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HARDY INEQUALITY FOR CENSORED STABLE PROCESSES

ZHEN-QING CHEN∗ AND RENMING SONG†
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Abstract. A Hardy inequality is established for censored stable processes on a large
class of bounded domains including bounded Lipschitz domains inRn with n ≥ 2.

1. Introduction. In order to state the classical Hardy inequality (for Brownian mo-
tion) due to Ancona [2], we first recall the following definition.

DEFINITION 1.1. A domainD in Rn, n ≥ 3, is said to beuniformly ∆-regular if there
is a constantc > 0 such that for eachx ∈ ∂D and allr > 0,

Cap(B(x, r) ∩ Dc) ≥ c rn−2 ,(1.1)

where Cap is the Newtonian capacity inRn.

In [2], Ancona showed that ifD is uniformly∆-regular inRn, n ≥ 3, there is a constant
C > 0 depending only onn and the constantc in the definition of∆-regularity (1.1) such that
the following Hardy inequality holds∫

D

u2(x)

δD(x)2 dx ≤ C

∫
D

|∇u|2dx for all u ∈ W
1,2
0 (D) ,(1.2)

whereδD(x) is the Euclidean distance betweenx andDc. Note that the Dirichlet integral in
the right hand side of (1.2) represents the bilinear form associated with a Brownian motion
killed upon leavingD. Hardy inequality plays an important role in probability and analysis,
see, for example, Bañuelos [3] and Davies [10].

This paper is concerned with obtaining Hardy inequalities for censored stable processes
in D (see Theorem 2.3, Corollary 2.4 and Theorem 3.1 below) and for killed symmetric stable
processes inD (see Theorem 3.2 below).

Recall that a symmetricα-stable processX on Rn is a Lévy process whose transition
densityp(t, x−y) with respect to the Lebesgue measure is uniquely determined by its Fourier
transform ∫

Rn
eix·ξp(t, x)dx = e−t |ξ |α .

Hereα must be in the interval(0, 2] andn ≥ 1. Whenα = 2, we get a Brownian motion
running with a time clock twice as fast as the standard one. LetX be a symmetricα-stable
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process inRn with α ∈ (0, 2). It is well-known that the Dirichlet form(E (α),Wα/2,2(Rn))

associated withX is given by

E (α)(u, v) = 1

2
A(n,−α)

∫
Rn

∫
Rn

(u(x) − u(y))(v(x) − v(y))

|x − y|n+α
dxdy ,(1.3)

Wα/2,2(Rn) =
{
u ∈ L2(Rn) ;

∫
Rn

∫
Rn

(u(x) − u(y))2

|x − y|n+α
dxdy < ∞

}
,(1.4)

where

A(n,−α) = αΓ ((n + α)/2)

21−α πn/2 Γ (1 − (α/2))
.(1.5)

Forα = 2, defineW1,2(Rn) = {u ∈ L2(Rn, dx) ; ∇u ∈ L2(Rn, dx)}.
Given an open setD ⊂ Rn, defineτD = inf{t > 0 ; Xt /∈ D}. Let XD

t (ω) = Xt(ω)

if t < τD(ω) and setXD
t (ω) = ∂ if t ≥ τD(ω), where∂ is a coffin state added toRn. The

processXD is called the killed symmetricα-stable process inD. Note that when 0< α < 2,
XD is irreducible even whenD is disconnected. The Dirichlet space ofXD onL2(D, dx) is
(E (α),H

α/2
0 (D)) (cf. Theorem 4.4.3 of [14]), where

H
α/2
0 (D) = {f ∈ Wα/2,2(Rn) ; f = 0 q.e. onDc} .

