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Abstract. Floquet multipliers of symmetric rapidly oscillating periodic solutions of
the differential delay equatioṅx(t) = αf (x(t), x(t − 1)) with the symmetriesf (−x, y) =
f (x, y) = −f (x,−y) are described in terms of zeroes of a characteristic function. A rela-
tion to the characteristic function of symmetric slowly oscillating periodic solutions is found.
Sufficient conditions for the existence of at least one real multiplier outside the unit disc are
derived. An example with a piecewise linear functionf is studied in detail, both analytically
and numerically.

1. Introduction. The approach of exploiting symmetry properties of delay equations
and of periodic solutions to study the Floquet multipliers of such solutions is well-known, but
was so far mainly used in connection with slowly oscillating solutions. In the present work
we extend this method to rapidly oscillating solutions with periods which are commensurable
with the delay. We investigate the relations between stability properties of slowly and rapidly
oscillating solutions. Although both types of solutions are connected to each other by trans-
formations, the relation between the characteristic functions that we derive in Section 3 is
rather nontrivial.

We apply the result to the study of stability, secondary bifurcation, and asymptotic behav-
ior of Floquet multipliers (FM) for rapidly oscillating periodic solutions in Section 4. (Recall
that the FM of a periodic solution are the eigenvalues of the derivative of the period map at
the initial value of this solution, and thus determine the stability of the solution.) In Section 5,
we describe Floquet multipliers for rapidly oscillating periodic solutions of a piecewise linear
equation with sine-like feedback. In particular, we obtain a real multiplier oscillating about 1
as a parameter is varied. One might conjecture that this is the dominating multiplier, in which
case one would have a simple example for the occurrence of rapidly oscillating, but stable
periodic solutions. The fact that rapidly oscillating solutions can be stable at all is a rather
recent discovery, see [10, 20]. However, by numerical investigation we have found that (for
the numerically accessible parameter range) there exist non-real multipliers outside the unit
circle, so that we do not obtain stability in our example.
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Let us give a brief summary of known results about the existence and stability of sym-
metric periodic solutions that we will need in the sequel. For proofs and further details see
[1–8, 11, 13, 15, 18, 21, 22] and references therein.

Differential delay equations of the type

(f ) ẋ(t) = f (x(t), x(t − 1))

generate a semiflow on the spaceC = C0([−1,0],R), if f is locally Lipschitz continuous.
Equation(f ) is called symmetric if the functionf satisfies the condition

(s) f (−x, y) = f (x, y) = −f (x,−y) for any (x, y) ∈ R2 .

Under the additional hypothesis of negative feedback

y · f (x, y) < 0 for y �= 0 ,

equation(f ) is known to possess the so-called special symmetric periodic solutions [2, 6, 13]
(SSPSs for brief). A periodic solutionx : R → R is called special symmetric ifx(t + 2) =
−x(t) for all t ∈ R. Such a solution has period 4 and is slowly oscillating, that is, the distance
between its consecutive zeros is larger than the delay 1. A solution is called eventually slowly
oscillating if there exists timeT such that the distance between its consecutive zeros to the
right from T is larger than 1. A solution that is not eventually slowly oscillating is called
rapidly oscillating.

The existence of SSPSs is well-known [2, 6, 13]. Equation(f ) has a SSPS if and only if
the system of ordinary differential equations in the plane

(cs) ẋ = f (x, y) ẏ = −f (y, x)
has a symmetric closed trajectory with the minimal period 4 encompassing the origin(0,0).
The first componentx(t) of this trajectory solves equation(f ) and is called the Kaplan-Yorke
solution (first introduced and studied in [15]).

A SSPS can be normalized in such a way thatx(0) = 0 andẋ(0) > 0. The value of
x(1) := z is called theamplitude of the SSPS.

The parameterized family of delay differential equations of the form

(αf ) ẋ(t) = αf (x(t), x(t − 1)) , α ∈ R

possesses, under some general assumptions, the so-calledprimary branch (PB) of SSPSs. The
PB has the same degree of smoothness as the nonlinearityf (x, y). It bifurcates from zero at
α = −π/(2fy(0,0)) and exists forz > 0 in at least some vicinity ofz = 0 [2, 6].

The stability of SSPSs can be determined from the location of theirFloquet multipliers
in the complex plane. Floquet multipliers are theeigenvalues of the monodromy operator, the
shift by time 4 along solutions, of the corresponding variational equation

(ve) v̇(t) = fx(x(t), x(t − 1))v(t)+ fy(x(t), x(t − 1))v(t − 1) ,

which we abbreviate aṡv(t) = a(t)v(t) + b(t)v(t − 1). Due to the symmetries(s) the co-
efficientsa andb of equation(ve) are periodic with period 2. The eigenvalues of the shift
operator by time 2 along the solutions of equation(ve) are calledsemi-Floquet multipliers.
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The Floquet multipliers are given then as the squares of semi-Floquet multipliers. The nonzero
semi-Floquet multipliers can be completely described in terms of zeroes of an analytic func-
tion, called thecharacteristic function [2, 6, 21, 22]. The characteristic function has been
employed to study the stability of SSPSs for several classes of symmetric delay differential
equations [1, 2, 6, 7, 11, 22].

The present paper deals with the symmetric rapidly oscillating periodic solutions (abbre-
viated as SROSs) of equation(f ). A periodic solutionx(t) is called symmetric ifx(t +ω) =
−x(t) for all t ∈ R and someω > 0. In the caseω = 2 one obtains the above described
SSPSs. Ifω < 1, the corresponding periodic solution of period 2ω is rapidly oscillating.

Some SROSs can be obtained as transformed SSPSs via the so-called Cooke [14] or
Saupe [19] transformations. (Details of these transformations are given in Section 2.) The
periods of the SROSs are given by 2ω = 4/(2n+1), n ∈ N, and therefore are commensurable
with the delay 1. This allows one to apply the same idea as in the case of the SSPSs to
characterize their Floquet multipliers in terms of an analytic function. The characteristic
function for the SROSs is derived in Section 3. A relation to the characteristic function of the
SSPSs is found (Theorem 3.3).

A further description of the Floquet multipliers of the SROSs is obtained in Section
4, where conditions for the existence of a real Floquet multiplier outside the unit disk are
given. Secondary bifurcations of SROSs, which are related to SSPSs on the primary branch
by transformation, are discussed. The asymptotic behavior asα → ∞ of the semi-Floquet
multipliers of the SROSs is studied for a class of equations of the form(f ) with only a single
delay term.

In Section 5, we study an example with a piecewise linear nonlinearityf , where we can
obtain more explicit information on the semi-Floquet multipliers of SROSs.

This research was initiated during the second author’s research visit to the Justus-Liebig-
Universität, Giessen, under the support of the Alexander-von-Humboldt-Stiftung, Germany
(1998). It was continued during a research stay of all three authors at the Mathematis-
ches Forschungsinstitut Oberwolfach withinits program “Research in Pairs” supported by
the Volkswagen-Stiftung (1999), and completed 2000. The second author was also partially
supported by the Australian Research Council.

2. Rapidly oscillating periodic solutions and transformations. We consider the
differential delay equation

(f ) ẋ(t) = f (x(t), x(t − 1)) ,

where we assume thatf
– is continuously differentiable,
– is even with respect to the first argument and odd with respect to the second argument,
– satisfies the feedback conditiony · f (x, y) �= 0 (at least for(x, y) in a neighborhood

of (0,0) in R2).
Let x : R → R be a special symmetric solution of equation(f ), i.e.,
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– x is a solution of equation(f ),
– x has the symmetry propertyx(t + 2) = −x(t) (t ∈ R),
– x is odd.

Observe that thenx(t + 2n) = (−1)nx(t) for n ∈ Z, t ∈ R. Conditions for the existence
of such solutions can be found in [7, 12]. By Cooke’s and Saupe’s groups of transformations
[14, 19] we find rapidly oscillating periodic solutions of transformed equations: Forn ∈ Z,
setαn := 2n+ 1, xn(t) := x(αnt) (t ∈ R). Then

x(αnt − 1) = (−1)nx(αnt − 1 − 2n) = (−1)nx(αnt − αn) = (−1)nxn(t − 1) ,

and

ẋn(t) = αnẋ(αnt) = αnf (x(αnt), x(αnt − 1)) = αnf (xn(t), (−1)nxn(t − 1))

= (−1)nαnf (xn(t), xn(t − 1)) .

