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Abstract. Floquet multipliers of symmetric rapidly oscillating periodic solutions of
the differential delay equatiof(r) = «af (x(¢), x(t — 1)) with the symmetriesf (—x, y) =
f(x,y) = —f(x,—y) are described in terms of zeroes of a characteristic function. A rela-
tion to the characteristic function of symmetric slowly oscillating periodic solutions is found.
Sufficient conditions for the existence of at least one real multiplier outside the unit disc are
derived. An example with a piecewise linear functifns studied in detail, both analytically
and numerically.

1. Introduction. The approach of exploiting symmetry properties of delay equations
and of periodic solutions to study the Floquet multipliers of such solutions is well-known, but
was so far mainly used in connection with slowly oscillating solutions. In the present work
we extend this method to rapidly oscillating solutions with periods which are commensurable
with the delay. We investigate the relations between stability properties of slowly and rapidly
oscillating solutions. Although both types of solutions are connected to each other by trans-
formations, the relation between the characteristic functions that we derive in Section 3 is
rather nontrivial.

We apply the result to the study of stability, secondary bifurcation, and asymptotic behav-
ior of Floquet multipliers (FM) fo rapidly oscillating periodicautions in Section 4. (Recall
that the FM of a periodic solution are the eigenvalues of the derivative of the period map at
the initial value of this solution, and thus determine the stability of the solution.) In Section 5,
we describe Floquet multipliers for rapidly aéating periodic solutions of a piecewise linear
equation with sine-like feedback. In partiaulwe obtain a real multiplier oscillating about 1
as a parameter is varied. One might conjecture that this is the dominating multiplier, in which
case one would have a simple example for the occurrence of rapidly oscillating, but stable
periodic solutions. The fact that rapidly oscillating solutions can be stable at all is a rather
recent discovery, see [10, 20]. However, by numerical investigation we have found that (for
the numerically accessible parameter rangejdtexist non-real multipliers outside the unit
circle, so that we do not obtain stability in our example.
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Let us give a brief summary of known results about the existence and stability of sym-
metric periodic solutions that we will need in the sequel. For proofs and further details see
[1-8, 11, 13, 15, 18, 21, 22] and references therein.

Differential delay equations of the type

(f) x@) = f(x(0),x@ —1))

generate a semiflow on the space= C%([—1, 0], R), if f is locally Lipschitz continuous.
Equation(f) is called symmetric if the functiolf satisfies the condition

(s) f(=x,y) = f(x,y)=—f(x,—y) forany (x,y)eR?.
Under the additional hypothesis of negative feedback

y-f(x,y)<0 for y#0,

equation( f) is known to possess the so-called special symmetric periodic solutions [2, 6, 13]
(SSPSs for brief). A periodic solution: R — R is called special symmetric ¥f(zr + 2) =
—x(t) forall t € R. Such a solution has period 4 and is slowly oscillating, that is, the distance
between its consecutive zeros is larger than the delay 1. A solution is called eventually slowly
oscillating if there exists tim& such that the distance beten its consecutive zeros to the
right from T is larger than 1. A solution that is not eventually slowly oscillating is called
rapidly oscillating.

The existence of SSPSs is well-known [2, 6, 13]. Equatibnhas a SSPS if and only if
the system of ordinary differential equations in the plane

(cs) x=fxy) y=—fx)
has a symmetric closed trajectory with the minimal period 4 encompassing the @:;igin
The first component(¢) of this trajectory solves equatidrf) and is called the Kaplan-Yorke
solution (first introduced and studied in [15]).

A SSPS can be normalized in such a way th@) = 0 andx(0) > 0. The value of
x (1) := z is called theamplitude of the SSPS.

The parameterized family of delay differential equations of the form

(af) x() =af(x@),xt—-1), «a€R
possesses, under some general assumptions, the sopcatady branch (PB) of SSPSs. The
PB has the same degree of smoothness as the nonlingarity). It bifurcates from zero at
a = —1/(2f,(0,0)) and exists for > 0 in at least some vicinity of = 0 [2, 6].

The stability of SSPSs can be determined from the location of Eiegquet multipliers
in the complex plane. Floguet multipliers are #igenvalues of the monodromy operator, the
shift by time 4 along solutions, of the corresponding variational equation

(ve) v(t) = fi(x (@), x(@ — D)v() + fH(x@), x(t — D)ot = 1),

which we abbreviate a&(t) = a(t)v(¢) + b(t)v(t — 1). Due to the symmetrie&) the co-
efficientsa andb of equation(ve) are periodic with period 2. The eigenvalues of the shift
operator by time 2 along the solutions of equation) are calledsemi-Floquet multipliers.
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The Floquet multipliers are given then as thqeiares of semi-Floquet multipliers. The nonzero
semi-Floquet multipliers can be completely described in terms of zeroes of an analytic func-
tion, called thecharacteristic function [2, 6, 21, 22]. The characteristic function has been
employed to study the stability of SSPSs for several classes of symmetric delay differential
equations [1, 2, 6, 7, 11, 22].

The present paper deals with the symmetric rapidly oscillating periodic solutions (abbre-
viated as SROSSs) of equatioyi). A periodic solutionx (¢) is called symmetric ifc (t + w) =
—x(t) forallr € Rand somev > 0. In the cases = 2 one obtains the above described
SSPSs. v < 1, the corresponding periodic solution of periad i rapidly oscillating.

Some SROSs can be obtained as transformed SSPSs via the so-called Cooke [14] or
Saupe [19] transformations. (Details of these transformations are given in Section 2.) The
periods of the SROSs are given by 2 4/(2n+1), n € N, and therefore are commensurable
with the delay 1. This allows one to apply the same idea as in the case of the SSPSs to
characterize their Floquet multipliers in tesnof an analytic function. The characteristic
function for the SROSs is derived in Section 3. A relation to the characteristic function of the
SSPSs is found (Theorem 3.3).

A further description of the Floquet multiprs of the SROSs is obtained in Section
4, where conditions for the existence of a real Floquet multiplier outside the unit disk are
given. Secondary bifurcations of SROSs, which are related to SSPSs on the primary branch
by transformation, are discussed. The asymptotic behavier -as co of the semi-Floquet
multipliers of the SROSs is studied for a class of equations of the fgnmvith only a single
delay term.

In Section 5, we study an example with a piecewise linear nonlineérityhere we can
obtain more explicit information on the semi-Floguet multipliers of SROSs.

This research was initiated during the second author’s research visit to the Justus-Liebig-
Universitat, Giessen, under the support of the Alexander-von-Humboldt-Stiftung, Germany
(1998). It was continued during a research stay of all three authors at the Mathematis-
ches Forschungsinstitut Oberwolfach withis program “Research in Pairs” supported by
the Volkswagen-Stiftung (1999), and completed 2000. The second author was also patrtially
supported by the Australian Research Council.