Here q.e. is the abbreviation for quasi-everywhere with respect to the Riesz capacity deter-
mined by(E (α),Wα/2,2(Rn)) (cf. [14]). The spaceHα/2

0 (D) can also be characterized as
theE (α)-closure ofC∞

c (D), the space of smooth functions with compact supports inD. For

u ∈ H
α/2
0 (D), by (1.3),

E (α)(u, v) =1

2
A(n, −α)

∫
D

∫
D

(u(x) − u(y))(v(x) − v(y))

|x − y|n+α
dxdy

+
∫

D

u(x)v(x)κ
(α)
D (x)dx ,

(1.6)

where

κ
(α)
D (x) = A(n, −α)

∫
Dc

1

|x − y|n+α
dy(1.7)

is the density of the killing measure ofXD .
A domainD in Rn is said to satisfy a uniform exterior volume condition if there is a

constantc > 0 such that for anyx ∈ ∂D and anyr > 0, m(B(x, r) ∩ Dc) ≥ crn. Here
m denotes the Lebesgue measure onRn. It is elementary to see that, ifD satisfies a uniform
exterior volume condition, thenκ(α)

D (x) ≥ c δD(x)−α for x ∈ D and so

∫
D

u2(x)

δD(x)α
dx ≤ C(D, α)

∫
D

u2(x)κ
(α)
D (x)dx , u ∈ C∞

c (D) .
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Therefore, in this case, we trivially have the following Hardy inequality for killed symmetric
stable processes inD

∫
D

u2(x)

δD(x)α
dx ≤ C(D, α) E (α)(u, u), u ∈ C∞

c (D) .(1.8)

In this paper we are mainly concerned with the following type of Hardy inequalities
∫

D

u(x)2

δD(x)α
dx ≤ c(D, α)

(∫
D

∫
D

(u(x) − u(y))2

|x − y|n+α
dxdy +

∫
D

u(x)2 dx

)

for u ∈ C∞
c (D) ,

(1.9)

and ∫
D

u(x)2

δD(x)α
dx ≤ c(D, α)

∫
D

∫
D

(u(x) − u(y))2

|x − y|n+α
dxdy for u ∈ C∞

c (D) ,(1.10)

for a certain class of domainsD including bounded Lipschitz domains. In fact we will show
that for a bounded Lipschitz domainD ⊂ Rn, (1.9) holds forα ∈ (0, 1) ∪ (1, 2) and (1.10)
holds forα ∈ (1, 2). The Hardy inequality (1.9) was known for boundedC∞-smooth domains
D and forα 
= 1, see 4.3.2(9) of Triebel [23] and the references therein. We remark here that
Hardy inequality (1.10) can not hold on a bounded Lipschitz domainD for α ≤ 1, since it is
proved in [6] that in this case constant functions are in the space spanned byC∞

c (D) under
the metric

(∫
D

∫
D

(u(x) − u(y))2

|x − y|n+α
dxdy +

∫
D

u(x)2 dx

)1/2

.

We call inequality (1.9) or (1.10) a Hardy inequality for censoredα-stable process inD. We
now explain the reason behind this.

Using Fourier transforms, the Sobolev spaceWs,2(Rn) can be defined for anys ∈ R. For
f ∈ L2(Rn), define

f̂ (ξ) = (2π)−n/2
∫

Rn
f (x)ei ξ ·x dx , ξ ∈ Rn .

Then one defines

Ws,2(Rn) =
{
u ∈ L2(Rn) ;

∫
Rn

(
1 + |ξ |2

)s |û(ξ)|2 dξ < ∞
}

,(1.11)

‖u‖s,2 =
(∫

Rn

(
1 + |ξ |2

)s |û(ξ)|2 dξ

)1/2

.(1.12)

It is well-known thatC∞
c (Rn) is a dense subspace ofWs,2(Rn). By the Plancherel theorem,∫

Rn
|f̂ (ξ)|2 dξ =

∫
Rn

|f (x)|2 dx .
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It is easy to see that (cf. Example 1.4.1 of [14]) the Sobolev spaces defined by (1.4) and (1.11)
are the same for 0< s < 1 and that

E (α)(u, v) =
∫

Rn
|ξ |α û(ξ) · v̂(ξ) dξ for u, v ∈ Wα/2,2(Rn) .

