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HARDY INEQUALITY FOR CENSORED STABLE PROCESSES
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Abstract. A Hardy inequality is established for censored stable processes on a large
class of bounded domains including bounded Lipschitz domaiRé with n > 2.

1. Introduction. In order to state the classical Hardy inequality (for Brownian mo-
tion) due to Ancona [2], we first recall the following definition.

DEFINITION 1.1. AdomainD in R", n > 3, is said to baniformly A-regular if there
is a constant > 0 such that for eackh € 9D and allr > 0,

(1.1) Cap(B(x,r) N D) > c¢r"2,
where Cap is the Newtonian capacityRf.

In [2], Ancona showed that iD is uniformly A-regular inR", n > 3, there is a constant
C > 0 depending only on and the constantin the definition ofA-regularity (1.1) such that
the following Hardy inequality holds

u?(x) 2 12
(1.2) dx < C | |VulPdx forall u e WH(D),
p 8p(x)? D

wheredp(x) is the Euclidean distance betweemnd D¢. Note that the Dirichlet integral in

the right hand side of (1.2) represents the bilinear form associated with a Brownian motion
killed upon leavingD. Hardy inequality plays an important role in probability and analysis,
see, for example, Bafiuelos [3] and Davies [10].

This paper is concerned with obtaining Hardy inequalities for censored stable processes
in D (see Theorem 2.3, Corollary 2.4 and Theorem 3.1 below) and for killed symmetric stable
processes i (see Theorem 3.2 below).

Recall that a symmetrie-stable procesX on R" is a Lévy process whose transition
densityp(z, x —y) with respect to the Lebesgue measure is uniquely determined by its Fourier
transform

/ ¥ p(t, x)dx = e 1E
Rn

Herea must be in the interval0, 2] andn > 1. Whena = 2, we get a Brownian motion
running with a time clock twice as fast as the standard one.XLbé a symmetrie-stable
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process irR" with « € (0, 2). It is well-known that the Dirichlet form&®, we/22(R"))
associated witlX is given by

(@) —u@)N@E) —v&)

1
(@) _ = _
(1.3) EYu,v) = 2A(n, o) o Jee — ypta xdy,
_ 2
(1.4) We22R") = {u e L’(RY); s % dxdy < oo} ,
where
(1.5) A, —a) ol ((n +)/2)

T a2 (1 (a)2))

Fora = 2, defineWl2(R") = {u € L2(R", dx); Vu € L2R", dx)}.

Given an open seb C R", definerp = inf{t > 0; X, ¢ D}. Let X”(0w) = X;(w)
if + < tp(w) and setX? (w) = 3 if t > p(w), whered is a coffin state added ®". The
processx? is called the killed symmetrie-stable process i. Note that when G< o < 2,
XP is irreducible even whem is disconnected. The Dirichlet spaceXP on L2(D, dx) is
(E@, Hg/z(D)) (cf. Theorem 4.4.3 of [14]), where

Hy/2(D) = (f € W22(R"); £ =0 q.e. onD‘}.

Here g.e. is the abbreviation for quasi-everywhere with respect to the Riesz capacity deter-
mined by (£@, W*/22(R")) (cf. [14]). The spaceHg‘/z(D) can also be characterized as
the £@-closure ofC2°(D), the space of smooth functions with compact supports.irfFor

u € HY'*(D), by (1.3),

£ w0 =5 A, —o [ [ HEOZIODCE TN g
2 DJD

(1.6) br =y
+/ u(x)v(x)/cg‘)(x)dx,
D
where
(1.7) K9 (x) = A, —a) ! dy

pe |x — yrte

is the density of the killing measure & .

A domain D in R" is said to satisfy a uniform exterior volume condition if there is a
constantc > 0 such that for ang € dD and anyr > 0, m(B(x,r) N D) > cr". Here
m denotes the Lebesgue measureéin It is elementary to see that, 1 satisfies a uniform

exterior volume condition, theﬂg‘)(x) > c¢8p(x)~® forx € D and so

f u?(x) J / 2.\ (@) 00
x <C(D, ) u“(xX)kp (x)dx, wueC(D).
p dp(x)* D
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Therefore, in this case, we trivially have the following Hardy inequality for killed symmetric
stable processes i