2. Rapidly oscillating periodic solutions and transformations. We consider the
differential delay equation

(f) X(t) = fx(®), x(—1),

where we assume thgt
— is continuously differentiable,
— is even with respect to the first argument and odd with respect to the second argument,
— satisfies the feedback conditipn f(x, y) # 0 (at least forx, y) in a neighborhood
of (0, 0) in R?).
Letx : R — R be a special symmetric solution of equatigf, i.e.,
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— x is a solution of equatiofyf),
— x has the symmetry properiyz + 2) = —x(¢) (t € R),
— x is odd.
Observe that ther(zr + 2n) = (—=1)"x(¢t) forn € Z, t € R. Conditions for the existence
of such solutions can be found in [7, 12]. By Cooke’s and Saupe’s groups of transformations
[14, 19] we find rapidly oscillating periodic solutions of transformed equationsnFerZ,
seta, :=2n+ 1, x,(t) := x(ayt) (t € R). Then

x(opt = 1) = (=D)"x(ant —1—2n) = (=) "x(otnt —aty) = (=1)"x,(t = 1),
and
Xn (1) = opX (ant) = an f(x(ant), x(@nt — 1) = ap f (X, (1), (=1)"x,(r — 1))
= (=D "0 f(xn (), x,(t — 1)) .

Thus we obtain that

— x, solves equatiolif,,), wheref, := (—1)"a, f,

— x, has the symmetry property, (t + 2/a,) = —x,(2),

— x, is periodic with period 4«,,.
Observe thalf, and f have the opposite type of feedback for odd- 0, and also for even
n < 0. Note also that_,, = —x,_1, sincex is odd.

It is clear that ify : R — R is a solution of equatiotif) with the symmetryy(t +

2/ay) = —y(@) ¢ € R), thenx(t) := y(t/a,) defines a special symmetric solution of
equation((—1)"(1/ay) f).
REMARK. If x is a solution of equationf) with the symmetryx (r + w/2) = —x(¢)

(t € R), andifn € Zis such thatw + 2 # 0, thenx, (t) := x((1+nw/2)t) defines a solution

of equation( f,,), where nowf, := (—1)"(1 + nw/2) f; this solution is also symmetric with
periodw, := 2w/(nw + 2). This is Saupe’s transformatid,. For evern, we have Cooke’s
transformatiorC,; these transformations apply to any periodic solution, without symmetry
conditions onf or the solution.

In this paper we study Floguet multipliers opidly oscillating solutions of delay equa-
tions of type(f), which are derived from special symmetric solutions via Saupe’s transfor-
mations.

3. Characteristic functions. Let x be a special symmetric solution ¢f) and, as
above, setr, := 2n + 1, x, := x(ay-), and f, := (—1)"«a, f forn € Ng. The variational
equation along;, is given byi(t) = f, x (xn (1), X, (¢t = D)0 () + fu,y (n(8), X, (t — D)0 (t —
1) (¢ = 1), where the subscripisandy denote partial differentiation. Defing := x,,(-—1)
andy := yo = x(- — 1). Then

Yu(t) = x(ant —op) = x(apt —2n = 1) = (—=D"x(apt — 1) = (_1)ny(05nt) (teR.
Then, witha,, := fx (x,(-), x,(- = 1) = fi (x4 (), ya()), we have
fn,x (X, (@), x,(t = 1)) = (_1)nanfx (xn (1), yu (1)) = (_1)nanan(t) .
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Similarly, with b, := f,(x,(-), x4 (- — 1)) = f,(x, (), yu(-)), ONe has
Ty Gn (@), X (t — 1)) = (=1)"apby(t) .

Hence the variational equation alogngcan be rewritten as

(Vn) 0(t) = (=D "omlan(Ov@) + by (v — D] (1= 1).

Let us state some properties @f andb,,, and setr, := 1/a, = 1/(2n + 1), andc, =
bu(- + 1), dy := au(- + 1,). Observe thatf, is odd andf, is even in both arguments.
Because of

Xp(t 4 ) = x (ot + anTy) = x(apt + 1) = —x(ant — 1) = —(=D)"yu (1),

it + 1) = (=D"y(ent + 1) = (=D"y(@t +1) = (=D"x(ant) = (=D "x, (1),
we have

dp(t) = an(t + 1) = fxn(t + ), yu(t + 1)) = fx(_(_l)nyn(t)’ (_1)nxn(t))
= _fx()’n(t): xp (1))

and, analogously;, (t) = f5(ya(?), x,(2)). Sincex, (t + 2t,) = —x,(t) andy,(t + 2t,) =
—yn (1), we find

an(t + 210) = frx(xn(t + 210), yu(t + 214)) = fu(=x0 (@), —yn (1))
= fi (@), yu (@) = an (@),

i.e.,a, is 2t,-periodic. In the same way we see that this holds for the functipns, andd,,.
As a consequence, we have

an(t+1) =a,(t + 2n+D1,) = a,(t +2n7, + 1) = a,(t + 1) =du (1),

an(t + 1+ 1) =a,(t +2n+ D1y) = a,(t)

and, analogously, (r + 1) = ¢, (1), bu(t + 1+ 1) = b,(t). SetC := C%[—1, 0], R).
Fort,7 € R, t > 7, define the evolution operatd/(¢z,t) € L.(C,C) by U(t,t)¢y =
v;’”, wherev?'" is the solution of equatiofw,) with initial condition v‘f” = v, and the
subscripts, t denote segments, as usual. These operators have the plapertyU (s, t) =
U(t,7) fort > s > 7. Let V be the monodromy operator of. ThenV = U(4z,,0) =
U (47, 21,)U (21,,0). The symmetries imply thal/ (4z,, 27,) = U(2t,,0), SO we have
V = [U(21,, 0)]2. Periodicity ofx, implies thatV2'*1 = [U (41,, 002"t = U((2n + 1) -
Az, 2n-4v,)U(2n -4, 2n—1)-47,) ---U(47,,0) = U((2n+1) - 47,,0) = U (4, 0). Since
the latter operator is compact, all nonzero Floquet multipliers,oére eigenvalues of¥ .
Further, since/ = [U (21,, 0)1%, the eigenvalues df (21,, 0) are semi-Floquet multipliers of
x (their squares are Floquet multipliers). We want to derive a characteristic function for these
semi-Floguet multipliers. To this end, lete C\ {0} be a semi-Floquet multiplier of,. Then
there is a solutiom of equation(v,), defined orRar, such thatw(r + 2t,) = Av(t) (¢ > 0),
which implies

(t + 2kt,) = A*v(t)  (t = 0,k € No).
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Letu(®) :==v(t+1), wi):=v(t+1+1,) (t > 0). Thenu andv are differentiable, and the
identity " tlu(r) = v(t + (2n + 2)1,) = v(t + 1+ 1,) = w(r) yields

() =0 +1) = (=D"aplant + Dot + 1) + bu(r + Dv(1)]
1
= (—1)"an [dn(t)”(t) + Cn(t)mw(t)} .