Thus we obtain that
– xn solves equation(fn), wherefn := (−1)nαnf ,
– xn has the symmetry propertyxn(t + 2/αn) = −xn(t),
– xn is periodic with period 4/αn.

Observe thatfn andf have the opposite type of feedback for oddn > 0, and also for even
n < 0. Note also thatx−n = −xn−1, sincex is odd.

It is clear that ify : R → R is a solution of equation(f ) with the symmetryy(t +
2/αn) = −y(t) (t ∈ R), thenx(t) := y(t/αn) defines a special symmetric solution of
equation((−1)n(1/αn)f ).

REMARK. If x is a solution of equation(f ) with the symmetryx(t + ω/2) = −x(t)
(t ∈ R), and ifn ∈ Z is such thatnω+2 �= 0, thenxn(t) := x((1+nω/2)t) defines a solution
of equation(fn), where nowfn := (−1)n(1 + nω/2)f ; this solution is also symmetric with
periodωn := 2ω/(nω + 2). This is Saupe’s transformationSn. For evenn, we have Cooke’s
transformationCn; these transformations apply to any periodic solution, without symmetry
conditions onf or the solution.

In this paper we study Floquet multipliers of rapidly oscillating solutions of delay equa-
tions of type(f ), which are derived from special symmetric solutions via Saupe’s transfor-
mations.

3. Characteristic functions. Let x be a special symmetric solution of(f ) and, as
above, setαn := 2n + 1, xn := x(αn·), andfn := (−1)nαnf for n ∈ N0. The variational
equation alongxn is given byv̇(t) = fn,x(xn(t), xn(t − 1))v(t)+ fn,y(xn(t), xn(t − 1))v(t −
1) (t ≥ 1), where the subscriptsx andy denote partial differentiation. Defineyn := xn(·−1)
andy := y0 = x(· − 1). Then

yn(t) = x(αnt − αn) = x(αnt − 2n− 1) = (−1)nx(αnt − 1) = (−1)ny(αnt) (t ∈ R) .

Then, withan := fx(xn(·), xn(· − 1)) = fx(xn(·), yn(·)), we have

fn,x (xn(t), xn(t − 1)) = (−1)nαnfx(xn(t), yn(t)) = (−1)nαnan(t) .
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Similarly, with bn := fy(xn(·), xn(· − 1)) = fy(xn(·), yn(·)), one has

fn,y (xn(t), xn(t − 1)) = (−1)nαnbn(t) .

Hence the variational equation alongxn can be rewritten as

(vn) v̇(t) = (−1)nαn[an(t)v(t) + bn(t)v(t − 1)] (t ≥ 1) .

Let us state some properties ofan andbn, and setτn := 1/αn = 1/(2n + 1), andcn :=
bn(· + τn), dn := an(· + τn). Observe thatfx is odd andfy is even in both arguments.
Because of

xn(t + τn) = x(αnt + αnτn) = x(αnt + 1) = −x(αnt − 1) = −(−1)nyn(t) ,

yn(t + τn) = (−1)ny(αn(t + τn)) = (−1)ny(αnt + 1) = (−1)nx(αnt) = (−1)nxn(t) ,

we have

dn(t) = an(t + τn) = fx(xn(t + τn), yn(t + τn)) = fx(−(−1)nyn(t), (−1)nxn(t))

= −fx(yn(t), xn(t))
and, analogously,cn(t) = fy(yn(t), xn(t)). Sincexn(t + 2τn) = −xn(t) andyn(t + 2τn) =
−yn(t), we find

an(t + 2τn) = fx(xn(t + 2τn), yn(t + 2τn)) = fx(−xn(t),−yn(t))
= fx(xn(t), yn(t)) = an(t) ,

i.e.,an is 2τn-periodic. In the same way we see that this holds for the functionsbn, cn anddn.
As a consequence, we have

an(t + 1) = an(t + (2n+ 1)τn) = an(t + 2nτn + τn) = an(t + τn) = dn(t) ,

an(t + 1 + τn) = an(t + 2(n+ 1)τn) = an(t)

and, analogously,bn(t + 1) = cn(t), bn(t + 1 + τn) = bn(t). SetC := C0([−1,0],R).
For t, τ ∈ R, t ≥ τ , define the evolution operatorU(t, τ ) ∈ Lc(C,C) by U(t, τ )ψ =
v
ψ,τ
t , wherevψ,τ is the solution of equation(vn) with initial condition vψ,ττ = ψ, and the

subscriptst, τ denote segments, as usual. These operators have the propertyU(t, s)U(s, τ ) =
U(t, τ ) for t ≥ s ≥ τ . Let V be the monodromy operator ofxn. ThenV = U(4τn,0) =
U(4τn,2τn)U(2τn,0). The symmetries imply thatU(4τn,2τn) = U(2τn,0), so we have
V = [U(2τn,0)]2. Periodicity ofxn implies thatV 2n+1 = [U(4τn,0)]2n+1 = U((2n + 1) ·
4τn,2n ·4τn)U(2n ·4τn, (2n−1) ·4τn) · · ·U(4τn,0) = U((2n+1) ·4τn,0) = U(4,0). Since
the latter operator is compact, all nonzero Floquet multipliers ofxn are eigenvalues ofV .
Further, sinceV = [U(2τn,0)]2, the eigenvalues ofU(2τn,0) are semi-Floquet multipliers of
xn (their squares are Floquet multipliers). We want to derive a characteristic function for these
semi-Floquet multipliers. To this end, letλ ∈ C\ {0} be a semi-Floquet multiplier ofxn. Then
there is a solutionv of equation(vn), defined onR+

0 , such thatv(t + 2τn) = λv(t) (t ≥ 0),
which implies

v(t + 2kτn) = λkv(t) (t ≥ 0, k ∈ N0) .
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Let u(t) := v(t + 1), w(t) := v(t + 1+ τn) (t ≥ 0). Thenu andv are differentiable, and the
identityλn+1v(t) = v(t + (2n+ 2)τn) = v(t + 1 + τn) = w(t) yields

u̇(t) = v̇(t + 1) = (−1)nαn[an(t + 1)v(t + 1)+ bn(t + 1)v(t)]

= (−1)nαn

[
dn(t)u(t) + cn(t)

1

λn+1w(t)

]
.

Analogously, the identityλnv(t + τn) = v(t + τn + 2nτn) = v(t + 1) = u(t) gives

ẇ(t) = v̇(t + 1 + τn)

= (−1)nαn[an(t + 1 + τn)v(t + 1 + τn)+ bn(t + 1 + τn)v(t + τn)]

= (−1)nαn

[
an(t)w(t) + bn(t)

1

λn
u(t)

]
,

or in matrix form(
ẇ(t)

u̇(t)

)
= (−1)nαnAn(t, λ)

(
w(t)

u(t)

)
, An(t, λ) :=

(
an(t) λ−nbn(t)

λ−(n+1)cn(t) dn(t)

)
.

Sincew(τn) = v(1 + 2τn) = λv(1) = λu(0) andu(τn) = v(1 + τn) = w(0), we have the
boundary conditions(

w(τn)

u(τn)

)
=

(
λu(0)
w(0)

)
= C(λ)

(
w(0)
u(0)

)
, with C(λ) :=

(
0 λ

1 0

)
.

Let Sn(·, λ) be the fundamental solution of the linear equation above, i.e.,

Ṡn(t, λ) = (−1)nαnAn(t, λ)Sn(t, λ), Sn(0, λ) =
(

1 0
0 1

)
.

In view of the periodicity of the coefficient functions, we can extend the set oft-values for
whichAn(t, λ) andSn(t, λ) are defined to all ofR. Now one has(

w(τn)

u(τn)

)
= Sn(τn, λ)

(
w(0)
u(0)

)
, i.e., [Sn(τn, λ)− C(λ)]

(
w(0)
u(0)

)
= 0 .