By this alternative characterization, it is clear thatW1,2(Rn) ⊂ Wα/2,2(Rn) for 0 < α < 2
and that foru, v ∈ W1,2(Rn),

lim
α→2

E (α)(u, v) =
∫

Rn
∇u · ∇v dx .

For any open setD ⊂ Rn and s ∈ R, defineHs
0(D) as the closure ofC∞

c (D) under
‖ · ‖s,2. SoHs

0(D) ⊂ Ws,2(Rn) is equipped with the norm‖ · ‖s,2 from Ws,2(Rn).
For a symmetricα-stable processX on Rn with 0 < α < 2, typically limt↑τD Xt exists

and belongs toD. We would like to extendXD beyond its lifetimeτD by the Ikeda-Nagasawa-
Watanabe piecing together procedure described as follows. LetYt (ω) = XD

t (ω) for t <

τD(ω). If XD
τD−(ω) /∈ D, setYt (ω) = ∂ for t ≥ τD(ω). If XD

τD−(ω) ∈ D, let YτD (ω) =
XD

τD−(ω) and glue an independent copy ofXD starting fromXD
τD−(ω) to YτD (ω). Iterating

this procedure countably many times, we obtain a strong Markov process onD. This process
Y is called a censoredα-stable process in [6] and is proved there that its Dirichlet form is
(C(α),F (α)

D ), where

C(α)(u, v) = 1

2
A(n, −α)

∫
D

∫
D

(u(x) − u(y))(v(x) − v(y))

|x − y|n+α
dxdy ,

u, v ∈ C∞
c (D) ,

(1.13)

andF (α)
D is the closure ofC∞

c (D) under Hilbert inner productC(α)
1 = C(α) + ( · , · )L2(D).

It was observed in [6] that the spaceF (α)
D is in fact the Sobolev (or Besov) space of

fractional orderWα/2,2
0 (D), whose definition we now recall. To simplify notations, lets =

α/2.
For an open setD ⊂ Rn, define

Ws,2(D) = {u ∈ L2(D, dx) ; u = v a.e. onD for somev ∈ Ws,2(Rn)} ,

‖u‖s,2;D = inf{‖v‖s,2 ; v ∈ Ws,2(Rn) andv = u a.e. onD} .

It is known (cf. [23]) that(Ws,2(D), ‖ · ‖s,2;D) is a Hilbert space. Let(Ws,2
0 (D), ‖ · ‖s,2;D)

be the smallest closed subspace ofWs,2(D) containingC∞
c (D).

For 0< d ≤ n, we will useHd to denote thed-dimensional Hausdorff measure inRn.

DEFINITION 1.2. A Borel set� ⊂ Rn is called ad-set for some 0< d ≤ n if there
exist positive constantsc1 andc2 such that for allx ∈ � andr ∈ (0, 1],

c1r
d ≤ Hd (� ∩ B(x, r)) ≤ c2r

d .

The notion ofd-sets arises both in the theory of function spaces and in fractal geometry.
It is known (see Proposition 1 in Chapter VIII of [16]) that if� is ad-set, then its Euclidean
closure� is ad-set and� \ � has zeroHd -measure.
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If an open setD is ann-set and 0< s < 1, then by Theorem 1 on page 103 of [16],

W
s,2
0 (D) = F (2s)

D and the Sobolev norm‖ · ‖s,2;D is equivalent to
√
C(2s)

1 .(1.14)

This explains why we call inequality (1.9), in particular, (1.10) aHardy inequality for cen-
sored α-stable process in D. We will prove Hardy inequality (1.9) and (1.10) by using com-
plex interpolation methods.

The authors thank Michael Cwikel and Charles Fefferman for helpful discussions on the
subject of complex interpolations. They also thank Krzysztof Bogdan for a helpful comment
on an earlier version of this paper.