Analogously, the identity"v(¢r + t,) = v(¢t + 1, + 2n1,) = v(t + 1) = u(¢) gives
wit) =v@+14+1)
= (—D"aplan(t + 1+ 1)o@ + 14 1) + byt + 1+ )0t + 10)]

= (=1"ay [an(t)w(t) + b,,(t))%u(r)} ,

or in matrix form

w(t)) n w(t) . an(t) A"by (1)
<u(t)> = (_1) anAn(ta )‘) <u(t)) s An(ta )‘) = <)L(n+l)cn(t) dn(t) > .

Sincew(t,) = v(1+ 21,) = Av(1) = Au(0) andu(z,) = v(1+ t,) = w(0), we have the
boundary conditions

w(t,)\ _ [(Au@)) w(0) . (0 A
(u(t,,)) = <w(0)) =C(A) (u(O))’ with C(A) := (1 0).

Let S, (-, A) be the fundamental solution of the linear equation above, i.e.,

0 1)

In view of the periodicity of the coefficient functions, we can extend the setvalues for
which A, (¢, A) andS;, (¢, A) are defined to all oR. Now one has

w(Ty)\ w(0) . w0\
(u(tn)) =8, (7, A) (u(O)) , e, [Su(zh, A) — C)] (u(O)) =0.

Conversely, assume that, n) is a nontrivial solution of the equatiofs, (z,,, ) —
C(M]'(€, n) = 0. Then we define

w®) &
<M(t)> = S,(, A) (n) for r e R,

and thusw(z,) = Au(0), u(r,) = w(0). Using the definitions of the functions, andd,,,
and the 2,-periodicity ofa, andb,, one sees that the functioh@v(- + 1), u(- + z,)) and
"(Au(-), w(-)) satisfy the same initial value problem. It follows thafr) = u(t + 1,) and
w( +1,) = Au@) fort € R, sou(t + 21,) = Au(t). Setv(t) := u(t — 1) fort € R. Then
we havev(- + 2t,) = Av(-). Furthermorey is a nonzero solution of the variational equation
(vn), Since

S$u(t,2) = (=1)" @y An(t, )8, (1,2),  S2(0, 1) = <1 O)

ut+1 - =ult —2+ 2n+ 2)1,) = MV u@ —2) = o — 1),
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and hence
(1) =it — 1) = (=) an [~ " Ve, (t — Dw — 1) +dy(t — Du(t — 1)]
= (=D A" "Dy (Ou(t + 10 — 1) + an(Ou(r — 1)
= (=D"eulbn ()t — 1) + an()v(1)].

It then follows thath is a semi-multiplier ofx,,.
Summing up, we have shown the following result.

3.1. LEMMA. X € C\ {0} isasemi-Flogquet multiplier of x,, if and only if
ra(d) = detS, (o, 1) — C(A)] = 0.

Hencer, is a characteristic function for semi-multipliersxof. In the next step we want
to relater, to the characteristic function= rq of the slowly oscillating solution (= xg) of
equation( f). To this end, observe thatis odd andy is even, and thus

X ((=D"t/an) = x((=1)"t) = (=1)"x(1),
ya((=D)"t/on) = (=1)"y((=D"t) = (=D"y(1),
and thus we have (with := ag etc.)
an(=D"t/an) = fr (=1)"x(t), (=D"y (@) = fa(x (1), y(1)) = a(?),
bu((=1)"t/an) = fy(=D)"x (), (=1)"y(®)) = fy(x (), y(1)) = b(t),
en(=1)"t/an) = fy((=D"y(@®), (=D"x(@®)) = fy(x(), y)) = c(t),
dn(=1)"t/ay) = = fr(=1)"y(®), (=D)"x (1)) = — fx (y(1), x(1)) = d(1).

It follows that A, ((—1)"t /on, 1) = <k(,f+(§c » A;’(lt’)(t )> .

LetA := Ag, andD,()) := ((1) )3’) . S, ) = Dn(A)*lSn((—l)"t/a,,, A). Then

1 (=D

Qn
= Dy () A (=Dt /ety M) Su (D)t /ety 1)
= An(t’ )\)S‘n(t’ )\') ’

(6. 2) = Dy()™ Su((=1)"t faty, 2)

with
An(t, 1) := Dy (W) LA, ((=1)"t Jay, 1) Dy (1)

(1 0O a(r) A7"b\ (1 0
“\0 1) \atDer)y  d@) 0 A\

(1 0 a(t) b(t) \ _ a(t) b(t)
—\0 A\ At Dery amd@)) T \wm@tDer)  dr)

= A(t, A2ty
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bo(t)
We have used thaA(z, = Aoz, = ao(r) 0 > Hence we can conclude
(- (_ I’L) 0( I’L) <M—1CO(I) do(t) )

S,(t, ) = S(t, A\t §,(0, 1) or

Su((=D)"t/atn, 1) = Dyp(X)S,(t, &) = Dy(M)S(t, 22D, (1)L,

Fort = (—1)" we arrive at the following result.
3.2. LEMMA. For 1 € C\ {0} andn € Ng one has

Su(Tns 1) = Dy (M) S(=D)", 22 HyD, )7L

We can thus descrit®, (7., 1) by S(1, 22+1) or by S(—1, 22"*+1), depending on whether
n is even or odd. We want to expre§s(z,, 1) by S(1, A%**1) in both cases, so we need a
relation betweers (1, 1) andS(—1, w) for u € C\ {0}. For fixedy, setS() := C(u)S(r +
1, u) (t € R). Then, using the definitions ef= ¢, d = dp, andtp = 1 and 2-periodicity of
a,b,c,d,we get
S =Cu)St+1. 1) = CWA@r+1, w8t +1, 1) = At w)S@)
where

At ) = CUOAG + 1, )Cw) ™t = Cw) (cft(ﬂ)l/)ﬂ flg i ﬁ) Cw?

_ (0 dit) (1) 0 1

~\1 o)\b@0)/un a®))\l/n O

B (b(t) /La(t))( 0 1) _( a(t) b(t))

S \d@®) ) /w 0)  \e®)/m d)

= A(t, ).
ThusS(@t) = S(t, 1)S(0), or C(w)S(t +1, 1) = S(t, WC()S(L, p) forz € R. Nowr = —1
gives

S(=L ) =CwSA wtcw .

Combining this relation wittD, (1)C(12'*+1) = A" (1"*+1), we conclude that for odd one
has

Sp(ta. &) = Da(WCR2TH s 22 th et h=1p, ()t

— C(X"+1)S(l, )\’2/1+1)—1C()\1I’1+1)—1 )

Now we can express the characteristic functipof x, by the characteristic function= rg
for the special symmetric solution

3.3. THEOREM. Leti € C\ {0} andn € Ng. Then

mA) =1—1+ (_A#[r()LZlH»l) +)»2n+l _1y.
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ProoOE 1. Claim: detS(1, u) = 1 for u # 0. Indeed, since is odd, we have

al—-t)=fix(A—-1),yQA—-1) = fx(xQ—1),x(—1))
= fil=x(@t -1, —x(®) = filx(t =D, x(@))
= fr(y(®),x(t) = —d(1),

and hencefol(a(t) +d@)dt = fol(a(t) —a(l —t))dt = 0. The claim follows from
detS(L, w) = detS(0, ) expl [y tr A(z, ) di] = expl [ (a(t) + d (1)) d].