Conversely, assume thatt (ξ, η) is a nontrivial solution of the equation[Sn(τn, λ) −
C(λ)] t (ξ, η) = 0. Then we define(

w(t)

u(t)

)
:= Sn(t, λ)

(
ξ

η

)
for t ∈ R ,

and thusw(τn) = λu(0), u(τn) = w(0). Using the definitions of the functionscn anddn,
and the 2τn-periodicity ofan andbn, one sees that the functionst (w(· + τn), u(· + τn)) and
t (λu(·),w(·)) satisfy the same initial value problem. It follows thatw(t) = u(t + τn) and
w(t + τn) = λu(t) for t ∈ R, sou(t + 2τn) = λu(t). Setv(t) := u(t − 1) for t ∈ R. Then
we havev(· + 2τn) = λv(·). Furthermore,v is a nonzero solution of the variational equation
(vn), since

u(t + τn − 1) = u(t − 2 + (2n+ 2)τn) = λn+1u(t − 2) = λn+1v(t − 1) ,
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and hence

v̇(t) = u̇(t − 1) = (−1)nαn[λ−(n+1)cn(t − 1)w(t − 1)+ dn(t − 1)u(t − 1)]
= (−1)nαn[λ−(n+1)bn(t)u(t + τn − 1)+ an(t)u(t − 1)]
= (−1)nαn[bn(t)v(t − 1)+ an(t)v(t)] .

It then follows thatλ is a semi-multiplier ofxn.
Summing up, we have shown the following result.

3.1. LEMMA . λ ∈ C \ {0} is a semi-Floquet multiplier of xn if and only if

rn(λ) := det[Sn(τn, λ)− C(λ)] = 0 .

Hencern is a characteristic function for semi-multipliers ofxn. In the next step we want
to relatern to the characteristic functionr = r0 of the slowly oscillating solutionx (= x0) of
equation(f ). To this end, observe thatx is odd andy is even, and thus

xn((−1)nt/αn) = x((−1)nt) = (−1)nx(t) ,

yn((−1)nt/αn) = (−1)ny((−1)nt) = (−1)ny(t) ,

and thus we have (witha := a0 etc.)

an((−1)nt/αn) = fx((−1)nx(t), (−1)ny(t)) = fx(x(t), y(t)) = a(t) ,

bn((−1)nt/αn) = fy((−1)nx(t), (−1)ny(t)) = fy(x(t), y(t)) = b(t) ,

cn((−1)nt/αn) = fy((−1)ny(t), (−1)nx(t)) = fy(x(t), y(t)) = c(t) ,

dn((−1)nt/αn) = −fx((−1)ny(t), (−1)nx(t)) = −fx(y(t), x(t)) = d(t) .

It follows thatAn((−1)nt/αn, λ) =
(

a(t) λ−nb(t)
λ−(n+1)c(t) d(t)

)
.

LetA := A0, andDn(λ) :=
(

1 0
0 λn

)
, S̄n(t, λ) := Dn(λ)

−1Sn((−1)nt/αn, λ). Then

˙̄S n(t, λ) = Dn(λ)
−1 (−1)n

αn
Ṡn((−1)nt/αn, λ)

= Dn(λ)
−1An((−1)nt/αn, λ)Sn((−1)nt/αn, λ)

= Ān(t, λ)S̄n(t, λ) ,

with

Ān(t, λ) := Dn(λ)
−1An((−1)nt/αn, λ)Dn(λ)

=
(

1 0
0 1/λn

) (
a(t) λ−nb(t)

λ−(n+1)c(t) d(t)

) (
1 0
0 λn

)

=
(

1 0
0 1/λn

) (
a(t) b(t)

λ−(n+1)c(t) λnd(t)

)
=

(
a(t) b(t)

λ−(2n+1)c(t) d(t)

)
= A(t, λ2n+1) .
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(We have used thatA(t, µ) = A0(t, µ) =
(

a0(t) b0(t)

µ−1c0(t) d0(t)

)
.) Hence we can conclude

S̄n(t, λ) = S(t, λ2n+1)S̄n(0, λ) or

Sn((−1)nt/αn, λ) = Dn(λ)S̄n(t, λ) = Dn(λ)S(t, λ
2n+1)Dn(λ)

−1 .

For t = (−1)n we arrive at the following result.

3.2. LEMMA . For λ ∈ C \ {0} and n ∈ N0 one has

Sn(τn, λ) = Dn(λ)S((−1)n, λ2n+1)Dn(λ)
−1 .

We can thus describeSn(τn, λ) byS(1, λ2n+1) or byS(−1, λ2n+1), depending on whether
n is even or odd. We want to expressSn(τn, λ) by S(1, λ2n+1) in both cases, so we need a
relation betweenS(1, µ) andS(−1, µ) for µ ∈ C \ {0}. For fixedµ, setS̃(t) := C(µ)S(t +
1, µ) (t ∈ R). Then, using the definitions ofc = c0, d = d0, andτ0 = 1 and 2-periodicity of
a, b, c, d, we get

˙̃
S (t) = C(µ)Ṡ(t + 1, µ) = C(µ)A(t + 1, µ)S(t + 1, µ) = Ã(t, µ)S̃(t) ,

where

Ã(t, µ) = C(µ)A(t + 1, µ)C(µ)−1 = C(µ)

(
a(t + 1) b(t + 1)
c(t + 1)/µ d(t + 1)

)
C(µ)−1

=
(

0 µ

1 0

) (
d(t) c(t)

b(t)/µ a(t)

) (
0 1

1/µ 0

)

=
(
b(t) µa(t)

d(t) c(t)

) (
0 1

1/µ 0

)
=

(
a(t) b(t)

c(t)/µ d(t)

)
= A(t, µ) .

ThusS̃(t) = S(t, µ)S̃(0), orC(µ)S(t + 1, µ) = S(t, µ)C(µ)S(1, µ) for t ∈ R. Now t = −1
gives

S(−1, µ) = C(µ)S(1, µ)−1C(µ)−1 .

Combining this relation withDn(λ)C(λ2n+1) = λnC(λn+1), we conclude that for oddn one
has

Sn(τn, λ) = Dn(λ)C(λ
2n+1)S(1, λ2n+1)−1C(λ2n+1)−1Dn(λ)

−1

= C(λn+1)S(1, λ2n+1)−1C(λn+1)−1 .

Now we can express the characteristic functionrn of xn by the characteristic functionr = r0

for the special symmetric solutionx.

3.3. THEOREM. Let λ ∈ C \ {0} and n ∈ N0. Then

rn(λ) = 1 − λ+ (−1)n

λn
[r(λ2n+1)+ λ2n+1 − 1] .
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PROOF. 1. Claim: detS(1, µ) = 1 forµ �= 0. Indeed, sincex is odd, we have

a(1 − t) = fx(x(1 − t), y(1 − t)) = fx(x(1 − t), x(−t))
= fx(−x(t − 1),−x(t)) = fx(x(t − 1), x(t))

= fx(y(t), x(t)) = −d(t) ,

and hence
∫ 1

0 (a(t) + d(t)) dt = ∫ 1
0 (a(t) − a(1 − t))dt = 0. The claim follows from

detS(1, µ) = detS(0, µ) exp[∫ 1
0 tr A(t, µ) dt] = exp[∫ 1

0 (a(t)+ d(t)) dt].

2. Now letλ ∈ C \ {0}, setµ := λ2n+1 and setS(1, µ) =:
(
p u

q v

)
. Thenpv − qu =

detS(1, µ) = 1 andS(1, µ)−1 =
(
v −u

−q p

)
.

3. For evenn ∈ N0 we find, using Lemma 3.1 and Lemma 3.2,

rn(λ) = det[Sn(τn, λ)− C(λ)] = det[Dn(λ)S(1, µ)Dn(λ)−1 − C(λ)]
= det

[(
1 0
0 λn

) (
p u

q v

) (
1 0
0 1/λn

)
− C(λ)

]

= det

[(
p u

λnq λnv

) (
1 0
0 1/λn

)
− C(λ)

]

= det

[(
p u/λn

λnq v

)
−

(
0 λ

1 0

)]
= det

[(
p u/λn − λ

λnq − 1 v

)]
= pv − (u/λn − λ)(λnq − 1) = pv − uq + λn+1q + u/λn − λ

= 1 + (λ2n+1q + u)/λn − λ = 1 − λ+ (−1)n(µq + u)/λn .