2. Complex interpolation. We first recall the following definition from [18]. LetC
denote the field of complex numbers.

DEFINITION 2.1. LetX1 ⊂ X0 be a continuous dense injection of two Banach spaces.
Let S = {z ∈ C; 0 ≤ Rez ≤ 1}, andS0 denote the interior ofS. LetH(X0,X1) denote all the
continuous bounded functionsf : S → X0 which are holomorphic inS0 with f (iy) ∈ X0

andf (1 + iy) ∈ X1 for each fixedy ∈ R, and such that the following norm is finite:

‖f ‖ := max

{
max
y∈R

‖f (iy)‖X0, max
y∈R

‖f (1 + iy)‖X1

}
.

For 0≤ θ ≤ 1, theinterpolation space Xθ with weight θ is defined by

Xθ := [X0,X1]θ = {f (θ) ; f ∈ H(X0,X1)} .

with norm
‖u‖θ := inf {‖f ‖ ; f ∈ H(X0,X1) with f (θ) = u} .

The Banach spacesX0 andX1 are called aninterpolation couple.

Using the result from [20] or page 211 of [21], we see from (1.11)–(1.12) thatWs,2(Rn) =
[L2(Rn), W1,2(Rn)]s for 0 < s < 1.

We record two basic facts about interpolation in the following Proposition, which are
stated as4 in [8] and Theorem 1.2.4 in [23] respectively. Suppose thatX1 ⊂ X0 andY1 ⊂ Y0

are two interpolation couples.

PROPOSITION 2.1. (1) If T is a bounded linear operator from X0 to Y0 and from
X1 to Y1 with ‖T x‖Yi ≤ Mi‖x‖Xi for i = 0, 1. Then T is a bounded linear operator from
Xθ := [X0,X1]θ to Yθ := [Y0, Y1]θ , where 0 < θ < 1 and

‖T x‖Yθ ≤ M1−θ
0 Mθ

1 ‖x‖Xθ for x ∈ Xθ .

(2) Suppose that S is a bounded linear operator from Y0 to X0 and from Y1 to X1,

and R is a bounded linear operator from X0 to Y0 and from X1 to Y1 such that SR = I , the
identity map, when restricted to X0 and X1 respectively. Then for any 0 < θ < 1, RS is a
projection in space [Y0, Y1]θ in the sense that (RS)2 = RS. Furthermore R is an isomorphic
mapping from [Y0, Y1]θ onto the range of RS of [X0,X1]θ , which is a closed subspace of
[X0,X1]θ .
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The main object of this section is to show that, under certain conditions onD which
are satisfied whenD is a bounded Lipschitz domain, the complex interpolation between the
spacesL2(D) andW

1,2
0 (D) with weights is W

s,2
0 (D).

A domainD is called an extension domain if there is a bounded linear mapE : L2(D) →
L2(Rn) such thatEf = f a.e. onD, and when restricted toW1,2(D) ⊂ L2(D), it is a
bounded linear map fromW1,2(D) into W1,2(Rn). Jones [15] showed that any(ε, δ)-domain
is an extension domain. Here

DEFINITION 2.2. An open connected subset� of Rn is an (ε, δ)-domain for some
ε > 0 andδ ∈ (0, ∞], if for all x, y ∈ � with |x −y| < δ, there exists a rectifiable arcγ ⊂ �

with lengthlγ joining x to y such thatlγ ≤ |x − y|/ε and

dist(z, ∂�) ≥ ε|x − z| · |y − z|
|x − y| for all z ∈ γ .