2. Now leti € C\ {0}, setu := A?"t1 and setS(1, ) =: <Z Z) .Thenpv — qu =
detS(1, w) = 1 andS(L, )"t = < v _”>.

-q9 D
3. Forevem € Ng we find, using Lemma 3.1 and Lemma 3.2,

ra(A) = detS,(ty, 1) — C(V)] = del D, (WS, W) Dy (W) = C(W)]

(1 o\ (p u\(1 O
=ael (o 0) (7 0) (0 wr) ~co]
_ [ p u 1 0

= da_(}\"q )\"u) (0 1/A"> - Cm}

o p u/ 0 A\]_ p /A" — A
=sal(i2, “0) - 0)] ey )]

=pv— (u/N' = N)(W'g—1) = pv—uq + A"rg +u/nt — A
=14+ G2 u) /A — h =1 A+ (1) (ug +u) /3" .

4. For odds, we derive

ra(A) = delS, (ty, 1) — C(W)] = delC("TH S, e ™=t — c()]
(/0 antl v —u 0 1
(@) ) )-co)

[/ —pntl antl 0 1
:det( . 9 _u”) (1/”,“ 0)—C(x)}

_ B p —)\,n+lq 0 A
_det_(—u/)\"+l v ) 1 o

_ B p _)Ln+lq —A
o det_(—u/k’”l -1 v

= pv — ()\,n+lq +)»)(M/)Jl+l + 1) = pv —qu — u/)\n _ )\’n+lq _a

Thus we have,(A) = 1— A + (—1)"(u + ng) /A" foralln € Np. Recall thatt = u(u), g =
g (). We have, in particular, fot = 0 and allu € C \ {0} thatr(u) = ro(n) =1 — u +
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u(p) + puq(p), sou(p) + ug(u) =r(un) +pu — 1forallu € C\ {0}. For generak € No,
we hence obtain,(A) = 1 — A + (=1)"A " [r(A2+1) 4 22+ _ 1. o

4. Multipliersof rapidly and slowly oscillating solutions.

4.1. Applications to stability/instability of rapidly oscillating periodic solutions. We
use the notation of the previous section. Retdwt 1 is always a trivial Flogquet multiplier
of x,. We show that this implies thatl is a trivial semi-Floquet multiplier aof,,, and hence
rn(=1) = 0. This is well known for: = 0, and it follows from»(—1) = 0 and from Theorem
3.3 that

(1) = 1 (<1 +
(="
=1+1+[r-D+ (D -1=0.
Itis also well-known that lim o 7 (A1) /A = —1 (see, e.g., Lemma 2.2 in [7]). Slightly more

[r (=)%Y 4 (2 Ht 1)

can be shown: We have seen thét) = 1 — A + u + Aq, whereS(1, A) = <Z Z) (1), and

P\ _( ap+bg r@)\ (1 u\ ( au+bv u@y (0
g)  \Wlep+dq)’ g0 ) \0J’ v) ~ \Wleu+dv )’ v(0)) \1)"
For|A| — oo, u andv converge to the solution of
w\ f(au+bv u©@)y) (0
v) dv ’ v(0)) —\1)°
uniformly on compact intervals. Hence i, o (1) =: u™* exists. Ifg := Ag, then
P\ _(ap+bq\ _ (ap+(b/M)q pO@) _ (1
qg) \ep+2rdg)  \ cp+dq )’ g ) \0)’
and agairp andg converge to the solution of
()= (o%a) (70)-()
q cp+dq)’ \q(0) o)’

uniformly on compact intervals. Thus lj, o Ag (1) =: ¢* exists.
We infer lim | 0o (r (1) + 1) = 1+ u™ + ¢* =: r*. As a consequence, we have

—1)"
lim (r,(0) +1) = lim [1+ u(r()\z’”l) + A2t 1)} =1.
[A]—=00 [A]—=00 Al
It follows that, in particular, fom € Ng one has sign, () = — sign(A) for all real » with

sufficiently large absolute value. If we have some knowledge, ajn the real axis, then
we can draw conclusions on instability of. For example, if there is a real < —1 with
ra(A) < 0, then there is areal < A with r,(x) = 0, and hence, has a Floquet multiplier
with norm > 1 and therefore is unstable. On the other hand, if there is airreall with
rn(A) > 0, we can argue in the same way.

One way to prove, (1) < 0 for somer < —1 is to look at the sign of; (—1). Since
ra(—1) = 0, the property, (—1) > 0 implies the instability result. Let us calculatg—1).
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First we have

rp(A) =—-14+(-1)" (

+ (‘A#[r’(xz"“) + 120+ DA

)\;—’:1) [r(k2n+l) + )\‘Zn‘l’l _ 1]

and thus

(-1 = —1+ (—1)"(
="
="

=—-1+n[r(-)+ (1D -1+ [r'(-)+ 122 + 1)
= —1- 204+ @0+ DO (-D + D) = @0+ Dr(-D).

%) [F(~DZ*Y + (-2 - 1

+ [F' (=12 + 120 4 1) (-1

Thereforer; (—1) andr’(—1) have the same sign and we conclude:
If /(—=1) > 0, then every solution x,, of equation (f,,) (n € Np) isunstable.

ExAmMPLE. Consider the casé¢(x, y) = g(x) - h(y), whereg is even, and: is odd.
The feedback condition from the beginning of Section 2 is fulfilleg®) # 0 andh’(0) # O.
In [7], Thm. 3.1, it was shown that(—1) > 0, provided that’ is decreasing of0, co) and
g is increasing oni0, co). Therefore all solutions, are unstable in this case.