4. For oddn, we derive

rn(λ) = det[Sn(τn, λ)− C(λ)] = det[C(λn+1)S(1, µ)−1C(λn+1)−1 − C(λ)]
= det

[(
0 λn+1

1 0

) (
v −u

−q p

) (
0 1

1/λn+1 0

)
− C(λ)

]

= det

[(−λn+1q λn+1p

v −u
) (

0 1
1/λn+1 0

)
− C(λ)

]

= det

[(
p −λn+1q

−u/λn+1 v

)
−

(
0 λ

1 0

)]

= det

[(
p −λn+1q − λ

−u/λn+1 − 1 v

)]
= pv − (λn+1q + λ)(u/λn+1 + 1) = pv − qu− u/λn − λn+1q − λ

= 1 − (u+ λ2n+1q)/λn − λ = 1 − λ+ (−1)n(u+ µq)/λn .

Thus we havern(λ) = 1− λ+ (−1)n(u+µq)/λn for all n ∈ N0. Recall thatu = u(µ), q =
q(µ). We have, in particular, forn = 0 and allµ ∈ C \ {0} that r(µ) = r0(µ) = 1 − µ +
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u(µ) + µq(µ), sou(µ) + µq(µ) = r(µ)+ µ − 1 for all µ ∈ C \ {0}. For generaln ∈ N0,
we hence obtainrn(λ) = 1 − λ+ (−1)nλ−n[r(λ2n+1)+ λ2n+1 − 1]. �

4. Multipliers of rapidly and slowly oscillating solutions.
4.1. Applications to stability/instability of rapidly oscillating periodic solutions. We

use the notation of the previous section. Recall that 1 is always a trivial Floquet multiplier
of xn. We show that this implies that−1 is a trivial semi-Floquet multiplier ofxn, and hence
rn(−1) = 0. This is well known forn = 0, and it follows fromr(−1) = 0 and from Theorem
3.3 that

rn(−1) = 1 − (−1)+ (−1)n

(−1)n
[r((−1)2n+1)+ (−1)2n+1 − 1]

= 1 + 1 + [r(−1)+ (−1)− 1] = 0 .

It is also well-known that lim|λ|→∞ r(λ)/λ = −1 (see, e.g., Lemma 2.2 in [7]). Slightly more

can be shown: We have seen thatr(λ) = 1 − λ+ u+ λq, whereS(1, λ) =
(
p u

q v

)
(1), and

(
ṗ

q̇

)
=

(
ap + bq

λ−1cp + dq

)
,

(
p(0)
q(0)

)
=

(
1
0

)
,

(
u̇

v̇

)
=

(
au+ bv

λ−1cu+ dv

)
,

(
u(0)
v(0)

)
=

(
0
1

)
.

For |λ| → ∞, u andv converge to the solution of(
u̇

v̇

)
=

(
au+ bv

dv

)
,

(
u(0)
v(0)

)
=

(
0
1

)
,

uniformly on compact intervals. Hence lim|λ|→∞ u(1) =: u∗ exists. Ifq̄ := λq, then(
ṗ
˙̄q
)

=
(
ap + bq

cp + λdq

)
=

(
ap + (b/λ)q̄

cp + dq̄

)
,

(
p(0)
q̄(0)

)
=

(
1
0

)
,

and againp andq̄ converge to the solution of(
ṗ
˙̄q
)

=
(

ap

cp + dq

)
,

(
p(0)
q̄(0)

)
=

(
1
0

)
,

uniformly on compact intervals. Thus lim|λ|→∞ λq(1) =: q∗ exists.
We infer lim|λ|→∞(r(λ)+ λ) = 1 + u∗ + q∗ =: r∗. As a consequence, we have

lim|λ|→∞(rn(λ)+ λ) = lim|λ|→∞

[
1 + (−1)n

λn
(r(λ2n+1)+ λ2n+1 − 1)

]
= 1 .

It follows that, in particular, forn ∈ N0 one has signrn(λ) = − sign(λ) for all realλ with
sufficiently large absolute value. If we have some knowledge ofrn on the real axis, then
we can draw conclusions on instability ofxn. For example, if there is a realλ < −1 with
rn(λ) < 0, then there is a realµ < λ with rn(µ) = 0, and hencexn has a Floquet multiplier
with norm> 1 and therefore is unstable. On the other hand, if there is a realλ > 1 with
rn(λ) > 0, we can argue in the same way.

One way to provern(λ) < 0 for someλ < −1 is to look at the sign ofr ′n(−1). Since
rn(−1) = 0, the propertyr ′n(−1) > 0 implies the instability result. Let us calculater ′n(−1).
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First we have

r ′n(λ) = −1 + (−1)n
( −n
λn+1

)
[r(λ2n+1)+ λ2n+1 − 1]

+ (−1)n

λn
[r ′(λ2n+1)+ 1](2n+ 1)λ2n ,

and thus

r ′n(−1) = −1 + (−1)n
( −n
(−1)n+1

)
[r((−1)2n+1)+ (−1)2n+1 − 1]

+ (−1)n

(−1)n
[r ′((−1)2n+1)+ 1](2n+ 1)(−1)2n

= −1 + n[r(−1)+ (−1)− 1] + [r ′(−1)+ 1](2n+ 1)

= −1 − 2n+ (2n+ 1)(r ′(−1)+ 1) = (2n+ 1)r ′(−1) .

Thereforer ′n(−1) andr ′(−1) have the same sign and we conclude:
If r ′(−1) > 0, then every solution xn of equation (fn) (n ∈ N0) is unstable.

EXAMPLE. Consider the casef (x, y) = g (x) · h(y), whereg is even, andh is odd.
The feedback condition from the beginning of Section 2 is fulfilled ifg (0) �= 0 andh′(0) �= 0.
In [7], Thm. 3.1, it was shown thatr ′(−1) > 0, provided thath′ is decreasing on[0,∞) and
g is increasing on[0,∞). Therefore all solutionsxn are unstable in this case.

Another way to concludern(λ) < 0 for someλ < −1 is to reduce this problem to the
questionr(λ) < 0, λ < −1. To this end we observe that

(−λ)nrn(λ) = (−1)nλnrn(λ)

= (−1)nλn
[
1 − λ+ (−1)n

λn
(r(λ2n+1)+ λ2n+1 − 1)

]

= (−1)nλn − (−1)nλn+1 + r(λ2n+1)+ λ2n+1 − 1

= r(λ2n+1)+ λ2n+1 − (−1)nλn+1 + (−1)nλn − 1

= r(λ2n+1)+ ((−1)nλn+1 + 1)((−1)nλn − 1)

= r(λ2n+1)− ((−λ)n+1 − 1)((−λ)n − 1) .

Now assume that there is a realµ < −1 with r(µ) ≤ 0 (which implies existence of a semi-
Floquet multiplier ofx in (−∞, µ]). Let λ < −1 be such thatλ2n+1 = µ. Then−λ > 1 and
(−λ)k > 1 for all k ∈ N0, and

(−λ)nrn(λ) = r(µ)− ((−λ)n+1 − 1)((−λ)n − 1) < 0

yieldsrn(λ) < 0. We can conclude:
If x has a real semi-Floquet multiplier less than −1, then all xn (n ∈ N0) are unstable.



430 P. DORMAYER, A. IVANOV AND B. LANI-WAYDA

Next assume that there is a realµ > 1 with r(µ) ≥ 0 (which implies existence of a
semi-Floquet multiplier ofx in [µ,∞)). Letλ > 1 be such thatλ2n+1 = µ. If n is even, then

λnrn(λ) = (−λ)nrn(λ) = r(µ)− ((−λ)n+1 − 1)((−λ)n − 1)

= r(µ)− (−λn+1 − 1)(λn − 1)

= r(µ)+ (λn+1 + 1)(λn − 1) > 0 ,

which impliesrn(λ) > 0. Hence we conclude:
If x has a real semi-Floquet multiplier greater than 1, then xn is unstable for even n ∈ N.
Unfortunately, no conclusion can be made for oddn, since then

−λnrn(λ) = (−λ)nrn(λ) = r(µ)− ((−λ)n+1 − 1)((−λ)n − 1)

= r(µ)− (λn+1 − 1)(−λn − 1)

= r(µ)+ (λn+1 − 1)(λn + 1) > 0 ,

which only impliesrn(λ) < 0.
More generally we expect that ifr(µ) = 0 for someµ ∈ C with |µ| > 1, thenrn(λ) = 0

for someλ ∈ C with |λ| > 1. The reason for this expectation is that, in terms of general
experience, rapidly oscillating solutions are less stable than slowly oscillating ones. Hence,
intuitively one does not expect an increase of stability from a transformation of slowly oscil-
lating to rapidly oscillating periodic solutions. However, we have no proof for this intuitive
conjecture.

