impliesby +x +ix1 = by and thusc = —ix1 # 0 contradicting
the fact thatx;) @ T is a direct sum inBy. O

Since all automorphisms of finite order of abelian varieties of dimensid@are well-
known, one can use Theorem 3.8 to give a list of all cyclic hyperelliptic varieties with
dim(B2) = r < 3. For this one has only to give a list of all automorphisms of finite or-
der of abelian varieties of dimensiertogether with their fixed point sets Kiy. In order to
define a hyperelliptic variety one has to give only an abelian vaBetgn element; € B of
orderd = ord(g), a finite subgrouf C By notintersecting the groufx;) and an embedding
T — Fix(g). Tables 1 and 2 below give the tripléBy, g, Fix(g)) for all cyclic hyperelliptic
varieties dingB2) = 1 and 2. From this it is easy to work out the other data. The notation will
be explained after the tables.

TABLE 1. dim(Bp) = 1.

‘d‘Bz‘ g ‘ Fix(g)

2| E | -1 EQ)

3| Ep| p | {3Q+pIv=012

4| E | i {zA+Dlv=01

6| E, | —p {0}
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TABLE 2. dim(Bp) = 2.
d B> g Fix(g)
2 s -1 52
3| cymzt (9-1 [(Z0[a( %) e mz]
3 E,x E, ( po, )j=12 Fix(p) x Fix(p)
4| cmzt ) [(Z0[2(%) e moz)
4 E; x E; (63 )j=13 Fix(i) x Fix(i)
4 E x E; (39 E(2) x Fix(i)
5 5 (5@ | [|ta+e+ad +adim=o.. .4
6 c?2/mz4 (%Y {0)
6| E,xE, o 0)i=12 0)
6 E, x Ep %2°) Fix(p) x {0}
6 Ep x Ep (£, —0,0) {0}
6 EpxE (<% {0} x EQ)
6 Ep x E (5°) Fix(p) x E(2)
8 E; x E (9%) {(x, x)|x € Fix(i)}
8 | E/5xE (V2 (5.0}
10 S5 ( %0 S23)0) {0}
12 E; X E (%1 {0}
12| E,xE, (%8 {0}
12 E; x E, (469 Fix(i) x Fix(p)
12 E; x E, 65 Fix(i) x {0}

Here E (resp.S) is an arbitrary elliptic curve (resp. abelian surfacg), = C/(1, 1)Z
for anyt in the upper half plan&,; denotes a primitivé-th root of unity, and we abbreviate
i = &, p = £3. Moreover,Ss denotes the abelian surface@M -type (Q(&5), (&5, 552)), and
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I1; and T, the period matrices

(1 0 «x y ) (1 0 x vy
Hl_(o 1 —y x+y>’n2_(0 1 —y x>

with (x, y) € C2 — R?, defining abelian varieties.
Table 2 uses heavily Fujiki's list of automorphisms of abelian surfaces [F].

REMARK 3.9. (a) The quotient?/I7;Z*is a complex torus for evergt, y) € C*—
R2, but not always an abelian surface. In the cases where it is not, the quotie; x By/I”
is a non algebraic hyperelliptic surface. Since the existence of non algebraic hyperelliptic
varieties contradicts Theorem Il of [J], we give an explicit example: The complex Byus

C?/117* with
1 i 0 «
”z(o 0 1 i>

fits into an exact sequence-8 E; — By — E; — 0. If @ ¢ Q(i), thenE; is the only
nontrivial complex subtorus dof (see [BL] Section 1.6). In particulaB is a non algebraic
complex torus. Its automorphism group is isomorphiZ fdZ and generated by = (6 ‘_‘;‘)
and Fixg) = {0, (x, y)} with x = —(i/2a, y = (1 — i)/2. Choosing an elliptic curvé;
and a 4-division point; € B1, the groupG acts onBy x Bz by t,, o (1 x g) and its quotient
is a non algebraic hyperelliptic threefold.

(b) The automorphism of 3-dimensional abelian varieties were classified in [BGL].
Therefore one could also write a table of cyclic hyperelliptic varieties of order 3. This will be

omitted, since the table would be too long.

4. Abelian hyperdliptic varieties. A hyperelliptic variety is callecbelian if its as-
sociated grou; is an abelian group. In this section we prove a theorem describing such
varieties for abelian groups with two generators, which allows to construct abelian hyperel-
liptic varieties in any dimensions and will be applied in Section 6 to give a list of all abelian
hyperelliptic threefolds.