Another way to conclude, (1) < 0 for somer < —1 is to reduce this problem to the
qguestionr(1) < 0, A < —1. To this end we observe that
(=" () = (=D"A"r, (V)

— (_1)11)\/1 _ (_1)11)\‘714*1 + r(}\‘znﬁ*l) + )L2n+l -1
— r()\2n+l) + A2n+l _ (_1)11)\1714*1 + (_1)11)\’11 _ 1
=rQ2 ) £ (=" (D" = 1)
=r2) — (0" = D" - 1)
Now assume that there is a real< —1 with »(1) < 0 (which implies existence of a semi-

Flogquet multiplier ofx in (—oo, ]). Leta < —1 be such that'*! = ;. Then—1 > 1 and
(=2)% > 1forallk € Ng, and

(=N)"ra Q) = r(uw) = (=" = D((=1)" = 1) < 0

yieldsr, (1) < 0. We can conclude:
If x hasareal semi-Floquet multiplier lessthan —1, thenall x,, (n € Np) are unstable.
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Next assume that there is a real> 1 with r(u«) > 0 (which implies existence of a
semi-Floquet multiplier of in [, 00)). Letx > 1 be such that?+1 = . If n is even, then

() = (=) () = r() — ()" = D((=2)" = 1)
=r(p) — (A" -1
=r(w)+ @+t -1) >0,

which impliesr, (A) > 0. Hence we conclude:
If x hasareal semi-Floquet multiplier greater than 1, then x,, isunstable for evenn € N.
Unfortunately, no conclusion can be made for agldince then
=MW = (=) (W) = () — ()" = D((—=0" = 1)
=r(u) = W=D - 1)
=r(w+ 0" -10"+1) >0,
which only impliesr, (A) < O.
More generally we expect thatif) = 0 for someu € Cwith |u| > 1, thenr, (1) =0
for someir € Cwith |[A] > 1. The reason for this expectation is that, in terms of general
experience, rapidly oscillating solutions are less stable than slowly oscillating ones. Hence,
intuitively one does not expect an increase of stability from a transformation of slowly oscil-
lating to rapidly oscillating periodic solutions. However, we have no proof for this intuitive
conjecture.
4.2. Application to secondary bifurcation. Let us now study the equation =
f&x (@), x(t —a)), or, equivalently,

x(1) = af (x(2), x(t — 1)

with delay parametet € R. Conditions onf which imply the existence of a primary branch
PB of special symmetric periodic solutions can be found, e.g., in [6, 12]. Assumigag
fy(0,0) # 0, the primary branch PB bifurcatesaat= —(r/2y) from the zero solution. PB
is a smooth curve in the spaBex C in a neighborhood of—(z/2y), 0). More specifically,
there exist$ > 0 (depending on the nonlinearit), and a smooth functiofD, §) > z
(a(z), ¢;) € Rx C such that for each € [0, §), the above equation with parameter) has a
SSPS with amplitude (maximal value@nd initial valuep,. One hasv(0) = —(r/2y), o =
0 andy,(—1) =0, ¢,(-) > 0on(—1, 0] andg,(0) = z for all z € (0, §). The branch is best
visualized as the graph of the function> «(z) (see also [8]).

Applying Cooke’s and Saupe’s transformations to all solutions that correspond to points
on PB, we get primary branches P8f symmetric solutions with periody @»n + 1). Clearly,
PB, bifurcates atvx = —(—1)"(2n + 1)z /(2y) from the zero solution. Assume that for
somek € N we have a period-timek-bifurcation on PB in the following sense: We have a
secondary branchk which is a curvew — (@(w), ¥,) € R x C defined on some interval
containing zero, and such that0) = a(z), Yo = ¢, for somez € [0, §). Furthermore, for all
w # 0, we have thata(w), ¥,) does not lie on PB, and the solution of the above equation
with paramete@(w) and initial valueyr, is periodic with minimal period approximately
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equal tok - 4. In case > 1 this is a subharmonic bifurcation, for example, a period doubling.
Let us writek © PB for short.

Now we apply Saupe’s transformatiofisto the solutions which correspond to points on
S. In general such solutions (with minimal peri@)l are nonsymmetric in the sense that they
do not have the symmetry propentyr + w/2) = —x(¢) (t € R). Hence we must take even
and thus use Cooke’s transformatign(compare the remark at the end of Section 2). We get
a branchC, S, and the corresponding solutions have periods clogg tdk)/(n - 4k + 2) =
4k /(2kn + 1). Let nowx : R — R be the solution of the above equation with parameter
@(0) and initial valueyg (which corresponds to the intersection pointSodnd PB). Therx
is transformed toc (1) = x((L + (n/2) - 4k)t) = x((1 4 2nk)t) = x,1(t) (compare the end
of Section 2). l.e.x corresponds to a point af), S and on PB;. Hence we have secondary
bifurcation on PBy, or for short

k©PB= k®PB, viaC, forevenn € N.

ExAaMPLE. Assume we have a symmetry breaking secondary bifurcation of PB which
is not subharmonic. Thatis, a secondary brafiak above, with corresponding nonsymmetric
solutions of minimal period approximately 4. This corresponds to the case 1 in the
above formulas. Then we also have symmetry breaking (and not subharmonic) bifurcations
on PB, PBy, .... If we have a period doubling bifurcation on PB, i.e.= 2, then we have
this kind of bifurcation on PR PBg, ... as well.

Let us see how these observations are reflected in the formua fohe propertyk ©PB
indicates that some® € PB has a Floquet multipligr with x* = 1. We want to show that
x%., n even has the same property. To this end; le¢ the characteristic function of. Since
w is a Floquet multiplier, theresia semi-Floquet multipliex with . = A2. Sincen is even,
we see that"* = (A%)"/2 = (uky"/2 = 1 anda?*+1 = 1. Nowr (1) = 0 implies

(_1)nk

I'nk ()") =1—-A+ )LT[V()\,ZM{J"]-) + )\Zl‘tk-i-l _ 1]

=1-2+1-[r0)+1r—-1]=0.

Hencex is also a semi-Floquet multiplier of?,, andi? = u is also a Floquet multiplier of
x%.

" We can treat the case of oddin the following way. Observe that if* € PB, then
xy = —x% ;. LetC, := —C,_1, i.e., if x has periodv, thenC, x is the functionR > ¢ -
—x((L—((n+ D/2)w)t) € R, which has period@/((n + Dw — 2). If we applyC;, to the
special symmetric solutions of PB, we get,PBinceC;, = —C_,_1 and since-n — 1 is even
if n is odd, we can applg, to nonsymmetric solutions in this case. If we have a solution
corresponding to a bifurcation point on PB with periods closektatencC,, yields solutions
with periods close to 2tk /((n+1) -4k — 2) = k-4/(2kn+ 2k —1). x* is mapped ta}, . 4,
and hence we have secondary bifurcation op,RB_1; for short:

k © PB= k © PBytx—1 viaC,, for oddn .
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Let us show again that this result is in accordance with our formulaforLet u = A2
be a Floquet multiplier ok* € PB with u* = 1. Thennk + k = (n + 1)k is even and
AkFR — (2 tD/2 — 1 p2k+2k — 1 |t follows that
Fukk—1(1/2) = 1= (1/A) + (=0 (/220420 g 20k 21 g
=1—1/A+ (=1/VD[r() + A —1]
=1-1/A—r(A)/A—14+1/A=—r(A)/A=0.

Hencek = 1/ is a semi-Floquet multiplier and = 1/A2 = 1/u is a Floquet multiplier of
Xnk+k—1, and of coursgiX = 1/u* = 1. Combining both results, we arrive at

kOoPB= k0oOPB, form =2k,4k,6k,... andm =2k — 1,4k —1,....