4.2. Application to secondary bifurcation. Let us now study the equationẋ(t) =
f (x(t), x(t − α)), or, equivalently,

ẋ(t) = αf (x(t), x(t − 1))

with delay parameterα ∈ R. Conditions onf which imply the existence of a primary branch
PB of special symmetric periodic solutions can be found, e.g., in [6, 12]. Assumingγ =
fy(0,0) �= 0, the primary branch PB bifurcates atα = −(π/2γ ) from the zero solution. PB
is a smooth curve in the spaceR × C in a neighborhood of(−(π/2γ ),0). More specifically,
there existsδ > 0 (depending on the nonlinearityf ), and a smooth function[0, δ) 	 z 
→
(α(z), ϕz) ∈ R×C such that for eachz ∈ [0, δ), the above equation with parameterα(z) has a
SSPS with amplitude (maximal value)z and initial valueϕz. One hasα(0) = −(π/2γ ), ϕ0 =
0 andϕz(−1) = 0, ϕz(·) > 0 on(−1,0] andϕz(0) = z for all z ∈ (0, δ). The branch is best
visualized as the graph of the functionz 
→ α(z) (see also [8]).

Applying Cooke’s and Saupe’s transformations to all solutions that correspond to points
on PB, we get primary branches PBn of symmetric solutions with periods 4/(2n+1). Clearly,
PBn bifurcates atα = −(−1)n(2n + 1)π/(2γ ) from the zero solution. Assume that for
somek ∈ N we have a period-times-k bifurcation on PB in the following sense: We have a
secondary branchS which is a curvew 
→ (α̃(w),ψw) ∈ R × C defined on some interval
containing zero, and such thatα̃(0) = α(z), ψ0 = ϕz for somez ∈ [0, δ). Furthermore, for all
w �= 0, we have that(α̃(w),ψw) does not lie on PB, and the solution of the above equation
with parameterα̃(w) and initial valueψw is periodic with minimal period approximately
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equal tok · 4. In casek > 1 this is a subharmonic bifurcation, for example, a period doubling.
Let us writek � PB for short.

Now we apply Saupe’s transformationsSn to the solutions which correspond to points on
S. In general such solutions (with minimal periodω) are nonsymmetric in the sense that they
do not have the symmetry propertyx(t +ω/2) = −x(t) (t ∈ R). Hence we must taken even
and thus use Cooke’s transformationCn (compare the remark at the end of Section 2). We get
a branchCnS, and the corresponding solutions have periods close to(2 · 4k)/(n · 4k + 2) =
4k/(2kn + 1). Let nowx : R → R be the solution of the above equation with parameter
α̃(0) and initial valueψ0 (which corresponds to the intersection point ofS and PB). Thenx
is transformed tõx(t) = x((1 + (n/2) · 4k)t) = x((1 + 2nk)t) = xnk(t) (compare the end
of Section 2). I.e.,̃x corresponds to a point onCnS and on PBnk. Hence we have secondary
bifurcation on PBnk , or for short

k � PB ⇒ k � PBnk via Cn for even n ∈ N .

EXAMPLE. Assume we have a symmetry breaking secondary bifurcation of PB which
is not subharmonic. That is, a secondary branchS as above, with corresponding nonsymmetric
solutions of minimal periodω approximately 4. This corresponds to the casek = 1 in the
above formulas. Then we also have symmetry breaking (and not subharmonic) bifurcations
on PB2,PB4, . . . . If we have a period doubling bifurcation on PB, i.e.,k = 2, then we have
this kind of bifurcation on PB4,PB8, . . . as well.

Let us see how these observations are reflected in the formula forrn. The propertyk�PB
indicates that somexα ∈ PB has a Floquet multiplierµ with µk = 1. We want to show that
xαnk, n even has the same property. To this end, letr be the characteristic function ofxα. Since
µ is a Floquet multiplier, there is a semi-Floquet multiplierλ with µ = λ2. Sincen is even,
we see thatλnk = (λ2k)n/2 = (µk)n/2 = 1 andλ2nk+1 = λ. Now r(λ) = 0 implies

rnk(λ) = 1 − λ+ (−1)nk

λnk
[r(λ2nk+1)+ λ2nk+1 − 1]

= 1 − λ+ 1 · [r(λ)+ λ− 1] = 0 .

Henceλ is also a semi-Floquet multiplier ofxαnk, andλ2 = µ is also a Floquet multiplier of
xαnk.

We can treat the case of oddn in the following way. Observe that ifxα ∈ PB, then
xαn = −xα−n−1. Let C ′

n := −Cn−1, i.e., if x has periodω, thenC ′
nx is the functionR 	 t 
→

−x((1 − ((n + 1)/2)ω)t) ∈ R, which has period 2ω/((n + 1)ω − 2). If we applyC ′
n to the

special symmetric solutions of PB, we get PBn. SinceC ′
n = −C−n−1 and since−n−1 is even

if n is odd, we can applyC ′
n to nonsymmetric solutions in this case. If we have a solutionxα

corresponding to a bifurcation point on PB with periods close to 4k, thenC ′
n yields solutions

with periods close to 2·4k/((n+1) ·4k−2) = k ·4/(2kn+2k−1). xα is mapped toxαkn+k−1,
and hence we have secondary bifurcation on PBkn+k−1; for short:

k � PB ⇒ k � PBnk+k−1 via C ′
n for oddn .
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Let us show again that this result is in accordance with our formula forrn. Let µ = λ2

be a Floquet multiplier ofxα ∈ PB with µk = 1. Thennk + k = (n + 1)k is even and
λnk+k = (λ2k)(n+1)/2 = 1, λ2nk+2k = 1. It follows that

rnk+k−1(1/λ) = 1 − (1/λ)+ (−λ)nk+k−1[r(1/λ2nk+2k−1)+ 1/λ2nk+2k−1 − 1]
= 1 − 1/λ+ (−1/λ)[r(λ)+ λ− 1]
= 1 − 1/λ− r(λ)/λ− 1 + 1/λ = −r(λ)/λ = 0 .

Henceλ̃ = 1/λ is a semi-Floquet multiplier and̃µ = 1/λ2 = 1/µ is a Floquet multiplier of
xnk+k−1, and of coursẽµk = 1/µk = 1. Combining both results, we arrive at

k � PB ⇒ k � PBm form = 2k,4k,6k, . . . and m = 2k − 1,4k − 1, . . . .

For example, symmetry (not subharmonic) breaking bifurcation on PB implies symmetry
breaking bifurcation on PB1,PB2, . . . , while period doubling bifurcation on PB implies pe-
riod doubling bifurcation on PB3,PB4,PB7,PB8,PB11,PB12, . . . .

In the same way one can study secondary bifurcation on PBm. One finds

k � PBm ⇒ k � PBnk+m via Cn for evenn ,

k � PBm ⇒ k � PBnk+k−m−1 via C ′
n for oddn ,

or, combined,

k � PBm ⇒ k � PBn if n−m or n+m+ 1 is a multiple of 2k .

As a consequence, we have that we know all period-times-k bifurcations on PBn, n ∈ N0,
if we know them on PB0, ...,PBk−1. Namely, if k � PBm for somem ∈ N0, then there is
ann ∈ {0,1, . . . , k − 1} with k � PBn since we can always writem = 2k · q + n for some
n ∈ {0,1, . . . ,2k − 1}. Now n − m = −2kq and (2k − 1 − n) + m + 1 = 2k(q + 1)
are multiples of 2k, i.e., k � PBn andk � PB2k−1−n. But eithern ∈ {0,1, . . . , k − 1} or
(2k − 1 − n) ∈ {0,1, . . . , k − 1}.