Recall that for an open setD ⊂ Rn and 0< s < 1,

Hs
0(D) = {u ∈ Ws,2(Rn) ; u = 0 q.e. onDc} ,

equipped with the norm inherited from(Ws,2(Rn), ‖ · ‖s,2). So foru ∈ Hs
0(D),

‖u‖Hs
0 (D) =

(
1

2
A(n,−α)

∫
D

∫
D

(u(x) − u(y))2

|x − y|n+2s
dxdy +

∫
D

u(x)2κ
(2s)
D (x)dx

)1/2

,

whereκ
(2s)
D is given by (1.7).

PROPOSITION 2.2. Suppose that D is an open set such that its boundary ∂D has zero
Lebesgue measure and the interior of Dc is a finite union of disjoint extension domains. Then

[L2(D),W
1,2
0 (D)]s = Hs

0(D) for all 0 < s < 1 .

PROOF. The proof is the same as that of Corollary III.1.6 in [22], though the result there
was proved only for Lipschitz domains. For reader’s convenience we spell out the details.
Denote byD′ the interior ofDc . Let 1D′ : L2(Rn) → L2(D′) be the restriction map, and
let E be the extension map fromW1,2(D′) to W1,2(Rn). ThenE ◦ 1D′ is a bounded linear
operator in bothL2(Rn) andW1,2(Rn). Thus by Proposition 2.1(1),

‖(E ◦ 1D′)f ‖s,2 ≤ c‖f ‖s,2

for anyf ∈ Ws,2(Rn). By the definition ofWs,2(D′)-space, we have

‖Eu‖s,2 ≤ c‖u‖s,2;D′ for u ∈ Ws,2(D′) .

The reverse inequality holds by definition. It follows from Proposition 2.1(2) thatE is an
embedding ofWs,2(D′) into Ws,2(Rn), the projectionE ◦ 1D′ and I − (E ◦ 1D′) give
the direct sum decomposition ofWs,2(Rn) = Ws,2(D′) ⊕ Hs

0(D), and thatWs,2(D′) =
[L2(D′),W1,2(D′)]s . ThereforeHs

0(D) = [L2(D),W
s,2
0 (D)]s . �
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Under the following condition on the domainD ⊂ Rn, Strichartz (Corollary II.4.2 of
[22]) proved that the multiplier 1D is a bounded linear operator fromWs,2(Rn) into Ws,2(Rn)

for 0 ≤ s < 1/2.
Condition A: There exist a coordinate system and an integerN such that almost every line

parallel to the axes intersectsD in at mostN components, or even in at mostN components
in the unit cube about every lattice point,

Note that a bounded Lipschitz domain satisfies both Condition A and the conditions of
Proposition 2.2.

THEOREM 2.3. Suppose that D is a bounded domain in Rn satisfying Condition A
and the conditions of Proposition 2.2. Furthermore assume that D is an n-set and ∂D is an
(n − 1)-set. Then

W
s,2
0 (D) = Hs

0(D) for s ∈ (−1/2, 1/2) ∪ (1/2, 1) ,

and the norms of these two spaces are equivalent. In particular, for α ∈ (0, 1)∪ (1, 2), there
is a constant c0 = c0(D, α) > 0 such that∫

D

u(x)2κ
(α)
D (x) dx ≤ c0

(∫
D

∫
D

(u(x) − u(y))2

|x − y|n+α
dxdy +

∫
D

u(x)2 dx

)

for u ∈ W
α/2,2
0 (D) ,

where κ
(α)
D is given by (1.7).

PROOF. ClearlyHs
0(D) ⊂ W

s,2
0 (D), asC∞

c (D) is a dense subset in both spaces and

‖u‖Hs
0 (D) ≥ ‖u‖s,2;D for u ∈ C∞

c (D). We now show that the converseW1,2
0 (D) ⊂ Hs

0(D)

holds for−1/2 < s < 1 except fors = 1/2.
When 0≤ s < 1/2, as mentioned above, 1D is a bounded linear operator fromWs,2(Rn)

into Ws,2(Rn) by [22]. The same map is thus continuous for−1/2 < s < 0, in view of the
duality betweenWs,2(Rn) andW−s,2(Rn) (cf. [23]). Thus for−1/2 < s < 1/2, there is a
constantc = c(s) > 0 such that

‖1Du‖s,2 ≤ c‖u‖s,2 for everyu ∈ Ws,2(Rn) .