For example, symmetry (not subharmonic) breaking bifurcation on PB implies symmetry
breaking bifurcation on PBPBy, ..., while period doubling bifurcation on PB implies pe-
riod doubling bifurcation on PR PB4, PB7, PBg, PB11, PB1o, .. ..

In the same way one can study secondary bifurcation gp. EBe finds

k © PB,, = k © PBuym VviaC, for evenn,
k ©PB, = k © PBykyi—m-1 viaCﬁ, for oddn ,

or, combined,
k®OPB, = kOPB, if n —morn+m+ 1isamultiple of 2.

As a consequence, we have that we know all period-tilmesurcations on PB, n € N,
if we know them on PB, ..., PB,_1. Namely, ifk © PB,, for somem € Ng, then there is
ann € {0,1,...,k — 1} with k © PB, since we can always write = 2k - ¢ + n for some
nef{01,..,2k—1. Nown —m = —2kgand(2k —1—n)+m+ 1 = 2k(g + 1)
are multiples of 2, i.e., k © PB, andk ® PBy;_1—,. But eithern € {0,1,... ,k — 1} or
2k—1-—n)e{0,1,... ,k—1}.

ExAMPLE. Itis sufficient to study symmetry breaking (not subharmonic) bifurcation
(k = 1) on PB and period doubling bifurcatiqgk = 2) on PB and PB; all such bifurcations
on PB, are just transforms of these bifurcation points.

4.3. Asymptotic behavior of semi-Floquet multipliers. In [4], the asymptotic behav-
ior of semi-Floquet multipliers of special symmetric solutions of

X(1) = —af(x(—1)

was studied for sine-like functions (see Thm. 1 in [4]) a& — oo. The key for the result
given there is that it () := (1/2)|Im(1/+/4)| < 1/2, then

[FY) + A — 1] < cae®@®=D

for some constant, herer® is the characteristic function of the Kaplan-Yorke-solutidrfor
the parametex. Assume that there is a sequenge— oo with semi-Floquet multiplierg
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such thak (A;) < 1/2 — y forsomey > 0. Then
I = 1) = [P () + Ak — 1] < cope™ &R0 < cqpemr%

which showsy;, — 1. Hence we have far — oo that, for every semi-Floquet multiplier
of x%,
— eitheri isclose to 1,
— ork () is close to or greater than/2, i.e.,|Im(1/+/1)| is close to or greater than 1.
Since|lm(1/+/2)| = 1 defines the so-called cardioide curve, the semi-Floquet multipli-
ers ofx“ are close to the heart-shaped area

H ={xreC\{0}|Im@/v2)|>1}U{0,1} c C.

We can immediately show an analogous result for the semi-Floquet multipliefs @ the
transformed primary branch RBIt is convenient to say that € Cis a(2n + 1)/2-Floquet
multiplier of x&, if there is a semi-Floquet multiplier € C of x with 1 = A2*+1. Then
(=" 1
o [r*(w) +pn—1]| < e
Now we can apply the same argument as above: Assume that we have a sequence
oo with (2 + 1)/2-Floquet multipliersy = 22" of x;* such that

re) +a—1 = «(@2ew)=D

1
k(u) =5 —y and |ul=p
for some constants, y > 0. Then|x;| > gY@*D and the estimate
1 1
1 = _ o0k (26 (i) —1) —2a
Ay — 1 = |rr‘z‘k ) +r =1 < Mklnceak Kk < ’3’1/(2’1+1) ce—20kY

shows thatyy — 1 anduy — 1. Hence we have fax — oo and for(2n + 1)/2-Floquet
multipliers A of x that

— eithera is close to 1,

— oraAisclose to O,

— oris close to the set. € C||Im(1/+/2)| > 1}.

Because of 01 € H, the(2n + 1)/2-Floquet multipliers are in any case closéo

In the next section we give a simple example of a sine-like funcfidior whichr (1) can

be calculated explicitly. This will allow us to obtain detailed information on the semi-Floquet
multipliers on PB.

5. A specific example with piecewise linear feedback. We study a piecewise linear
model, where the characteristic function= rg of the untransformed solutions is known
explicitly, and Theorem 3.3 enables us to obtain information on the multipliers of transformed,
rapidly oscillating solutions. Sef(x) := 1/2 — |x — 1/2|for x € [0, 1], and continuef
to an odd and two-periodic function, whidhen is a piecewise linear caricatureof—

(1/7) sin(zx).
We know that for; € (1/2, 1) there is anx, > 7 /2 such that the equation

(—oz f) X(t) = —az f(x(t — 1))
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has a special symmetric solutian with amplitudez. Letr, be its characteristic function.
In Section 7 of [5] the following expressions far andr, were calculated: I is such that
au? =1, then

2
a; =2t(z2) +20(z), r;(A)=1—x1— ;s(z, A)-ce(z, M),

wherer (z) = /4 — arctan2/1/4 — (1 — 2)2), 0 (z) = ArcostH1/(2(1 — z))], and
s(z, A) =sinh(2ut(z)), c(z,1) =co2uo(z)).

For the remainder of this section, we nowiix N, and set,, := 1/(2n + 1). As in Section
1, the functionx, , defined byx, , (t) = x,((2n + 1)t) (t € R) is a symmetric solution of the
equation

(=120 4 D, f) i(1) = (=" 2n + Do, f(x(t — 1)),

with period 4/ (2n 4+ 1) and amplitude;. (Observe that ifz is odd, then this equation has
positive feedback around zero.) LBt= 4/(2n + 1) be the period ok, ,. Note that, although
f is not everywhere differentiable, the tinfemap® (7, -) : C — C of the semiflow gen-
erated by the above equation is still differentiable with respect to the initial value. It can be
seen, e.g., from Lemma 6.5 in [16], that the derivaiixed (T, (x; ,)o) (i.e., the monodromy
operator) is still given by solutions of the variational equation, which now is a linear equation
with piecewise constant coefficient. The characterization of semi-multipliers as zeroes of a
determinant involving the fundamental solution matrix (now for a system with piecewise con-
stant coefficients) from Lemma 3.1. remainsidiaas well as the further results of Section 3,
in particular, Theorem 3.3.

Let us now study the semi-multipliers of ,. We know from Theorem 3.3 that these are
the zeroes of the function , given by

="

ren() = 1= A+ (G2 +227 - 1)
Using the above expression for, we obtain that, ifx is such that
A2

the expression in the bracket equals
2 2

1— 22+ Zsinh2ut(2)) cos2ua () + 42T — 1 = — = sinh2ut(2)) cosg2u0 (2))
iz iz

so we conclude, ,(A) =1— A + (=)™ 12/ (A" )] sinh(2ut (2)) cO( 210 (2)).
For positive, reak we can set
=@V go g = 2@
and thus
rea() =1— p= 2@ 4 [(—1"H12/(uH @) sinh2t (2) cos2u0 (2)) -

We can draw a first conclusion from these expressions:
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5.1. RROPOSITION For z € (1/2, 1), every positive real semi-Floquet multiplier A of

X, p Satisfies
A<(e+ 1)2.
PrROOFE Note that foru € (0, 1/2] andz € (1/2, 1) one has
1(z) = /4 — arctan2/1/4 — (1 —2)2) € (0, 7/4),
and| sinh(2ut(z)) Cos- - - )| < Max,c(o.1) SiNM(u) < e/2. If A > 2, thenu = A~@+D/2 <
1/2, so the last estimate is valid. Observing thigt = A~1/2, one sees that
roa)] = A —1—=22Y2/2 =21 —1—AY2e = 2Y20Y2 —¢) — 1.