EXAMPLE. It is sufficient to study symmetry breaking (not subharmonic) bifurcation
(k = 1) on PB and period doubling bifurcation(k = 2) on PB and PB1; all such bifurcations
on PBn are just transforms of these bifurcation points.

4.3. Asymptotic behavior of semi-Floquet multipliers. In [4], the asymptotic behav-
ior of semi-Floquet multipliers of special symmetric solutions of

ẋ(t) = −αf (x(t − 1))

was studied for sine-like functionsf (see Thm. 1 in [4]) asα → ∞. The key for the result
given there is that ifκ(λ) := (1/2)|Im(1/√λ)| ≤ 1/2, then

|rα(λ)+ λ− 1| ≤ cαeα(2κ(λ)−1)

for some constantc; hererα is the characteristic function of the Kaplan-Yorke-solutionxα for
the parameterα. Assume that there is a sequenceαk → ∞ with semi-Floquet multipliersλk
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such thatκ(λk) ≤ 1/2 − γ for someγ > 0. Then

|λk − 1| = |rαk (λk)+ λk − 1| ≤ cαke
αk(2κ(λk)−1) ≤ cαke

−γ αk ,
which showsλk → 1. Hence we have forα → ∞ that, for every semi-Floquet multiplierλ
of xα,

– eitherλ is close to 1,
– orκ(λ) is close to or greater than 1/2, i.e.,|Im(1/√λ)| is close to or greater than 1.
Since|Im(1/√λ)| = 1 defines the so-called cardioide curve, the semi-Floquet multipli-

ers ofxα are close to the heart-shaped area

H = {λ ∈ C \ {0} | |Im(1/√λ)| ≥ 1} ∪ {0,1} ⊂ C .

We can immediately show an analogous result for the semi-Floquet multipliers ofxαn on the
transformed primary branch PBn. It is convenient to say thatµ ∈ C is a(2n+ 1)/2-Floquet
multiplier of xαn , if there is a semi-Floquet multiplierλ ∈ C of xαn with µ = λ2n+1. Then

|rαn (λ)+ λ− 1| =
∣∣∣∣ (−1)n

λn
[rα(µ)+ µ− 1]

∣∣∣∣ ≤ 1

|λ|n cαe
α(2κ(µ)−1) .

Now we can apply the same argument as above: Assume that we have a sequenceαk →
∞ with (2n+ 1)/2-Floquet multipliersµk = λ2n+1

k of xαkn such that

κ(µk) ≤ 1

2
− γ and |µk| ≥ β

for some constantsβ, γ > 0. Then|λk| ≥ β1/(2n+1), and the estimate

|λk − 1| = |rαkn (λk)+ λk − 1| ≤ 1

|λk|n ce
αk(2κ(µk)−1) ≤ 1

βn/(2n+1)
ce−2αkγ

shows thatλk → 1 andµk → 1. Hence we have forα → ∞ and for(2n + 1)/2-Floquet
multipliersλ of xαn that

– eitherλ is close to 1,
– orλ is close to 0,
– orλ is close to the set{λ ∈ C | |Im(1/√λ)| ≥ 1}.
Because of 0,1 ∈ H, the(2n+ 1)/2-Floquet multipliers are in any case close toH.
In the next section we give a simple example of a sine-like functionf , for whichr(λ) can

be calculated explicitly. This will allow us to obtain detailed information on the semi-Floquet
multipliers on PBn.

5. A specific example with piecewise linear feedback. We study a piecewise linear
model, where the characteristic functionr = r0 of the untransformed solutions is known
explicitly, and Theorem 3.3 enables us to obtain information on the multipliers of transformed,
rapidly oscillating solutions. Setf (x) := 1/2 − |x − 1/2| for x ∈ [0,1], and continuef
to an odd and two-periodic function, which then is a piecewise linear caricature ofx 
→
(1/π) sin(πx).

We know that forz ∈ (1/2,1) there is anαz > π/2 such that the equation

(−αzf ) ẋ(t) = −αzf (x(t − 1))
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has a special symmetric solutionxz with amplitudez. Let rz be its characteristic function.
In Section 7 of [5] the following expressions forαz andrz were calculated: Ifµ is such that
λµ2 = 1, then

αz = 2τ (z)+ 2σ(z), rz(λ) = 1 − λ− 2

µ
s(z, λ) · c(z, λ) ,

whereτ (z) = π/4 − arctan(2
√

1/4 − (1 − z)2), σ (z) = Arcosh[1/(2(1 − z))], and

s(z, λ) = sinh(2µτ(z)) , c(z, λ) = cos(2µσ(z)) .

For the remainder of this section, we now fixn ∈ N, and setτn := 1/(2n+ 1). As in Section
1, the functionxz,n defined byxz,n(t) = xz((2n+ 1)t) (t ∈ R) is a symmetric solution of the
equation

((−1)n+1(2n+ 1)αzf ) ẋ(t) = (−1)n+1(2n+ 1)αzf (x(t − 1)) ,

with period 4/(2n + 1) and amplitudez. (Observe that ifn is odd, then this equation has
positive feedback around zero.) LetT = 4/(2n+1) be the period ofxz,n. Note that, although
f is not everywhere differentiable, the time-T -mapΦ(T , ·) : C → C of the semiflow gen-
erated by the above equation is still differentiable with respect to the initial value. It can be
seen, e.g., from Lemma 6.5 in [16], that the derivativeD2Φ(T , (xz,n)0) (i.e., the monodromy
operator) is still given by solutions of the variational equation, which now is a linear equation
with piecewise constant coefficient. The characterization of semi-multipliers as zeroes of a
determinant involving the fundamental solution matrix (now for a system with piecewise con-
stant coefficients) from Lemma 3.1. remains valid, as well as the further results of Section 3,
in particular, Theorem 3.3.

Let us now study the semi-multipliers ofxz,n. We know from Theorem 3.3 that these are
the zeroes of the functionrz,n given by

rz,n(λ) = 1 − λ+ (−1)n

λn
[rz(λ2n+1)+ λ2n+1 − 1] .

Using the above expression forrz, we obtain that, ifµ is such that

λ2n+1µ2 = 1 ,

the expression in the bracket equals

1 − λ2n+1 − 2

µ
sinh(2µτ(z)) cos(2µσ(z))+ λ2n+1 − 1 = − 2

µ
sinh(2µτ(z)) cos(2µσ(z)) ,

so we concluderz,n(λ) = 1 − λ+ [(−1)n+12/(λnµ)] sinh(2µτ(z)) cos(2µσ(z)).
For positive, realλ we can set

µ := λ−(2n+1)/2, so λ = µ−2/(2n+1) ,

and thus

rz,n(λ) = 1 − µ−2/(2n+1) + [(−1)n+12/(µ1/(2n+1))] sinh(2µτ(z)) cos(2µσ(z)) .

We can draw a first conclusion from these expressions:
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5.1. PROPOSITION. For z ∈ (1/2,1), every positive real semi-Floquet multiplier λ of
xz,n satisfies

λ ≤ (e + 1)2 .

PROOF. Note that forµ ∈ (0,1/2] andz ∈ (1/2,1) one has

τ (z) = π/4 − arctan(2
√

1/4 − (1 − z)2) ∈ (0, π/4) ,
and| sinh(2µτ(z)) cos(· · · )| ≤ maxu∈[0,1] sinh(u) ≤ e/2. If λ ≥ 2, thenµ := λ−(2n+1)/2 ≤
1/2, so the last estimate is valid. Observing thatλnµ = λ−1/2, one sees that

|rz,n(λ)| ≥ λ− 1 − 2λ1/2e/2 = λ− 1 − λ1/2e = λ1/2(λ1/2 − e)− 1 .