By the definition forWs,2(D), we have for anyf ∈ C∞
c (D) ⊂ Ws,2(D),

‖1Df ‖s,2 ≤ c‖f ‖s,2;D
and 1Df ∈ Hs

0(D) with ‖f ‖H2
0 (D) = ‖1Df ‖s,2. As W

s,2
0 (D) is the‖ · ‖s,2;D-closure of

C∞
c (D), we haveW

s,2
0 (D) ⊂ Hs

0(D). Clearly, ‖u‖H2
0 (D) = ‖u‖s,2 ≥ ‖u‖s,2;D for u ∈

W
s,2
0 (D). Therefore these two norms are equivalent andHs

0(D) = W
s,2
0 (D) for −1/2 < s <

1/2.
For 1/2 < s < 1, we know from Proposition 3.6 of Caetano [7] that the trace operator

tr|∂D : u → u|∂D is a bounded linear operator fromWs,2(D) onto L2(∂D,Hn−1). We
refer the definitions of trace operator tr|∂D to [7]. As anyu ∈ W

s,2
0 (D) can be‖ · ‖s,2;D-

approximated by a sequence of functions inC∞
c (D), we have tr|∂Du = 0 for u ∈ W

s,2
0 (D).
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Note that by almost the identical proof, Lemma 2.1(ii) of [18] holds withWs,2(D) andHs
0(D)

in place of spacesL2
s (R

n+) andL2
0s(R

n+) there. That is, ifv ∈ Ws,2(D) with tr|∂Dv = 0, then

v ∈ Hs
0(D). Therefore we concludeu ∈ Hs

0(D) and soWs,2
0 (D) = Hs

0(D).

Since the identity map is a continuous map fromHs
0(D) ontoW

s,2
0 (D), by the inverse

operator theorem, its inverse is also a continuous map. This says that these two spaces have
equivalent norms. �

COROLLARY 2.4 (Hardy inequality). Let D be a bounded Lipschitz domain in Rn with
n ≥ 2, and let δD(x) is the Euclidean distance between x and ∂D.

(1) For α ∈ (0, 1) ∪ (1, 2), there is a constant c = c(D, α) > 0 such that for every
u ∈ C∞

c (D),∫
D

u(x)2

δD(x)α
dx ≤ c

(∫
D

∫
D

(u(x) − u(y))2

|x − y|n+α
dxdy +

∫
D

u(x)2 dx

)
.(2.1)

(2) For α ∈ (1, 2), there is a constant c = c(D, α) > 0 such that for every u ∈
C∞

c (D), ∫
D

u(x)2

δD(x)α
dx ≤ c

∫
D

∫
D

(u(x) − u(y))2

|x − y|n+α
dxdy .(2.2)

PROOF. Note that a bounded Lipschitz domain satisfies the condition of Theorem 2.3.
As κ

(α)
D (x) ≈ δD(x)−α , it follows from Theorem 2.3 that forα ∈ (0, 1) ∪ (1, 2), there is a

constantc = c(D, α) > 0 so that inequality (2.1) holds for everyu ∈ C∞
c (D).