Thus, ifA > (e + 1)?, then|r, ,(A)| > e +1 — 1 = ¢ > 0. The assertion follows. O

REMARK. Note thate, — oo asz — 1, so for oddn the linearization of equation
(—1)"t(2n+ 1), f) at zero has solutions eg) with a positive numbex going to infinity
asz — 1. Consequently, the time/@n + 1) solution operator of the linearization at zero
has unbounded positive eigenvalueg as 1. Proposition 5.1 shows that this is not the case
for the monodromy operator of the/@n + 1)—periodic solutionx; ,, which oscillates about
zero.

We are now interested inclose to 1, and in positive real multipliers. Far> 0 and
¢ € (0,1/4) we set

Y, £) == sinh2u (/4 — arctan2y/1/4 — ¢2))] - cog2u Arcosh(1/(2¢))].
If z € (3/4,1), »>0,andu := A~ @+D/2 .= 1— 7z we then have
P2 () = P 4 (=120, ¢) - 1
We define
Gu:(0,00) x (0,1/8) > R,  Gu(, &) := p®™ + (=" 2"y (u, 1) — 1.

Then, forz € (3/4,1), andA > 0, andu, ¢ as above, we have®™r, ,(A) = G,(u, 1 — z2).
We now approximate the functia,, expanding in powers af.

5.2. LEMMA. a) Gu(u.¢) = ™ {1+(=1)"4u®™ ¢2[cos2ulogs) + R (1. £)1}
— 1, wherefor 1 € (0,2) and ¢ € (0,1/4) onehas |R(u, ¢)| < 282
b) Thefunction G, : (0, 2) x (—oco, 1/4) — R defined by

G it re©14
Gn(p, ¢) = :MZT,,_]_ if t <0

isa Cl extension of G,,.
PROOF a) Setw(¢) :=2/1/4— ¢2andep(¢) := n/4 — arctarw(¢)). Then

(5.2.1) Y, £) = sinh(2ue(¢)) - cog2u Arcosh(1/2¢)], and
2 2
(5.2.2) w@) = vVI= @02 =1- 2 L Ry =1- 2024 Ry(o).

2



436 P. DORMAYER, A. IVANOV AND B. LANI-WAYDA

where, using < 1/4, we get the estimate

-3/2 3
@)= 25 (g) 1604 = 2%44 <4t

1 d?
[R1($)| < z max W(x > V/x) ) =3a\z

~ 2 uel3/4.1]

Next, we have

(5.2.3) ¢(¢) = arctan(1)(1 — w(¢)) + R2(¢),

where|R2(¢)| < (1/2) maX,epw(z),1) | arctar (u)| - (1 — w(Z))2. With
larctaf (u)] = | — 2u/(L+u®?| <1

we get|Ra(0)| < (1/2)(202 + 4¢? < (1/2)(3¢%)? < 5¢*.
Combining (5.2.2) and (5.2.3), we can write

1
9@©) = 5(242 — R1(0)) + R2(¢) = £? 4+ Ra(¢), where |R3(¢)| <2¢%+5¢% =7¢%.

We now approximate the two factorsof First, sinf2ue(¢)) = 2ue(¢) + Ra(u, ¢), where
for u € (0, 2) and¢ < (0, 1/4) one hag2ue(¢)| < 4(¢%2+ 7¢%) < 8¢2 < 1/2, and

|Ra(s, €)1 <1 max | sinh” ()| (e (£))3 < }&8 3,2 4 7043
4l )1 = 6 ue[0,1/2] " ne(& -6 2 (& ¢

< SH%S A+ )P = D372 < 5%,
Hence sink2ue(¢)) = 2us? + Rs(u, ¢), where foru € (0, 2] and¢ € (0, 1/4]
20
IRs(i. ©)| = 12uR3(¢) + Ra(ue, ©)| < 14u¢® + 513¢° < 14uc* + EM“ < 16us”.

Second, note thatl/2¢) > 1/(4¢2) —1 = (1/2¢)y/1—4¢2 > (1/20)(1 — 4¢?) =
(1/2¢) — 2¢, sowe have Iz > 1/2¢ + /1/(4¢2) — 1 > 1/¢ — 2¢. Consequently,

Arcosh(1/2¢) = log(1/2¢ ++/1/(4¢?) — 1) € [log(1/¢ — 2¢),log(1/¢)], and
Arcosh1/2¢) > log(1/¢) — log'(1/¢ — 2¢) - 2¢
_ _ ¢ _
=log(1/§) — 20— T log(1/¢) = 7— 18
> log(1/¢) — 3¢2,

;2

so we obtain logl/¢) — 3¢ < Arcosh(1/2¢) < log(1/¢). It follows that

cos2u Arcosh1/2¢)) = cos2u l0g(¢)) + Re(w, ¢),  where|Re(u, £)| < 6uc?.
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Combining the approximations for the sinh- and the cos-term, we get far (0, 2) and
¢ €(0,1/4)
¥, ©) = [21% + Rs(1, )] - [€021109(2)) + Re(pt. )]
= 2u¢?cog2ulog(¢)) + Rr(u, ¢).  with
|R7(t, )] < 208%Re(1e, £) + Rs(ie, O)(1+ Re(ie, 0))

< 2u¢%6p¢% + 16ug* (1 + 61¢?)

< 12u%¢* +32u¢t < 56uct.
In particular, we havéy (u, ¢)| < 2M§2| cog---)|+ 56;1,44 < 6u§2.

Finally, noting thatu = 1?*+D™ we can compute
Gu(pt, 0) =t + (=1)" 2u™[2u¢? cog 2109 ¢) + R7(u, )] — 1

R7(u, ¢)
21 } -

= w2 {1+ (=1 4u? " ?[cog2uloge) + R(w, 01} — 1,

whereR (i1, ¢) := Ry, ¢)/(2ut®) and|R(u, )| < 56u¢*/(2ue?) = 282

b) Claim1: v is bounded or0, 2) x (0, 1/4).

This follows from the boundedness of arctan and cos, and from formula (5.2%) for

Claim2: ¢y (u, ) — 0andoi1y(u, ¢), o2y (i, 2) — 0as¢ — 0, ¢ > 0, uniformly
with respect tqu € (0, 2).

From the above approximation gf we know that|y (w, £)| < 6uz? for all (u,¢) €
(0, 2) x (0, 1/4), which implies the assertion far. Further,

N (u, &) = 2¢(¢) cosh2ue(g)) cog- - ) — sinh(2ue(¢)) sin(- - - )2 Arcosh(1/2¢) .