Let A be an abelian variety of dimensiaig> 3) andG a group of automorphisms of
isomorphic toZ/d1Z & Z/d>Z with d1|do. Supposd™ is a group of biholomorphic maps of
A, isomorphic toG and acting fixed point freely oA. Then

X:=A/T

is an abelian hyperelliptic variety associated to the grGupVe call itof type (d1, d2). Let gy
andg, be automorphisms of of orderd; andd» generatings, and f1, f» the corresponding
generators of”

fi=trogy and fao=tyogp.
Define abelian subvarietie by

A1 = (Ker(1— g;) NKer(1 — g2))°, Az = (Ker(1— g7) NIm(1 — g»))°,
Az = (M1 - g)NKer(l—g))°, As=(Im@L-g)NImIL— g))°.
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Applying Lemma 3.2 twice, we concludieat the addition map induces an isogehyx Az x

A3z x Agq — A. Inthis section we assume th& := A1 is positive dimensional. 1B, denotes
the image of the induced mafy» x A3z x A4 — A, we obtain that the addition map induces
an isogeny

n:B1x By— A.

The mapgj; andgs restrict to the identity orB; and to automorphisms df,, which we also
denote byg; andg,.

LEMMA 4.1. Bi1N Bz C Fix(g1|B2) N Fix(go| B2) which isfinite.
PROOFE The only nontrivial assertion is that iy | B2) NFix(g,| B2) is a finite set. But
Fix(g11B2) C (Ker(1— g1) NIm(1 — g9)) U (Ker(1 — gy) NIM(1 — go)) .

The first set is finite by Lemma 3.2(a) and the second is a union of finitely many translates of
Az. Similarly,

Fix(g21B2) C (Ker(1— go) NIm(1 — gp)) U (Ker(1 — gz) NIM(1 — g9)) .

Again the first set is finite by Lemma 3.2(a) and the second is a union of finitely many trans-
lates ofA3. Hence the assertion follows from the fact thatN A3 is finite. O

Consider decompositions
X =x1+x2, x' = x]+ x5
with x1, x; € By andxz, x5 € Ba.
LEMMA 4.2. (@) dix1= —Zflz’ol g1 (x2) € B1N Ba.
(b) dox] ="' g5(x}) € BLN Bo.
di—1

PROOF.  According to Equation (3.3)) |15 ¢;(x) = 0. This implies (a), since
g1(x1) = x1. The proof of (b) is the same. O

Define biholomorphic mapg and f> : By x B» — B1 x Bz by
fii=toapo@dxg) and fo:= Hagxp © (L X o).

Fori = 1 and 2 the following diagram is commutative

Bix By -1 BixB,

ul Lo

A — A

~d ~d:
LEMMA 4.3. (a =1t - e _ )
@ f (a1, Y05 g x2) /2 (dx}, X2 b ()

(b) 1—gD(xp) =1 — g2)(x2).
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PROOFE (a) is a consequence gff" = 1fori = 1, 2. For (b) note thaif1 f» = f>f1
implies g1(x") + x = go(x) + x". This gives the assertion singg(x;) = x] andgo(x1) =
X1. O

LEMMA 4.4. Let T denotethe group of transations s, —p) of By x B withb € BN
Bo. Then the subgroup I” of Bihol(By x B») generated by f1, f> and T is a finite abelian
group with

X~ By x By/I".

PrRoOOFE It suffices to show thafl, fz and7 commute. But this is an immediate com-
putation using Lemma 4.3 and(b) = g,(b) = b. O

Combining everything we have proved part of the following theorem.

THEOREM 4.5. For avariety X of dimensionn(> 3) and positive integersdi, d with
d1|d> the following statements are equivalent:

(i) X isanabelian hyperelliptic variety of type (d1, d2).