We claim that forα ∈ (1, 2), there is a constantc1 = c1(D, α) such that∫
D

u(x)2 dx ≤ c1

∫
D

∫
D

(u(x) − u(y))2

|x − y|n+α
dxdy for u ∈ W

α/2,2
0 (D) .(2.3)

SinceD is a boundedn-set, it is well known (e.g. see Chapter VI of [16]) that there is
a bounded extension operatorE : Wα/2,2(D) → Wα/2,2(Rn) such thatEu = u a.e. on
D for u ∈ Wα/2,2(D). On the other hand, Adams’ embedding theorem (see Lemma 1 on
page 214 of [16]) says thatWα/2,2(Rn) is compactly embedded inLp(D, dx) for everyp <

2n/(n−α). ThusWα/2,2(D) is compactly embedded inL2(D, dx). Suppose that (2.3) is not
true. Then there is a sequence{uk, k ≥ 1} in W

α/2,2
0 (D) with ‖uk‖L2(D,dx) = 1 such that

C(α)(uk, uk) → 0 ask → ∞, whereC(α) is given by (1.13). From the compact embedding of
W

α/2,2
0 (D) ⊂ Wα/2,s (D) in L2(D, dx), there is a subsequence{kj , j ≥ 1} such thatukj → u

in L2(D, dx). On the other hand, it is easy to see that the Cesáro mean of a subsequence of
{ukj , j ≥ 1} converges tou in the space(Wα/2,2(D), ‖ · ‖α/2,2) and sou ∈ W

α/2,2
0 (D). Fatou

lemma implies thatC(α)(u, u) = 0 and sou is a non-zero constant. However it is shown in [6]
that forα ∈ (1, 2), 1 /∈ W

α/2,2
0 (D), a contradiction. Thus we have established (2.3), which

combines with the previously derived (2.1) proves (2.2) forα ∈ (1, 2). �

An interesting and important question is: how does the constantc = c(D, α) depend on
α? More explicitly, isc(D, α) some interpolation between 1 andc(D, 2), wherec(D, 2) is the
constantC in (1.2) whenever it holds? For example, is it true that there is someA > 0 such
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thatc(D, α) ≤ A c(D, 2)α/2? A positive answer to this question will give useful information
on the first eigenvalue for censored stable processes in domainD as well as for killed stable
processes inD (cf. [4]) via the first Dirichlet eigenvalue for∆ in D.

3. Second Approach. To help answer the question at the end of last section, the fol-
lowing approach to Hardy inequalities might be useful. In this section we assumen ≥ 3, and
in Theorem 3.1 we will assume that for somes ∈ (0, 1), we have

W
s,2
0 (D) = [L2(D),W

1,2
0 (D)]s .(3.1)

Note that in section 2 we have proved (3.1) fors 
= 1/2 and a class of domains including
bounded Lipschitz domains. It is plausible that (3.1) should hold for a much larger class of
domains. Let‖| · |‖s,2;D denote the norm inherited from complex interpolation between the
two Hilbert spacesL2(D) andW

1,2
0 (D).

THEOREM 3.1. Suppose that D is an uniformly ∆-regular domain in Rn and that for
some 0 < s < 1 condition (3.1) is satisfied. Then

∫
D

u(x)2

δD(x)2s
dx ≤ Cs ‖|u|‖2

s,2 for all u ∈ W
s,2
0 (D) ,(3.2)

where C > 0 is the constant in inequality (1.2) that depends only on n and the constant c in
the definition of ∆-regularity (1.1).

PROOF. Let F0 = L2(D, δD(x)2dx) andF1 = L2(D, dx). It is known from [20] or
page 211 of [21] thatL2(D, δD(x)2(1−s)dx) is the complex linear interpolation space between
Banach spacesF0 andF1 with weight s. Let T be a linear map defined onW1,2

0 (D) =
L2(D) ∩ W

1,2
0 (D) into F0 ∩ F1 by

T u(x) = u(x)

δD(x)
for x ∈ D .