Using the estimates from the proof of b) fprand for the sinh- and the Arcosh-term, we get

_ MZr,, + (_1)n+l4u(2n+2)fn |:§2 coq2uloge) +

1910 (i, ©)] < 262 4 7¢%) coshipe(0)) + (2ug? + 16uz*)2log(1/¢) .

The assertion fod1y» now follows from the boundedness of the cosh-terni@®r) x (0, 1/4).
Next, we have

. . -1
dy (. &) = cosh2ue(£))2ue’ () cog- - - )—sinh(2ue(£)) sin(- - - )2 ArcosH(l/Zﬁ)? .

Note thatw(¢) = /1 — 4¢2, thatw has a maximum at 0, and hengehas a minimum at
¢ =0, s0¢’(0) = 0. Further,

__ %
V-1 J1-47

Writing T1(u, ¢) for the first term andl»(u, ¢) for the second term in the expression for
92 (u, ¢), it follows from ¢’(0) = 0 and from the boundedness of the cosh-term that

ArcosH(1/2¢) =
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Ti(u,z) — 0if ¢ — 0, ¢ > 0, uniformly foru € (0,2). Finally, using the estimate
on the sinh-term obtained in the proof of b) again, we get

26 1 _ 2u(2ut +16u’)
J1— 42202~ V3/4 ’

which proves the analogous convergence propertyf$orand hence foboy. Claim 2 is
proved.

It follows from Claim 2 and from the definitions &f,, andG,, thatG,, is continuous and
has continuous first partial derivatives, &g is C1. O

5.3. CoROLLARY. Thereexistsz € (1/2,1), aneighborhood U of 1in R, andaC?!
function A* : (z,1) - U C Rsuchthatfor all z € (z,1), A*(z) isa semi-Flogquet multiplier
of x; ,, and the only one contained in U. Further, A*(z) - 1asz — 1.

PrROOF  With G, from Lemma 5.2b), note thai, (1, 0) = 0 andd:G, (1, 0) = 21, #
0. It follows from the Implicit Function Theorem that there eXist 0, an open neighborhood
U c (0,2) of 1in R, and aC? functionu* : (=8,8) — U C R such that one has for
e (=8,8)andu € U:

1To(i, §)| < (2ug? + 16ug™)|sin(- --)|2u

Gu, o) =0 n=p*Q©).

Set nowz := 1 — 8, andU := U~?™, and define\*(z) := (u*(1 — z))~2™ for z € (z, 1).
Then, for these, the definitions ol and of G imply

(L= 2)%"r, (M (2) = Ga(uW* (L —2),1—2) = Gu(n*(L—2),1—2) = 0.

Hence)r*(z) is a semi-Floquet multiplier af; ,. It is the only semi-multiplier inU/, since
for every other multiplien. € U, one would have: := A=?"+D/2 ¢ 7 andG(u,1—z) =
G(u,1—2) =r;n(W)/u?™ = 0,50 = p*(1—z) andi = (u*(1—2)) 2" = A*(z). O

We can now show that, similar to the much more difficult result obtained in [2] for
smooth nonlinearities, the value ©f(z) oscillates about 1, as— 1.

5.4. THEOREM. Thereexistsasequence (zi)ieN in(z, 1) withzx < zgy1andz;y — 1,
and with the following property: The positive semi-Flogquet multiplier A*(z) of the rapidly
oscillating periodic solution x;_, from Corollary 5.3 satisfies

A (zok—1) <1 < A*(zx) forall k e N.

ProoF Recall the functionu* defined on(—34, §) from the proof of Corollary 5.3,
with G, (u*(¢),¢) = 0. In caser > 0, we have als@ (u*(¢), 7) = G(u*(¢),¢) = O.
Sinceu*(¢) — 1 for¢ — 0, the functionz +— |u*(¢)log(¢)| converges to infinity for
¢ — 0, ¢ > 0. It follows that there exists a sequengg)xen in (0, §) with the properties

Gk > i1, 2867 < 172, cos2u*(gr) 10g(Lr)) = (=1 (ke N).
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It follows from these properties, together with the estimat&Rdnom Lemma 5.2 a), that for
k € N one has

sign{(—1)" 1 a(u* (21)) "™ g2[cos2u* (&)log k) + R(1*(2x), &)l
— (_1)n+l(_1)n+l+k — (_1)/( .

Now G,, (i*(¢x), &) = 0 and Lemma 5.2 a) implgge* (20))>™ = 1/(1+1...]), where the sign

of the bracket alternates with We see that* (&) > 1 for oddk andu*(¢x) < 1 for everk.

Settingzx := 1— &, the result now follows frond = 1 — 8 and fromr*(z) = (u*(¢x)) 2%
O

REMARKS AND NUMERICAL OBSERVATIONS. The results of this section can certainly
be extended to smooth nonlinearities close to our piecewise linear example. We did not in-
clude such technical steps.

Theorem 5.4 above describes the oscillation around 1 of the real positive semi-multiplier
A*(z) asz — 1.

We know from Section 4 that far — 1 the semi-multipliers ok, , converge to the
heart-shaped regiok. Unfortunately, this fact does not imply that fptvalues close to 1
and such that*(z) < 1, the solutionsc, , are stable: The closure @ contains—1, and
convergence té{ does not exclude multipliers outside the unit circle.

In fact, for the case = 1 we searched for semi-multipliers numerically, employing the
explicit expression for the characteristic function and a Newton procedure. We found that for
all values ofz which we could numerically treat, theegist non-real semi-multipliers outside
the unit circle. More specifically, inspecting the range [ := [0.8,0.9999, we found
A*(z) < linthe intervals

11 :=10.8,0.90€], I := [0.9804 0.9959, I3 :=[0.9992 0.999§,

andA*(z) > 1 in the complementary subintervals bf (z-values larger than.9999 were
essentially beyond our numerical resolution, af;) converges rapidly to 1 for such) We
found complex semi-multipliers outside the unit circle approximately equab®eb0.5; for
z€ 11,1007+ 0.75 for z € I, and to 06 & 0.8 for z € I3. (These values are only crude
approximations, since the precise values change sjitm particular, the solutions, 1 with
A*(z) < 1 are nevertheless unstable.

It could be that one can change the equation slightly in a way that forces the complex
multipliers into the unit circle, and thus obtain stable rapidly oscillating solutions. (This
guestion remains open.) Numerically solving the delay equation from our example, one sees
that a slight deviation from the periodic solution typically results in a crossing of the zero 1
(or—1) of f, and in rapid departure from the valuesxof.

The numerically observed typical solution behavior of equatiof) for larger values of
« is generally chaotic (compare [8]), and existence of invariant sets with erratic motion was
analytically proved in [16] for the specific parameter vadue- (9/¢)(log9 — 1) (and small
perturbations).
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