(i) Thereare

e abelian varieties B1 and B2 with dim B1 + dim By = n,

e commuting automorphisms g; of By of order d; for i = 1, 2 with Fix(g;) N Fix(go)
finite,

e points (x1, x2) and (xi, xé) € B1 x By with (1 — gl)(xé) =1 - gp)(x2),

e asubgroup t of Fix(gq) N Fix(g,) containing Z‘jl:_ol g; (x2) and Zf"’:_ol g5(x5) and
an injective homomorphism: : t — Bj with ¢ (Z‘v“:_ol gi(xz)) = —dqx1 and
(0 gy = —dz,

such that

(&) X =~ B1 x By/I', where I' is the subgroup of Bihol(B1 x B2) generated by f1 =
f(x1,x0) © (1 x gl)s fa= t(xi,xé) o(1x 92) andT = {t(t(y).,y)|y € 1}, and

(b) foralli=1,...,di—1, j=1,...,do—1andy € t we have

jxi+ixa+1(y)#0 or

i—1 j—1
Y D+ Y gigr(x) ¢ Imigig3) .
v=0 v=0

PROOF Note first thatl” is a finite abelian subgroup of Bin@1 x Bz). This follows
from the assumptions with the same computations as in the proof of Lemma 4.4. It remains
to show thatl” acts fixed point freely oB1 x B3 if and only if Condition (b) is satisfied. But
this follows immediately from the fact that the elementdoére just

i Jj_ _ o i J
e ©S10 02 =i i) Y03 e+ 39S gl gy ) © 1 x0g)

withl<i<di—1 1<j<dy—1landyer. O
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The easiest way to construct abelian hyperelliptic varieties is given by the following
corollary.

COROLLARY 4.6. Suppose we are given abelian varieties By of dimensionn; > 0
and B of dimension n — ny1 > 0, afinite subgroup I = (x1) @ (x7) @ T of By and afaithful
representation o : I' — Bihol(Bz) such that

(@) p({x1) ® (x])) isagroup of automorphisms of B, isomorphicto Z/d1Z & Z/d>Z
with Fix(p(x1)) N Fix(p(x7)) finite.

(b) p(T) isagroup of trandations of B, by elements of Fix(p (x1)) N Fix(p(x)). If G
actson By x Bz by (x, (b1, b2)) — (¢ (b1), p(x)b2), then

X ~ By x By/TI”
isan abelian hyperelliptic variety of dimension n of type (dy, d2).

PrROOF Chooserz = x;, = 0. Let r denote the subgroup = {p(#)(0)|z € T} of B2
and: : T — T the obvious isomorphism. Then all the conditions of (ii) of Theorem 4.5 are
satisfied. O

REMARK 4.7. (a) One can also easily prove Corollary 4.6 directly without using
Theorem 4.5. Moreover, it seems obvious how to generalize the corollary to construct abelian
hyperelliptic varieties of arbitrary typef/s, ... , d,). We will omit this, since it will not be
used in the sequel.

(b) Theorem 4.5 is trivially valid also for dilB; = 0. In fact, in this case Condition
(ii) reduces to the definition of a hyperelliptic variety associated to the géaup

(c) One might try to obtain a better description of abelian hyperelliptic varieties of type
(d1, d2) using the isogeny. : A1 x A2 x A3 x Ag4 — A of the beginning of this section. In
fact, f1 and f2 lift to biholomorphic maps ofi; x - - - x A4, and so this can be done. However,
there are some difficulties to the effect that the result seems not easier to apply than Theorem
4.5: First of all, the kernel oft seems complicated. Moreover, the liftingsfafand f> do not
commute in general. These difficulties vanish in the special Gasd>) = (2, 2) as we shall
see in the next section.

5. Abélian hyperdliptic varieties of type (2,2). For a hyperelliptic varietyX asso-
ciated to a grouy >~ Z/2Z x Z/2Z one can use the isogemy x Az x Az x A4 — X of
the last section to obtain a better descriptiorkof

Let the notation be as at the beginning of the last section it do = 2. So,I" is a
group of biholomorphic maps, isomorphicZg2Z & Z/2Z, generated by; = ¢, o g; and
f2 =ty o gp and acting fixed point freely on an abelian varidtyf dimensiorm (> 3) such
thatX ~ A/I". Moreover

n:A1L X Ao X A3 X Ag —> A
is anisogeny, wherg1, ... , Az are abelian subvarieties afdefined as above. Here we have
g1lA1 x A2 =1, g1lA3 x Ag = —1,
glA1 x Az =1, GolA2 x Ay = -1,
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and moreoveK = Ker(u) consists of 2-division points. Consider decompositions
x=x1+x2+x3+xs and x' =x]+x5+x5+x,
with x;, xl{ € A;.