Thus, ifλ ≥ (e + 1)2, then|rz,n(λ)| ≥ e + 1 − 1 = e > 0. The assertion follows. �

REMARK. Note thatαz → ∞ asz → 1, so for oddn the linearization of equation
((−1)n+1(2n+1)αzf ) at zero has solutions exp(λt) with a positive numberλ going to infinity
asz → 1. Consequently, the time 4/(2n + 1) solution operator of the linearization at zero
has unbounded positive eigenvalues asz → 1. Proposition 5.1 shows that this is not the case
for the monodromy operator of the 4/(2n+ 1)−periodic solutionxz,n, which oscillates about
zero.

We are now interested inz close to 1, and in positive real multipliers. Forµ > 0 and
ζ ∈ (0,1/4) we set

ψ(µ, ζ ) := sinh[2µ(π/4 − arctan(2
√

1/4 − ζ 2))] · cos[2µ Arcosh(1/(2ζ ))] .
If z ∈ (3/4,1), λ > 0, andµ := λ−(2n+1)/2, ζ := 1 − z, we then have

µ2τnrz,n(λ) = µ2τn + (−1)n+12µτnψ(µ, ζ )− 1 .

We define

Gn : (0,∞)× (0,1/4) → R , Gn(µ, ζ ) := µ2τn + (−1)n+12µτnψ(µ, ζ ) − 1 .

Then, forz ∈ (3/4,1), andλ > 0, andµ, ζ as above, we haveµ2τnrz,n(λ) = Gn(µ,1 − z).
We now approximate the functionGn, expanding in powers ofζ .

5.2. LEMMA . a) Gn(µ, ζ ) = µ2τn{1+(−1)n+14µ2nτnζ 2[cos(2µ logζ )+R(µ, ζ )]}
− 1, where for µ ∈ (0,2) and ζ ∈ (0,1/4) one has |R(µ, ζ )| ≤ 28ζ 2.

b) The function G̃n : (0,2)× (−∞,1/4) → R defined by

G̃n(µ, ζ ) :=
{
Gn(µ, ζ ) if ζ ∈ (0,1/4)
µ2τn − 1 if ζ ≤ 0

is a C1 extension of Gn.

PROOF. a) Setw(ζ ) := 2
√

1/4 − ζ 2 andϕ(ζ ) := π/4 − arctan(w(ζ )). Then

(5.2.1) ψ(µ, ζ ) = sinh(2µϕ(ζ )) · cos[2µ Arcosh(1/2ζ )], and

(5.2.2) w(ζ ) = √
1 − (2ζ )2 = 1 − (2ζ )2

2
+ R1(ζ ) = 1 − 2ζ 2 + R1(ζ ) ,
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where, usingζ ≤ 1/4, we get the estimate

|R1(ζ )| ≤ 1

2
max

u∈[3/4,1]

∣∣∣∣ d2

dx2
(x 
→ √

x)(u)

∣∣∣∣ · (2ζ )4 ≤ 1

2

1

4

(
3

4

)−3/2

16ζ 4 = 2
23

33/2
ζ 4 ≤ 4ζ 4 .

Next, we have

(5.2.3) ϕ(ζ ) = arctan′(1)(1 −w(ζ ))+ R2(ζ ) ,

where|R2(ζ )| ≤ (1/2)maxu∈[w(ζ),1] | arctan′′(u)| · (1 −w(ζ ))2. With

| arctan′′(u)| = | − 2u/(1 + u2)2| ≤ 1

we get|R2(ζ )| ≤ (1/2)(2ζ 2 + 4ζ 4)2 ≤ (1/2)(3ζ 2)2 ≤ 5ζ 4.

Combining (5.2.2) and (5.2.3), we can write

ϕ(ζ ) = 1

2
(2ζ 2 − R1(ζ ))+ R2(ζ ) = ζ 2 + R3(ζ ) , where |R3(ζ )| ≤ 2ζ 4 + 5ζ 4 = 7ζ 4 .

We now approximate the two factors ofψ: First, sinh(2µϕ(ζ )) = 2µϕ(ζ )+R4(µ, ζ ), where
for µ ∈ (0,2) andζ ∈ (0,1/4) one has|2µϕ(ζ )| ≤ 4(ζ 2 + 7ζ 4) ≤ 8ζ 2 ≤ 1/2, and

|R4(µ, ζ )| ≤ 1

6
max

u∈[0,1/2] | sinh′′′(u)|(2µϕ(ζ ))3 ≤ 1

6

e1/2

2
8µ3(ζ 2 + 7ζ 4)3

≤ 8

6
µ3ζ 6(1 + 7ζ 2)3 ≤ 8

6
(3/2)3µ3ζ 6 ≤ 5µ3ζ 6.

Hence sinh(2µϕ(ζ )) = 2µζ 2 + R5(µ, ζ ), where forµ ∈ (0,2] andζ ∈ (0,1/4]

|R5(µ, ζ )| = |2µR3(ζ )+ R4(µ, ζ )| ≤ 14µζ 4 + 5µ3ζ 6 ≤ 14µζ 4 + 20

16
µζ 4 ≤ 16µζ 4 .

Second, note that(1/2ζ ) ≥ √
1/(4ζ 2)− 1 = (1/2ζ )

√
1 − 4ζ 2 ≥ (1/2ζ )(1 − 4ζ 2) =

(1/2ζ )− 2ζ, so we have 1/ζ ≥ 1/2ζ + √
1/(4ζ 2)− 1 ≥ 1/ζ − 2ζ . Consequently,

Arcosh(1/2ζ ) = log(1/2ζ + √
1/(4ζ 2)− 1) ∈ [log(1/ζ − 2ζ ), log(1/ζ )] , and

Arcosh(1/2ζ ) ≥ log(1/ζ )− log′(1/ζ − 2ζ ) · 2ζ

= log(1/ζ )− 2ζ
ζ

1 − 2ζ 2 ≥ log(1/ζ )− 2

1 − 1/8
ζ 2

≥ log(1/ζ )− 3ζ 2 ,

so we obtain log(1/ζ )− 3ζ 2 ≤ Arcosh(1/2ζ ) ≤ log(1/ζ ). It follows that

cos(2µ Arcosh(1/2ζ )) = cos(2µ log(ζ ))+ R6(µ, ζ ) , where|R6(µ, ζ )| ≤ 6µζ 2 .
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Combining the approximations for the sinh- and the cos-term, we get forµ ∈ (0,2) and
ζ ∈ (0,1/4)

ψ(µ, ζ ) = [2µζ 2 + R5(µ, ζ )] · [cos(2µ log(ζ ))+ R6(µ, ζ )]
= 2µζ 2 cos(2µ log(ζ ))+ R7(µ, ζ ) , with

|R7(µ, ζ )| ≤ 2µζ 2R6(µ, ζ )+ R5(µ, ζ )(1 + R6(µ, ζ ))

≤ 2µζ 26µζ 2 + 16µζ 4(1 + 6µζ 2)

≤ 12µ2ζ 4 + 32µζ 4 ≤ 56µζ 4 .

In particular, we have|ψ(µ, ζ )| ≤ 2µζ 2| cos(· · · )| + 56µζ 4 ≤ 6µζ 2.

Finally, noting thatµ = µ(2n+1)τn , we can compute

Gn(µ, ζ ) = µ2τn + (−1)n+12µτn[2µζ 2 cos(2µ logζ )+ R7(µ, ζ )] − 1

= µ2τn + (−1)n+14µ(2n+2)τn

[
ζ 2 cos(2µ logζ )+ R7(µ, ζ )

2µ

]
− 1

= µ2τn{1 + (−1)n+14µ2nτnζ 2[cos(2µ logζ )+ R(µ, ζ )]} − 1 ,

whereR(µ, ζ ) := R7(µ, ζ )/(2µζ 2) and|R(µ, ζ )| ≤ 56µζ 4/(2µζ 2) = 28ζ 2.

b) Claim 1: ψ is bounded on(0,2)× (0,1/4).
This follows from the boundedness of arctan and cos, and from formula (5.2.1) forψ.
Claim 2: ψ(µ, ζ ) → 0 and∂1ψ(µ, ζ ), ∂2ψ(µ, ζ ) → 0 asζ → 0, ζ > 0, uniformly

with respect toµ ∈ (0,2).
From the above approximation ofψ we know that|ψ(µ, ζ )| ≤ 6µζ 2 for all (µ, ζ ) ∈

(0,2)× (0,1/4), which implies the assertion forψ. Further,

∂1ψ(µ, ζ ) = 2ϕ(ζ ) cosh(2µϕ(ζ )) cos(· · · )− sinh(2µϕ(ζ )) sin(· · · )2 Arcosh(1/2ζ ) .