2
(1.8) / ) e < C(Dy ) EPw), e CO(D).
p dp(x)¥

In this paper we are mainly concerned with the following type of Hardy inequalities

2 _ 2
/ u(x)adx < (D, a) (/ %dxdy+/ u(x)zdx>
(1.9) p dp(x) pJp [x—Yl D

for u € C°(D),

and

2 2

(1.10) / uO” e < oD, ) / / W) =) )4y for ue C®(D),
D 5D(x)"‘ |x — y|rte ‘

for a certain class of domain3 including bounded Lipschitz domains. In fact we will show

that for a bounded Lipschitz domain ¢ R", (1.9) holds forx € (0, 1) U (1, 2) and (1.10)

holds fora € (1, 2). The Hardy inequality (1.9) was known for bound@®-smooth domains

D and fora # 1, see 4.3.2(9) of Triebel [23] and the references therein. We remark here that

Hardy inequality (1.10) can not hold on a bounded Lipschitz donfafor « < 1, since it is

proved in [6] that in this case constant functions are in the space spanr@&tt @) under

the metric
_ 2 1/2
</ (u(x) —u®y)) dxdy—i—/ u(x)zdx> ‘
pJp |x—y|te D

We call inequality (1.9) or (1.10) a Hardy inequality for censosestable process i. We
now explain the reason behind this.

Using Fourier transforms, the Sobolev spaice2(R") can be defined for anye R. For
f € L3(R"), define

f&) = @m)™? / f@)e i dx, EeR".
Rll
Then one defines

(1.11) WS2(RY) = {u e LARY); /R (1+ |s|2)s ()2 dE < oo} ,

s 1/2
(112) lulls.2 = (/R (1+12) |ﬁ(5)|2ds) .

Itis well-known thatC2°(R") is a dense subspace Wf:2(R"). By the Plancherel theorem,

/|f<s>|2ds:/ |f(x)[2dx .
R R"
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Itis easy to see that (cf. Example 1.4.1 of [14]) the Sobolev spaces defined by (1.4) and (1.11)
are the same for & s < 1 and that

5<“>(u,u)=/ [E|%G(E) - 0(&)dE  foru,v e WY?2(R").
R’l

By this alternative characterization, it is clear that-2(R") ¢ W%/22(R") for0 < o < 2
and that for, v € WL2(RY),

lim £ u, v) = / Vu - -Vvdx.
0{—)2 u

For any open seD C R" ands € R, defineHj(D) as the closure of’ 2°(D) under
Il - lls,2. SOH§(D) C W*2(R") is equipped with the norr- ||;.2 from W*:2(R").

For a symmetriex-stable proces¥ onR" with 0 < o < 2, typically lim;4,,, X; exists
and belongs t®. We would like to exten& ? beyond its lifetimerp by the Ikeda-Nagasawa-
Watanabe piecing together procedure described as follows.Y,e) = XP(w) for r <
(). If X2 _(w) ¢ D, setY;(w) = dfors > tp(w). If X2 _(w) € D, let Yy, (w) =
X2 _(») and glue an independent copy %F starting fromX2 _ (o) to Yz, (w). Iterating
this procedure countably many times, we obtain a strong Markov proceBs ©his process
Y is called a censored-stable process in [6] and is proved there that its Dirichlet form is
@, ]—‘,()")), where

) = S, [ [ LN ),
2 DJD

|x — y|rte

(1.13)
u,veCxr(),

and]—‘g‘) is the closure o>° (D) under Hilbert inner produﬂi”') =CY+ (-, )2
It was observed in [6] that the spadf'%") is in fact the Sobolev (or Besov) space of
fractional ordeng/z’z(D), whose definition we now recall. To simplify notations, fet=
/2.
For an open seb C R", define
WS2(D) = {u € L%(D, dx); u = v a.e. onD for somev € W2(R")},
lulls.2.p = inf{|[v]ls.2; v € W"2(R") andv = u a.e. onD}.

It is known (cf. [23]) that(W*2(D), | - ls.2: p) is a Hilbert space. Le([Wé’Z(D), Il ls.2:p)
be the smallest closed subspacéidf2(D) containingCg° (D).
For 0< d < n, we will useH? to denote the/-dimensional Hausdorff measurefi.

