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ON THE REAL SECONDARY CLASSES OF
TRANSVERSELY HOLOMORPHIC FOLIATIONSII

TARO ASUKE
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Abstract. An algorithm to find a basis of the space of complex secondary classes of
transversely holomorphic foliations is given. The mapping which relates the real secondary
classes to the complex secondary classes is completely described when the complex codimen-
sion of the foliation is either two or three. Finally, it is shown that the image of real secondary
classes under this mapping is naly reduced under a certain condition.

Introduction. Associated with transversely holomorphic foliations, there exist com-
plex secondary classes and real secondary classes. The spaces of these secondary classes are
denoted byHF*(WU,) and H*(WOy,), respectively, wherg is the complex codimension
of foliations. Forgetting transverse holomorphic structures determines a natural mggping
from H*(WOy,) to H*(WUy,) [2]. Roughly speaking, the mapping] divides the elements
of H*(WOy,) and H*(WU,), respectively, into two p&. Namely, the kernel ofi] can
be considered as obstructions to foliations being transversely holomorphic, and the coimage
of [A] consists of real secondary classes which still make sense as characteristic classes of
transversely holomorphic foliations. On the other hand, the imagk]afonsists of complex
secondary classes which are in fact real secondary classes, and the cokgrhebosists of
purely complex secondary characteristic classes.

The mapping 1] is not yet well-understood except for the case wheee 1 [2]. One
way to study the mappinfi] is to know the spacél*(WU,). We first give an algorithm
to find a basis off *(WU,) (Theorem 1.7) and compute it in the cases where- 2 or
g = 3. Using these bases, the mapp|ng is completely determined in the corresponding
cases (Theorems 1.8 and 1.9).

Since the foliations under consideration are of complex codimengidris natural to
expect that the image df *(WOy,) in H*(WU,) can be described only in terms bf and
cj withi < g andj < ¢. Regarding this, we introduce certain clasgeg in H*(WU,)
and state a sufficient condition in terms of these classes (Definition 3.4 and Proposition 3.8).
Examples show that these classes are non-trivial in general.
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1. Definitionsand statementsof the main results. First of all, we briefly recall rel-
evant definitions. We refer the readers to [5, 11, 2] for more detailsClef, . .. , v,] be
the polynomial ring generated hy, ... , v;, where we consider the degreewfas 2. Let
1, be the ideal generated by monomials of degree greater thaan® seC,[vy, ... ,v4] =
Clvy, ..., v4l/l;. Clvy,...,7,4] is defined simply by replacing; with v;. Similarly,
Roglct, ... , co4]is defined, namelyRy,[c1, . .. , c24] = Rlca, ... , c241/15,, where we con-
sider the degree @f as 2 andléq is the ideal generated by monomials of degree greater than
4q.

m)

DerFINITION 1.1. We define graded differential algebras WUI < gq,and W g

m < 2q, as follows
WUY =Cylv1. ... .01 ® Cylin.... . 01 ® Nliia, ... il
Wog;') — RZq[Cly ey CZq] ® /\[hl, h3, ey hm/] s

wherem’ denotes the greatest odd integer not greater #hawe denote WQ’) by WU, and
WO(ZfIq) by WOy, respectively. These algebras are equipped with differentials determined by
requiringdu; = v; — v;, dv; = dv; = 0,dh; = ¢; anddc; = 0. The elements; andh; are
considered to be of degree 2 1. Finally, we set W’ = wu,, if [ > g.

The natural mappingi] in the introduction is induced by the following mappihg
DEFINITION 1.2[2]. Let) be the mapping from Wg) to WU, defined by

k
Mer) = V=D (=D w v,
j=0
2k+1

—1)k i
S A DD iz jravy + 7))
j=0

Ahory1) = >

We denote by ] the mapping induced on the cohomology.
If in addition the elementsy, u; andu; (such thatdhy = co, du; = v;, du; = v;,
u; — u; = u;) are well-defined, we set
1 X
k i - _
Mha) = (=D Z(—l)f(uzk-.,-v.,- + iV j)
j=0
wherevg, vg are considered as 2.

The mapping. maps ch; to WUSIZ) and commutes with the differentials and natural
inclusions.

DEFINITION 1.3. Leta be a cocycle in WQ,. We denote by«] the cohomology
class represented loy Its image by[A] is denoted byw],. For a cocycles in WU, we also
denote by 8] the cohomology class defined By Thus[a], = [A(«)].
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We now recall the Vey basis [9]. First, 1&t= {i1, ..., i} be an index set which consists
of odd integers such thatd iy < --- < i,, < 2g,andletJ = (ji, ..., j2;) be anindex set
which consists of nonnegative integers. We|dét= j1 + 2j2+ - - - + (29) jo;. Then the Vey
basis ofH*(WOy,) is given by

{lcs]; 1< |J| < 2q, jix =0 forall odd integers}
Ullhrcsl; 1| <2q, i1+ |J| > 2q, i1 < kif kis odd andj;, > O},

whereh;c; = c{l B céf; ® hy, --- hi,. The cocycles of the form;c; fulfilling the above
conditions are called Vey cocycles.