LEMMA 5.1. (a) fiand f, generateagroup~ Z/2ZxZ/2Zifandonlyif x1, x2, x],
x5 and x4 — x, are 2-division points.

(b) I = {f1, f2) actsfixed point freely on A if and only if

() x14+x2 & A3+ Ag,

(i) x14+x3 & Ao+ Ay, and

(i) g1(y) +x ¢ A2+ As.

PROOF Assertion (a) is obvious. For (b)(i) note that acts fixed point freely if and
only if x ¢ Im(1 — g1) = A3z + Ag. (ii) and (iii) mean thatf, and f1 f> act fixed point
freely. O

Define biholomorphic mapg; and f on A1 x Az x Az x A4 by

S =t mpnsg 0 (Lx 1x (=1) x (=1)),
fz = t(xi!xévxévxz/l) o (1 X (—1) x 1x (—1)) .

Fori = 1, 2 the following diagram commutes

A1 X A2 x A3 X Ag i) A1 X Ax X A3 X Ay

“l lu

A N A

Using Lemma 5.1 (a) one easily checks tifaand f> generate a group isomorphicZg2Z &
Z/2Z. Moreover, ifT denotes the group of translations #f x --- x A4 by elements of
Ker(u), then the sunif1) + (f2) + T is directand

F'=(fi)® (e T

acts fixed point freely od1 x - - - x A4. Hence we have
LEMMA 5.2. X ~ Ay x A2 x A3 x Aa/T.
LEMMA 5.3. Choosing suitable zero points of A, Az and A4, we may assume that

fi=1luxn00091 and  f2 =1, 0. x 092

with 2-division points x1, x2, x7, x5, x4, g1 = 1x1x (=1) x (=D and g, = 1 x (=1) x
1x(=1).

PROOF Letzz € A3 with 2z3 = x3. Then

fi(za) = —z3+x3=123.
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Choosez as the new zero point ofz and letg; = 7,;0g; 01—, fori = 1, 2 the corresponding
automorphisms od3. Then for allaz € As:
G1(a3) = —az+ 223 = fi(az), and
Iy, 0 Gplas) = ag + xz = fa(as).
Hence we may assume theg = 0. The proof that we may assumég = 0 is the same.
Finally, letz4 € A4 with 2z4 = x4. Then
fi(za) = —za+x4=z4.
Choosez4 as the new zero point of4 and letg; = 1,,0g; 01—, fori = 1, 2 the corresponding
automorphism om4. Thenfor allag € Ag :
G1(aa) = g1(aa) — g1(za) + 24 = —as + 224 = f1(as) .
According to Lemma 5.1 (a), = x4 + ps with a 2-division pointp4 of A4. Thus

tpa © Go(aa) = go(as) — go(z4) + 24 + pa = —as+ xj = fo(as) .
Hence we may assume that= 0 andx) = p4 is a 2-division point. O
LEMMA 54 Ke'(l'l‘) m <(xls -x21 07 0)7 (-x:/l_s 07 xés x:‘)) = {O}'

PROOF  Otherwisel” contains one of the automorphisms g, or ¢; g, and thus admits
fixed points ond1 x - -- x Ag. O

Combining everything we have proved most of the following theorem, the remaining
assertions being easy to check.

THEOREM 5.5. For a variety X of dimension n (> 3) the following statements are
equivalent:
(i) X isanabelian hyperelliptic variety of type (2, 2).
(i) Thereare
o abelian varieties A, of dimension n; > Ofori = 1,...,4with > n; = n,
e 2-division pointsx = (x1,x2,0,0) # 0andx" = (x7,0, x5, x,) #00f Ap x --- x
Agwith (x1 + x7, x) # (0,0),
e Asubgroup T of 2-division pointsof A1 x --- x Agwitht N (x, x’) = {0},
suchthatif 1 =ty o (I x 1 x (=1) x (1) and f> = t,» o (1 x (—1) x 1 x (—1)) on
A1 x --- x Agand T denotes the group of translations by elements of z, then

X>~A1 XX Ayg/T
with ' = (f1) @ (f2) & T.
Note that Theorem 5.5 can be easily applied to construct all abelian hyperelliptic varieties
of type (2, 2).
6. Hyperdllipticthreefolds. The first aim of this section is the proof of the following
theorem. Finally, we complete the classification of all hyperelliptic threefolds.
THEOREM 6.1. Any hyperdlliptic threefold is abelian.
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For the proof, assume that is a hyperelliptic threefold associated to a non abelian
group. According to [UY] this group is necessarily the dihedral groupof order 8. Hence
there is an abelian threefoltl and a groupg™ C Bihol(A) acting fixed point freely om and
isomorphic toD4 such thatX = A/I". Let I" be generated by, and f> with f14 = f22 =