DEFINITION 1.2. A Borel setl’ ¢ R" is called ad-set for some O< d < n if there
exist positive constantg andcz such that for alk € I andr € (0, 1],

crrd < HYT N Bx,r) < cor? .
The notion ofd-sets arises both in the theory of fuion spaces and in fractal geometry.

It is known (see Proposition 1 in Chapter VIII of [16]) thatlifis ad-set, then its Euclidean
closurel is ad-set and \ I" has zerd{?-measure.
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If an open seD is ann-set and O< s < 1, then by Theorem 1 on page 103 of [16],

(1.14) WS’Z(D) = ]—‘,()25) and the Sobolev norr- ||5.2. p is equivalent t Cizs).

This explains why we call inequality (1.9), in particular, (1.10ardy inequality for cen-
sored «-stable processin D. We will prove Hardy inequality (1.9) and (1.10) by using com-
plex interpolation methods.

The authors thank Michael Cwikel and Charles Fefferman for helpful discussions on the
subject of complex interpolations. They also thank Krzysztof Bogdan for a helpful comment
on an earlier version of this paper.

2. Complex interpolation. We first recall the following definition from [18]. LeT
denote the field of complex numbers.

DEFINITION 2.1. LetX1 C Xo be a continuous dense injection of two Banach spaces.
LetS = {z € C; 0 < Rez < 1}, ands? denote the interior of. Let H (X, X1) denote all the
continuous bounded function% : § — Xo which are holomorphic is% with f(iy) € Xo
and f(1+iy) € X1 for each fixedy € R, and such that the following norm is finite:

IfI:= max{max||f(iy)||x0, max|| /(1 + iY)||xl} .
veR yeR
For 0< 6 < 1, theinterpolation space Xy with weight 6 is defined by

Xo == [Xo, X1lo ={f(O); f € H(Xo, X1)} .
with norm
lullo :=inf{llfII; f € H(Xo, X1) with f(0) = u}.
The Banach spaceg; and X are called annterpolation couple.

Using the result from [20] or page 211 of [21], we see from (1.11)—(1.12MH&(R") =
[L2(RY), WL2(RY)], for0 < s < 1.

We record two basic facts about interpolation in the following Proposition, which are
stated aglin [8] and Theorem 1.2.4 in [23] respectively. Suppose fatc Xo andY1 C Yo
are two interpolation couples.

ProPOSITION 2.1. (1) If T is a bounded linear operator from Xg to Yo and from
X1 to Yy with [|[Tx|ly, < M;|x|lx, for i = 0,1. Then T is a bounded linear operator from
Xg = [Xo, X1]p t0 Yy := [Yo, Y1]9, Where0 < 6 < 1 and

1-6
ITx|ly, < My~ "M |Ix|lx, forxe Xq.

(2) Suppose that S is a bounded linear operator from Yo to X and from Y1 to X1,
and R is abounded linear operator from Xg to Yo and from X1 to Y7 suchthat SR = I, the
identity map, when restricted to Xo and X1 respectively. Thenfor any0 < 6 < 1, RS isa
projection in space [Yo, Y11y inthe sensethat (RS)2 = RS. Furthermore R is an isomorphic
mapping from [Yo, Y1]g onto the range of RS of [Xo, X1]g, Which is a closed subspace of
[Xo, X1lo.
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The main object of this section is to show that, under certain condition® @rhich
are satisfied whei® is a bounded Lipschitz domain, the complex interpolation between the
spaces.2(D) andW,"%(D) with weights is Wg(D).

AdomainD is called an extension domain if there is a bounded linear hap.2(D) —
L2(R") such thatEf = f a.e. onD, and when restricted t1-2(D) c L2(D), itis a
bounded linear map fro12(D) into W1-2(R"). Jones [15] showed that ariy, 5§)-domain
is an extension domain. Here

DEFINITION 2.2. An open connected subgétof R" is an (¢, §)-domain for some
e > 0ands € (0, oo],ifforall x, y € " with |x — y| < §, there exists a rectifiable agcC I’
with lengthl,, joining x to y such that, < |x — y|/e and

elx —z|- |y — 2
lx — yl
Recall that for an open sé& c R" and O< s < 1,

dist(z, oT") > forall z e y.

H3(D) = {u € W*(R"); u =0 g.e. onDY},
equipped with the norm inherited fro@*-2(R"), | - |ls,2). So foru € Hj(D),

_ 2 1/2

x _ y|n+25

Where/cD is given by (1.7).