DEFINITION 1.4. Suppose that = {i1,...,i,}andl’ = {i}, ..., i,,}. We seti, =
im,and sayl < I'if ioo < il,.

DEFINITION 1.5. LetJ = (j1,..., joq) andK = (ky, ... , kp,) be as above.

1) We denote respectively bjy and j,, the smallest and largest numbesuch that
Jji #0. We sayJ < p (resp.J > p)if joo < p (resp.jo > p).

2) We say/J < K ifthere is a positive integdrsuch thatj,, = k,,, if m > [ andj; < ;.

3) WeseU+K = (ji+ki, ..., jag+kzy) andcallitthe sum of andK. Conversely,
if L =J + K, then the pai/ andK is called as a decomposition bf

DEFINITION 1.6. We define differential operatots [ = 1, ... , ¢, by requiring

vy—1v fl=i,

o) = {O otherwise.

9; induces a differential operatfd;] on H*(WUS}‘D) DA H*(WUS}‘D) in an obvious
way. Clearly,[9;] o [9;] = 0 and we can consider tli& ]-cohomology.
With these preparations, we show the following.

THEOREM 1.7. The space H*(WU,) is calculated by taking consecutively the [9;]-
cohomology from [91] to [9,].

PROOF. We first setA®) = i; A WU,(,l’l). Then we have an exact sequence-0
wul™ - wul” — A® — 0. Consider the associated long exact sequence

3

o= H*WUU™Y) > B WU — H*(AD) N H T wul ) —

wherer is in fact equal to[d;] defined above. To see this, lgtw € A?. The equation
d(jw) = (v —v)w—u(d1+ - - -+ 9—1)w implies thatd 4 o) (l;w) = (914 - - + d—1) (1 w).
Thus H*(AD) = i A H*(WU{ ™). On the other hand, i, (i) = 0, thent (i) is
given by the class representeddii;w) becaus€ol + - - - + 9;,—1) (ii;w) = 0. Consequently,
H*(WU,) is calculated by computing consecutively the above exact sequenced i)
replaced byi; A H*(WU,(j_l)). This completes the proof. O



364 T. ASUKE

We now give a basis aff *(WU,) and a description dix] respectively in the case where
g = 2 org = 3. In what follows, there appear several tables which contain numbers and
cocycles. Such numbers stand for the degree of the cocycles in the same rows.

THEOREM 1.8. 1) The classes represented by the following cocycles form a basis of
H*(WU>).

2 |(v1+v1)

4 | (v2 + v1d1 + 02), (v2 + U2)

5 | i1(v2 + v101 + 02), di2(v1 + 01) + d1(v2 + 02)
7

9

iiv101(v1 + 1), ii2(V + V101 + 2) + @1 (V12 + v2i1), d2(v2 + U2)
10308, i (vi2 + v20}), 1vadn
10| it1112v101(v1 + 1)

11| uovov2

12| fi1iipv2 02, di1iipv2 vy, ii1ii2V205, fi1ii2v202

2) As a basis of the image of H*(WOg4) in H*(WU;), we can take the following
classes:

213, [h1c3l., [hacfcals, [hactl .
3) Thekernel of the mapping [1] is spanned by the following classes:
[c2]?,  [cal,

1
[h3c2] — > [hicics],

1., 1 4 2 1. 4
[h1ca] — E[hlcz] + 1—2[h161] . lhicies] — [hicfca] + :—,)[hlcl] ,

[h3cy], where |J]| >3,
[A1h3cy], where |J]| > 4.

4) Theimageisequal to ([1]%— 2[v2]) ® H°(WU,), where ([91]° — 2[v2]) denotesthe
linear subspace spanned by [91]2 — 2[D2]. In particular, the subspace spanned by the classes
[h1cf], [hic2cz] and [h1cZ] in HO(WO4) is mapped isomorphically to H(WU,).

5) Thecokernel consists of the secondary classes of H*(WU52) which are not of degree
9 and the subspace spanned by the classes [v1], [01]2 + 2[02].
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THEOREM 1.9. 1) The classes represented by the following cocycles form a basis of
H*(WU3).