1, fofifo= f;* Then
fi=tyog, and fo=thop

with ¢q, go € Aut(A) with g‘l‘ = gg =1 ¢pggp = gIl andx,y € A. Comparing the
relations forfi, f> with the relations fow, g,, we obtain

LEMMA 6.2. (@) ¢3(x)+ #(x) + g1(x) +x = 0.

(b) g2(y) +y=0.

€) A+ ng)E) =—(91+ g)).

LEMMA 6.3. Let By := Ker(1 — ¢;)° and B, := Im(1 — ¢;). ThendimB; =
1, dimB; = 2 and the addition map « : By x B — A is an isogeny. Moreover, the
group G = (g4, g,) actson B and Bo.

PROOF The groupG acts on the tangent spaggA = C3. This representation af
must contain the two-dimensional representatioogince otherwise the action 6f on A
would be commutative. The eigenvaluesgfof the two-dimensional representation ate
Hence the one-dimensional representation has to be trivig| 080 B; is one-dimensional
and B; is two-dimensional. Certainly, alsg acts onB; and Bs. O

B> is an abelian surface with automorphism grabjp These surfaces have been clas-
sified by Fujiki. In fact, according to Table 8 of [F], we know thB# is isomorphic to
E x E with an arbitrary elliptic curveE' or the quotient of£ x E by a groupH ~ Z/2Z or
~ Z/2Z x Z/2Z of diagonal 2-division points, anB4 acts onE x E by

(0 1) g (01
=\ -1 0 2=\1 0)"

and on the quotients by the corresponding quotient actions. In any case, we write the elements
of By as pairs(b, b'), b, b’ € E. In the case of the quotienfs x E/H we have to identify
pairs which differ by a diagonal 2-division point &f. According to Lemma 3.3 (e),

BiNB, C AQ) =~ 2/2Zx2/2Z,

whereA denotes the image of the diagonalfofx E in E x E/H. Hence we may write the
elements of A >~ By x Bo/B1 N By as

b = b1+ (b2, b))

with b1 € By and (b2, b},) € B2. Again two such representationsioie A differ at most by
2-division points.



508 H. LANGE

Only two of the four one-dimensional representation®gfcan occur sinceq|B1 has
to be the identity. Hence there are two cases

Case 1: nlB1=1, gp|B1=1.
Case2: g1lB1=1, g2|B1 = —1.
In both cases choose decompositions
x=x1+ (x2,x) and y=y1+ (y2,y)

for the translation points andy of f; and f>. Then the proof of Theorem 6.1 is completed if
we show that in both cases the action/dbn A is not fixed point free.

Case 1: According to Lemma 6.25,(y) = —y. Hencey is contained in the eigenspace
of —1 of g5, which is the antidiagonai :={(b, —b) € By} of E x E oritsimageE x E/H.
Hence we may assume= (y2, —y2). On the other hand, I — g¢,) is just the antidiagonal
Aof By, ie.,y € Im(1— g,). According to Lemma 3.1 this implies the assertion.

Case2: Again we havey,(y) = —y, whichin this case is equivalent g = —y,. Hence
y = y1+ (y2, —y2) € B1 + A. Now Im(1 — g) = B1 + A, i.e.,y € Im(1— gp). Again
Lemma 3.1 implies the assertion. O

Hence we may assume thitis a hyperelliptic threefold associated to an abelian group
G acting on an abelian threefoldl. If G is cyclic, thenX is necessarily of the type already
described in Section 3. Hence we may assume@hiatnot cyclic. Under these assumptions
we have

LEMMA 6.4. Thegroup G isgenerated by two elements.

PROOF Supposes is non cyclic and cannot be generated by two elements. Then
admits a subgroup isomorphic @/ pZ)3 with a primep. lts generatorsy;, g, and g5 say,
cannot have a common eigenspace of the eigenvalue 1, since there is no such automorphism
group of an abelian surface (see [F]). But then it is easy to see that a suitable proglyetof
andgs; does not admit an eigenvalue 1. O

Hence we may assume th@t~ Z/d1Z x Z/d>Z with di|d> and is generated by of
orderd; fori = 1, 2. Then we have

LEMMA 6.5. Therearetwo possibilities: Either
(i) Theeigenspacesof 1 of g; and g, have a nontrivial intersection, or
(i) G~2Z/2Z xZ/2Z.