PROPOSITION 2.2. Supposethat D isan open set such that its boundary d D has zero
Lebesgue measure and the interior of D€ isa finite union of digjoint extension domains. Then

[L2(D), Wy*(D)]; = Hy(D) forall0<s <1.

PROOF The proofis the same as that of Corollary 111.1.6 in [22], though the result there
was proved only for Lipschitz domains. For reader’'s convenience we spell out the details.
Denote byD’ the interior of D°. Let 15 : L?(R") — L?(D’) be the restriction map, and
let E be the extension map froiW12(D’) to WL-2(R"). ThenE o 1y is a bounded linear
operator in botiL.2(R*) andWL2(R"). Thus by Proposition 2.1(1),

I(Eolp)flls,2 <cllflls.2
forany f € W52(R"). By the definition ofW*-2(D’)-space, we have
1Euls2 < cllulls2p for ue WH(D').

The reverse inequality holds by definition. It follows from Proposition 2.1(2) that an
embedding ofW*2(D’) into W*2(R"), the projectionE o 1 and I — (E o 1p/) give
the direct sum decomposition 6f*2(R") = W*2(D') @ HS(D), and thatW*-3(D') =
[L2(D'), WY2(D')],. ThereforeHs (D) = [L2(D), Wy *(D)];. ]
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Under the following condition on the domaib c R", Strichartz (Corollary 11.4.2 of
[22]) proved that the multiplier 4 is a bounded linear operator frot*-2(R") into W*2(R")
forO<s <1/2.

Condition A: There exist a coordinate system and an intdgguch that almost every line
parallel to the axes intersedsin at mostN components, or even in at magtcomponents
in the unit cube about every lattice point,

Note that a bounded Lipschitz domain satisfies both Condition A and the conditions of
Proposition 2.2.

THEOREM 2.3. Suppose that D is a bounded domain in R" satisfying Condition A
and the conditions of Proposition 2.2. Furthermore assume that D isan n-set and 9D isan
(n — 1)-set. Then

Wy2(D) = Hy(D) fors e (=1/2, 1/2)U (1/2, 1),
and the norms of these two spaces are equivalent. In particular, for « € (0, 1) U (1, 2), there
isa constant cg = co(D, o) > 0 such that
_ 2
/ u(x)zlch)(x) dx < co </ M dxdy +/ u()c)2 dx)
D D JD D

r =y

for u e W/**(D),

where % is given by (1.7)

Proor.  Clearly Hy(D) C WS’Z(D), asC2°(D) is a dense subset in both spaces and
||u||H5(D) > |lulls,2.p for u € C°(D). We now show that the convers%ol’z(D) C Hy(D)
holds for—1/2 < s < 1 except fors = 1/2.

When 0< s < 1/2, as mentioned aboveps a bounded linear operator fromi*-2(R")
into W*2(R") by [22]. The same map is thus continuous fat/2 < s < 0, in view of the
duality betweerW*-2(R") and W —-2(R") (cf. [23]). Thus for—1/2 < s < 1/2, there is a
constant = ¢(s) > 0 such that

I1puls.2 < cllulls2 foreveryu e WH3(R").
By the definition forw*:2(D), we have for anyf € CX*(D) C W52(D),

11pflls.2 <cllflls.2.p
and Ip f € Hy(D) with ||f||H§(D) = [[1pflls.2. AS WS’Z(D) is the | - |I5.2. p-closure of
C*(D), we haveWS’z(D) C Hy(D). Clearly, ||u||H§(D) = lulls,2 = llulls,2.p foru €
WS’Z(D). Therefore these two norms are equivalent a§dD) = WS’Z(D) for—1/2 < s <
1/2.
For 1/2 < s < 1, we know from Proposition 3.6 of Caetano [7] that the trace operator

trlsp : u — ulsp is a bounded linear operator froMi*-2(D) onto L2(dD, H"~1). We
refer the definitions of trace operatof;is to [7]. As anyu € WS’Z(D) can be| - ||s.2. p-

approximated by a sequence of function<’itt (D), we have thypu = 0 foru € WS’Z(D).
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Note that by almost the identical proof, Lemma 2.1(ii) of [18] holds With?(D) andHg (D)
in place of spaces?(R%) andL3 (R) there. Thatis, it € W*2(D) with tr|ypv = 0, then
v € Hy(D). Therefore we conclude € Hj(D) and soWé’z(D) = Hy(D).