Using the estimates from the proof of b) forϕ, and for the sinh- and the Arcosh-term, we get

|∂1ψ(µ, ζ )| ≤ 2(ζ 2 + 7ζ 4) cosh(µϕ(ζ ))+ (2µζ 2 + 16µζ 4)2 log(1/ζ ) .

The assertion for∂1ψ now follows from the boundedness of the cosh-term on(0,2)×(0,1/4).
Next, we have

∂2ψ(µ, ζ ) = cosh(2µϕ(ζ ))2µϕ′(ζ ) cos(· · · )−sinh(2µϕ(ζ )) sin(· · · )2µ Arcosh′(1/2ζ )−1

2ζ 2
.

Note thatw(ζ ) = √
1 − 4ζ 2, thatw has a maximum at 0, and henceϕ has a minimum at

ζ = 0, soϕ′(0) = 0. Further,

Arcosh′(1/2ζ ) = 1√
(1/2ζ )2 − 1

= 2ζ√
1 − 4ζ 2

.

Writing T1(µ, ζ ) for the first term andT2(µ, ζ ) for the second term in the expression for
∂2ψ(µ, ζ ), it follows from ϕ′(0) = 0 and from the boundedness of the cosh-term that
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T1(µ, ζ ) → 0 if ζ → 0, ζ > 0, uniformly for µ ∈ (0,2). Finally, using the estimate
on the sinh-term obtained in the proof of b) again, we get

|T2(µ, ζ )| ≤ (2µζ 2 + 16µζ 4)| sin(· · · )|2µ 2ζ√
1 − 4ζ 2

1

2ζ 2 ≤ 2µ(2µζ + 16µζ 3)√
3/4

,

which proves the analogous convergence property forT2, and hence for∂2ψ. Claim 2 is
proved.

It follows from Claim 2 and from the definitions ofGn andG̃n thatG̃n is continuous and
has continuous first partial derivatives, soG̃n isC1. �

5.3. COROLLARY. There exists z ∈ (1/2,1), a neighborhood U of 1 in R, and a C1

function λ∗ : (z,1) → U ⊂ R such that for all z ∈ (z,1), λ∗(z) is a semi-Floquet multiplier
of xz,n, and the only one contained in U . Further, λ∗(z) → 1 as z → 1.

PROOF. With G̃n from Lemma 5.2b), note that̃Gn(1,0) = 0 and∂1G̃n(1,0) = 2τn �=
0. It follows from the Implicit Function Theorem that there existδ > 0, an open neighborhood
Ũ ⊂ (0,2) of 1 in R, and aC1 functionµ∗ : (−δ, δ) → Ũ ⊂ R such that one has for
ζ ∈ (−δ, δ) andµ ∈ Ũ :

G̃(µ, ζ ) = 0 ⇔ µ = µ∗(ζ ) .

Set nowz := 1 − δ, andU := Ũ−2τn , and defineλ∗(z) := (µ∗(1 − z))−2τn for z ∈ (z,1).
Then, for thesez, the definitions ofG̃ and ofG imply

(µ∗(1 − z))2τnrz,n(λ
∗(z)) = Gn(µ

∗(1 − z),1 − z) = G̃n(µ
∗(1 − z),1 − z) = 0 .

Henceλ∗(z) is a semi-Floquet multiplier ofxz,n. It is the only semi-multiplier inU , since
for every other multiplierλ ∈ U , one would haveµ := λ−(2n+1)/2 ∈ Ũ andG̃(µ,1 − z) =
G(µ,1 − z) = rz,n(λ)/µ

2τn = 0, soµ = µ∗(1 − z) andλ = (µ∗(1 − z))−2τn = λ∗(z). �

We can now show that, similar to the much more difficult result obtained in [2] for
smooth nonlinearities, the value ofλ∗(z) oscillates about 1, asz → 1.

5.4. THEOREM. There exists a sequence (zk)k∈N in (z,1)with zk < zk+1 and zk → 1,
and with the following property: The positive semi-Floquet multiplier λ∗(z) of the rapidly
oscillating periodic solution xz,n from Corollary 5.3satisfies

λ∗(z2k−1) < 1< λ∗(z2k) for all k ∈ N .

PROOF. Recall the functionµ∗ defined on(−δ, δ) from the proof of Corollary 5.3,
with G̃n(µ∗(ζ ), ζ ) = 0. In caseζ > 0, we have alsoG(µ∗(ζ ), ζ ) = G̃(µ∗(ζ ), ζ ) = 0.
Sinceµ∗(ζ ) → 1 for ζ → 0, the functionζ 
→ |µ∗(ζ ) log(ζ )| converges to infinity for
ζ → 0, ζ > 0. It follows that there exists a sequence(ζk)k∈N in (0, δ) with the properties

ζk > ζk+1, 28ζ 2
k ≤ 1/2, cos(2µ∗(ζk) log(ζk)) = (−1)n+1+k (k ∈ N) .
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It follows from these properties, together with the estimate onR from Lemma 5.2 a), that for
k ∈ N one has

sign{(−1)n+14(µ∗(ζk))2nτnζ 2
k [cos(2µ∗(ζk)logζk)+ R(µ∗(ζk), ζk)]}

= (−1)n+1(−1)n+1+k = (−1)k .

NowGn(µ∗(ζk), ζk) = 0 and Lemma 5.2 a) imply(µ∗(ζk))2τn = 1/(1+[...]),where the sign
of the bracket alternates withk. We see thatµ∗(ζk) > 1 for oddk andµ∗(ζk) < 1 for evenk.
Settingzk := 1− ζk, the result now follows from̄z = 1− δ and fromλ∗(zk) = (µ∗(ζk))−2τn .

�

REMARKS AND NUMERICAL OBSERVATIONS. The results of this section can certainly
be extended to smooth nonlinearities close to our piecewise linear example. We did not in-
clude such technical steps.

Theorem 5.4 above describes the oscillation around 1 of the real positive semi-multiplier
λ∗(z) asz → 1.

We know from Section 4 that forz → 1 the semi-multipliers ofxz,n converge to the
heart-shaped regionH. Unfortunately, this fact does not imply that forz-values close to 1
and such thatλ∗(z) < 1, the solutionsxz,n are stable: The closure ofH contains−1, and
convergence toH does not exclude multipliers outside the unit circle.

In fact, for the casen = 1 we searched for semi-multipliers numerically, employing the
explicit expression for the characteristic function and a Newton procedure. We found that for
all values ofz which we could numerically treat, thereexist non-real semi-multipliers outside
the unit circle. More specifically, inspecting the rangez ∈ I := [0.8,0.9999], we found
λ∗(z) < 1 in the intervals

I1 := [0.8,0.906], I2 := [0.9804,0.9959], I3 := [0.9992,0.9998] ,
andλ∗(z) > 1 in the complementary subintervals ofI . (z-values larger than 0.9999 were
essentially beyond our numerical resolution, andλ∗(z) converges rapidly to 1 for suchz.) We
found complex semi-multipliers outside the unit circle approximately equal to 0.95± 0.5i for
z ∈ I1, to 0.7 ± 0.75i for z ∈ I2, and to 0.6 ± 0.8i for z ∈ I3. (These values are only crude
approximations, since the precise values change withz.) In particular, the solutionsxz,1 with
λ∗(z) < 1 are nevertheless unstable.

It could be that one can change the equation slightly in a way that forces the complex
multipliers into the unit circle, and thus obtain stable rapidly oscillating solutions. (This
question remains open.) Numerically solving the delay equation from our example, one sees
that a slight deviation from the periodic solution typically results in a crossing of the zero 1
(or −1) of f , and in rapid departure from the values ofxz,1.

The numerically observed typical solution behavior of equation(αf ) for larger values of
α is generally chaotic (compare [8]), and existence of invariant sets with erratic motion was
analytically proved in [16] for the specific parameter valueα = (9/e)(log 9− 1) (and small
perturbations).
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