PROOFE Suppose the contrary, i.65 is not of type (i) or (ii). We may choose the
coordinates of2? in such a way thay; = diag(1, a2, @3) andg, = (81, B2, 1) with oz #
1 # B1. The elemeny, g has to admit an eigenvalue 1, implying = ﬂgl. Henceglgg =
diag(,Bf, B2, @3). SincepBy # 1 (otherwisenp = B2 = 1), this impliesg; = —1. But then
B = diag—1, 5%, ¢3) givesaz = —1. Thus we have; = diag(1, 8, *, —1), g, = diag
(=1, B2, 1) with B # +1. But nowg; g3 = diag (-1, 82, —1) admits no eigenvalue 1, a
contradiction. O
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Applying Theorem 5.5, it is easy to construct all hyperelliptic threefolds of t2p2).
So we are left with the case thatis of type (d1, d2) with d> > 2 such thaty; and ¢, ad-
mit a common eigenspace of 1. Since an elliptic curve admits only cyclic automorphism
groups, Theorem 4.5 gives us an elliptic cuBgand an abelian surfadg admitting com-
muting automorphismsg, and g, of orderd; andd; with Fix(g;)N Fix(go) finite, and points
(x1, x2), (x1, x5) € By x Bp and a group of translatiofi of By x Bz with some additional
properties such that

X=B1xB2/{f1) & (fa) & T
With f1 = t(x,.x») o (1 x g7) and fo = 1(x].xy) © (1 x go). Table 3 below gives all quadruples

TABLE 3.
(dy,d2) B 91 92 Fix(g1) N Fix(g2)
@4 | ExE | (39 39 E(2) x Fix(i)

@4 | ExE | (539) (59) Fix(i) x Fix(i)

2,4 | E; xE; (ﬁi D1 GY Fix(i) x Fix(i)

0i
@4 | EExE | 39 (59) {0} x Fix(i)
26 | ExE, | (39 | (52°) E2) x {0}
@6 | EyxE | (39 [(¢2) )
26 |E,xE, | (19) [(¢ —Op) {0}
@6 |ExE | (¢ | (¢ poz) 10} x Fix(p)
@12 | EixEy | (G%) | (65) | Fix@) =0
@3 | EpxEp| (5,2) | (59) | Fix(o) xFixp)
B3 | EpxEp | (44) ] (§ 2) Fix(pl4)
@& | ExEy | (52) | (5 (0
36 | EpxE | (44| (¢ —Op) {0}
36 |[EyxE | (59 | (55°) Fix(p) x {0}
@9 | EixE | (§9) (39 Fix(i) x Fix(i)
@4 | ExE | (19 (%9 {0} x Fix()
©6 | EpxEy | (P9 | (55) o
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(B2, 91, 92, Fix(g1)N Fix (go)) with d> > 2 which yield hyperelliptic threefolds in this way.

For the proof Fujiki's paper [F] is heavily used. According to [F], there are also some
other abelian surfaces admitting a group of automorphisms of @ypel2), but these are
quotients ofB; of table 3. Hence in order to constrube corresponding hyperelliptic three-
fold we may start withB, out of table 3. Applying Corollary 4.6, it is now easy to con-
struct many hyperelliptic threefolds for any of the tripl@, ¢;, g») of the table: Choose
a pair of (d1, d2)-division points(x1, x2) of an elliptic curveB;, a subgroupl’ of B; and
an embedding : T — Fix (g1)N Fix (go) such thatl” = (x1) + (x2) + T is a direct
sum. IfI" acts by(xi, (b1, b2)) > (tx; (1), 91(b2)), (x2, (b1, b2)) > (tx,(b1), g2(b2)) and
(x, (b1, b2)) — (t:(b1), t,(x)(b2)) for anyx e T, thenX = By x Bp/I" is a hyperelliptic
threefold. One can apply Theorem 4.5 in order to construct all hyperelliptic threefolds of this
type. This is a bit more complicated, but candmne separately in every case. However, there
are too many cases, so this will be omitted.
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