Since the identity map is a continuous map fréfj(D) onto Wg’z(D), by the inverse
operator theorem, its inverse is also a comvins map. This says that these two spaces have
equivalent norms. m]

COROLLARY 2.4 (Hardy inequality). Let D be a bounded Lipschitzdomain in R* with
n > 2, and let § p(x) isthe Euclidean distance between x and 9 D.

(1) Fora € (0, 1)U (1, 2), thereisa constant ¢ = ¢(D, o) > 0 such that for every
u e CX(D),

2 _ 2
(2.1) /D ;D((xx))adx <c (/D . %dxdy+/l)u(x)2dx) .

(2) Fora € (1, 2), thereisa constant ¢ = ¢(D, @) > 0 such that for every u €
C (D),

2 _ 2
(2.2) / u(x) dx <c / ue) —u)) dxdy .
p dp(x)* pJp |x—ylrte
PrROOF Note that a bounded Lipschitz domain satisfies the condition of Theorem 2.3.
As K,(;‘)(x) ~ §p(x)~%, it follows from Theorem 2.3 that fax € (0, 1) U (1, 2), there is a

constant = ¢(D, «) > 0 so that inequality (2.1) holds for evesrye C°(D).
We claim that forx € (1, 2), there is a constart = c1(D, «) such that

(2.3) / u(x)’dx < c1 / dedy for u e Wg/Z’Z(D).
D pJp |x—y[rt

Since D is a bounded:-set, it is well known (e.g. see Chapter VI of [16]) that there is

a bounded extension operatbr: W%/22(D) — W%/22(R") such thatEu = u a.e. on

D for u € W%22(D). On the other hand, Adams’ embedding theorem (see Lemma 1 on

page 214 of [16]) says tha¥*/%2(R") is compactly embedded ib? (D, dx) for everyp <

2n/(n — o). ThusW*/%22(D) is compactly embedded ib?(D, dx). Suppose that (2.3) is not

true. Then there is a sequengg, k > 1} in Wg/Z’Z(D) with [lukll2p 4ry = 1 such that

C®(ug, uy) — 0ask — oo, whereC@ is given by (1.13). From the compact embedding of

Wg/Z*Z(D) C W*/25(D)in L3(D, dx), there is a subsequengg, j > 1} suchthati,, — u

in L2(D, dx). On the other hand, it is easy to see that the Cesaro mean of a subsequence of

{uk;, j = 1} converges ta in the spaceéW®/22(D), || - la/2,2) @and sau € WS‘/Z’Z(D). Fatou

lemma implies tha @ («, u) = 0 and sa is a non-zero constant. However it is shown in [6]

that fora € (1, 2),1¢ Wg/Z’Z(D), a contradiction. Thus we have established (2.3), which

combines with the previously derived (2.1) proves (2.2)far (1, 2). ]

An interesting and important question is: how does the constant (D, «) depend on
a? More explicitly, isc(D, «) some interpolation between 1 an@, 2), wherec(D, 2) is the
constantC in (1.2) whenever it holds? For example, is it true that there is sénse0 such
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thate(D, @) < A c(D, 2)*/%? A positive answer to this question will give useful information
on the first eigenvalue for censored stable processes in datnaswell as for killed stable
processes i (cf. [4]) via the first Dirichlet eigenvalue foa in D.

3. Second Approach. To help answer the question at the end of last section, the fol-
lowing approach to Hardy inequalities might be useful. In this section we assum®, and
in Theorem 3.1 we will assume that for some (0, 1), we have

(3.2) Wy2(D) = [L2(D), W33(D)]; -

Note that in section 2 we have proved (3.1) foe¢ 1/2 and a class of domains including
bounded Lipschitz domains. It is plausible that (3.1) should hold for a much larger class of
domains. Lef|| - ||ls.2.p denote the norm inherited from complex interpolation between the
two Hilbert spaced.2(D) andWy3(D).

THEOREM 3.1. Supposethat D is an uniformly A-regular domain in R* and that for
some0 < s < 1 condition (3.1)is satisfied. Then

u(x)? S U2 5.2
(3.2) : 5o = C i for all u € W3(D),

where C > 0isthe constant in inequality (1.2)that depends only on » and the constant ¢ in
the definition of A-regularity (1.1).