Clearly, foru ∈ W
1,2
0 (D),

‖T u‖F0 ≡ ‖T u‖L2(D, δD(x)2dx) = ‖u‖L2(D, dx) ,

and by the Hardy inequality (1.2) there is aC > 0, depending only onn and the constantc in
the definition of∆-regularity, such that

‖T u‖F1 ≡ ‖T u‖L2(D, dx) ≤ √
C‖u‖1,2 .(3.3)

Therefore by the interpolation theorem on page 211 of [21],T extends uniquely to
[L2(D),W

1,2
0 (D)]s = W

s,2
0 (D) and

‖T u‖L2(D, δD(x)2(1−s)dx) ≤ Cs/2 ‖|u|‖s,2;D for any u ∈ W
s,2
0 (D) ,

whereC is the constant in (3.3). This proves the theorem. �
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WhenD is ann-set, we know that‖| · |‖s,2;D is equivalent to the norm
√
C(2s)

1 in the
sense that there are constantsc(D, s) andC(D, s) such that

c(D, s)

√
C(2s)

1 (u, u) ≤ ‖|u|‖s,2;D ≤ C(D, s)

√
C(2s)

1 (u, u) for u ∈ W
s,2
0 (D) ,(3.4)

whereC(2s) is given by (1.13). So in this case (3.2) gives the desired Hardy inequality for
censored(2s)-stable process inD. A question that is related to the one stated at the end of
last section is as follows. Can the constantsc(D, s) andC(D, s) in (3.4) (or at leastC(D, s))
be chosen so that it depends only onD but not ons?

Using the same proof as above, we have by Proposition 2.2 the following Hardy in-
equality for killed symmetricα-stable process inD. Unlike the one mentioned in (1.8) under
the uniform exterior volume condition, the following inequality is far from trivial, as we do
not have any easy comparison between the killing measure densityκ

(α)
D (x) and the function

δD(x)−α.

THEOREM 3.2. Suppose that D is an uniformly ∆-regular domain in Rn and that it
satisfies the condition of Proposition 2.2. Then for any 0 < α < 2, there is a constant
c(D, α) > 0 such that∫

D

u(x)2

δD(x)α
dx ≤ c(D, α)E (α)(u, u) for all u ∈ W

s,2
0 (D) ,(3.5)

where E (α) is given by (1.6).

4. Applications. The Hardy inequality obtained above for censored stable processes
should have many implications on the study of censored stable processes. Here we just men-
tion one.

Let D be a bounded Lipschitz domain. It was proved in [6] that the censoredα-stable
processY is transient with finite lifetime whenα > 1. Letλ1(Y ) > 0 be the first eigenvalue
of Y .

THEOREM 4.1. Suppose that D is a bounded Lipschitz domain in Rn. There is a con-
stant cn > 0 such that for α ∈ (1, 2),

c(D, α)−1Inr(D)−α ≤ λ1(Y ) ≤ cn Inr(D)−α,(4.1)

where Inr(D) := sup{δD(x) ; x ∈ D} is the inner radius of D and c(D, α) is the constant in
Corollary 2.4.

PROOF. The lower bound estimate follows from Corollary 2.4 by a similar argument
as that for Theorem 1.5.3 in [11]. For the upper bound estimate, note thatW

α/2,2
0 (D) ⊃

H
α/2
0 (D) and‖u‖α/2,2;D ≤ E (α)

1 (u, u)1/2. Thusλ1(Y ) ≤ λ1(X
D), whereλ1(X

D) is the first
eigenvalue for the killed stable process inD. Clearly,λ1(X

D) is no larger than the killed
stable process in a ball with radius Inr(D), which iscn Inr(D)−α by scaling. �

Similarly, one can get bounds on the first eigenvalueλ1(X
D) for killed symmetricα-

stable process inD.
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REMARK. The lower bound estimate in (4.1) is not of much use unless we know how
the constantc(D, α) depends onD andα. See the problems posed at the end of last two
sections.

In [9], the Hardy inequality will be applied, together with the Harnack and boundary
Harnack inequalities established in [6], to obtain sharp estimates on the Green functions of
censoredα-stable processes in boundedC1,1-domains forα ∈ (1, 2).

The paper [13] by Fitzsimmons contains the equivalent characterization of Hardy in-
equality in the context of general symmetric Markov processes.
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