PROOF Let Fo = L%(D, 8p(x)2dx) andF1 = L%(D, dx). It is known from [20] or
page 211 of [21] thak2(D, §p(x)21~)dx) is the complex linear interpolation space between
Banach spacesp and F1 with weights. Let T be a linear map defined oW&’Z(D) =
L2(D) N Wg(D) into Fo N Fy by

u(x)
Tu(x) = for xe D.
dp(x)
1,2
Clearly, foru € Wy “(D),
ITullFo = 1 Tull12(p, 5px)2ax) = Il L2(p, ax) -

and by the Hardy inequality (1.2) there i€a> 0, depending only on and the constantin
the definition ofA-regularity, such that

(3.3) Tl = 1Tull L2, gy < VCllull2.

Therefore by the interpolation theorem on page 211 of [Zl]extends uniquely to
[LA(D), Wy*(D)], = W§?(D) and

,2
ITull L2p. 5p20-9ax) < C/% Mullls2p forany u e Wy4(D),

whereC is the constant in (3.3). This proves the theorem. O
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When D is ann-set, we know thafl| - |||5.2. p IS equivalent to the norrq/Cizs) in the
sense that there are constatit®, s) andC (D, s) such that

(3B.4) (D, YO w,u) < lullls2zp < C(D, )\ O w,u) foru e Wy?(D),

whereC®) is given by (1.13). So in this case (3.2) gives the desired Hardy inequality for
censored2s)-stable process i®. A question that is related to the one stated at the end of
last section is as follows. Can the constan(t®, s) andC (D, s) in (3.4) (or at leasC (D, s))

be chosen so that it depends onlyBrbut not ons?

Using the same proof as above, we have by Proposition 2.2 the following Hardy in-
equality for killed symmetrier-stable process i®. Unlike the one mentioned in (1.8) under
the uniform exterior volume condition, the following inequality is far from trivial, as we do
not have any easy comparison between the killing measure dm#ﬁty) and the function
Sp(x)™“.

THEOREM 3.2. Suppose that D is an uniformly A-regular domain in R" and that it
satisfies the condition of Proposition 2.2 Then for any 0 < o« < 2, there is a constant
c¢(D, a) > 0such that

u(x)2 5,2
(3.5) / dx < (D, )€, u) foral ue Wy(D),
p dp(x)*

where £@ s given by (1.6).

4. Applications. The Hardy inequality obtained above for censored stable processes
should have many implications on the study of censored stable processes. Here we just men-
tion one.

Let D be a bounded Lipschitz domain. It was proved in [6] that the censoigdble
proces is transient with finite lifetime whea > 1. Leti1(Y) > 0 be the first eigenvalue
of Y.

THEOREM 4.1. Supposethat D isa bounded Lipschitzdomain in R". Thereis a con-
stant ¢, > O suchthat for o € (1, 2),

(4.1) c(D, )7 HNr(D)™ < A1(Y) < ¢, Inr(D) ™%,
where Inr(D) := supdp(x); x € D} istheinner radiusof D and ¢(D, «) isthe constant in
Corollary 2.4.

ProOOF The lower bound estimate follows from Corollary 2.4 by a similar argument
as that for Theorem 1.5.3 in [11]. For the upper bound estimate, notewgﬁ‘/:ftz(D) D
HY?(D) andull2.2.p < E (u, )2, Thusi1(Y) < A1(XP), wherery (XP) is the first
eigenvalue for the killed stable processin Clearly, 11(X?) is no larger than the killed
stable process in a ball with radius (iar), which isc, Inr(D)~* by scaling. O

Similarly, one can get bounds on the first eigenvalyex ) for killed symmetrica-
stable process iD.



HARDY INEQUALITY FOR CENSORED STABLE PROCESSES 449

REMARK. The lower bound estimate in (4.1) is not of much use unless we know how
the constant(D, @) depends orD and«. See the problems posed at the end of last two
sections.

In [9], the Hardy inequality will be applied, together with the Harnack and boundary
Harnack inequalities established in [6], to obtain sharp estimates on the Green functions of
censored-stable processes in bound€d!-domains forx € (1, 2).

The paper [13] by Fitzsimmons contains thgualent characterization of Hardy in-
equality in the context of general symmetric Markov processes.
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