01, 02, Up, U3, U102, U3

i1 (v3 + vE1 + V102 + DY), dipv3 + figvady + dad1ba, ii2(v2 + V2).
U3v1 + U103

i1 (V301 + v30F + v11}), s + i1vEv2 + d1v1D1D2,
iip(v1V2 + v102), li3V? + 1103, 63V + ii2D3

11

35 5.3 - -3 -3, - -
i1 (V302 + v203), i1 (v1v202 + v203), i1 (v1 + D1) V22,
ligvay, ligvs + fi V203, ligv1vp + ii1v203, ii3(v3 + U3)

13

V303, 11010203, fi1V1V201 D, H1V1V203, 10303, #1V3D3,
V1202, V203

14

fi1i2(V302 + v303), iiniip(v1v2Vs + V2U3), itz (V32 + vEU1D2),
ii1iio(v1 + U1) V202, #1i3(V301 + V202 + v103),
112531)% + f1li3v30; + ii1iizV1 D102 — H1li2VE U3, d2ii3(V1v2 + V1U2) — d1ii2V203

15

U2v303

16

V303, finiiv3tn g, d1lipu3va, li1iiv1v203, d1iipV1v201 U, H1i2V1V203,
~ o~ - ~ o~ [ ~ o~ - ~ o~ _2 2_

Mluzvsvi’, U1UV3V1V2, U1HU2V3V3, M1M3(U§’U1 + vlvi’),

~ o~ _2 _3 ~ o~ - - ~ o~ -

u1u3(v1v2vy] + v207), U1i3(v1 + V1)Vv202, U2U3V2V2

17

13v303

18

i10i3V3 03, ii1i3V303, H13V1V205, i11ii3v1V201 02, i11ii3V1V203,
U1i3v3vy, i1U3V30102, U1U3V3V3, U2U3V1V202, U2l3V30V2, U213U203

19

iinit2ii3 (V302 + v203), di1iliiz(v1v202 + v203), ddlaiiz(Viv2 + v30117),
uiuz(vi + v1)v202

20

U2U3V303

21

ﬁ1ﬂ2ﬂ3v%ﬁ%, ﬂlﬂzft:gv:lgﬁlﬁz, ﬂ1ﬁ2ﬁ3vzlgﬁ3, ﬁ1ﬁ2ﬁ3vlvzﬁ:f, U1U2U3V1V201V2,
ii1ii2ii3V1 V203, #1il2013V305, U116l 2013030102, i11ii203V303

2) As a basis of the image of H*(WOQOg) in H*(WU3), we can take the following

classes:

4

[c2]x

13| [h1c315, [h1c1cacsly, [haciesln, [hacjeal, [hicsed), [hicSlx, [hac3]x

17| [hacjla

18| [hah3c3ly, [hihscicacsly, [hahaciesly, [hihacicaly, [hihacZe)s, [hihacdl,

3

The kernel is spanned by the following classes, namely,
1 3 3
[h1e3] = Slhaefl + Zlhcieal = Slhacied],

1 6 1 2.2 1 4
[h1caca] — 1—6[h161] — [h1cicacs] + Z[hlclcz] + é[th]_CZ] ,
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1 1
[M@m—ZMwﬁ+Myﬁﬂ—My%ﬂ—§MﬁéL

1. 6,1, 25
[h1cics] — [hicicocs] — Z)[hlcl] + E[hlclczl ,

1 6, 1. 4 1 25 1. 5
[hicel + %[hlcl] - é[hlcch] + Z[hlclcz] - E[hlcg],
_1, s ol 2 Lo 2
[h3cal 4[h16163] + [h1cicac3] — [hacs] 2[h362],
1
[hsc2] — E[hlclcs] ,
[h3cs], [hacacs],
1. 5
[h3ce] — E[h3c3] ,
[hscal, Thsc3l, [hac3], [hacacal ,
1 3 3
[hahac3] — Slhahsc}] + Jlhihacica] — Slhahacte],
1 6 1 20,1 4
[h1h3coca] — 1—6[h1h361] — [h1h3cicac3] + Z[hlhsclczl + g[l’llh3C1C2] ,
2 1 6 4 3 1 22
[h1h3cica] — Z[hlhscll + [h1h3cic2] — [hih3cic3] — E[hlhsclczl ,

) 1 6, 1 22
[h1h3cics] — [hahscicocs] — Z—O[hlhscll + E[h1h3C1C2] )

1 6, 1 4 1 20, 1 2
[h1h3ce] + %[hlhscl] - é[hlhsclc'z] + Z[hlhsclczl - E[hlh3c3] ,
[hscs],

the secondary classes of degree greater than 20, and the Pontrjagin classes other than [c2].
4) Theimageis described as follows:
i) Theonly Chern classin theimageis[91]2 — 2[#>].
i) Theimage of the secondary classes is contained in the subspace H13(WU3)®
HY(WU3) @& H18WU3), more precisely,
ii-a) the subspace of H13(WQg) spanned by the classes

[h1cd],  [hicieal, [hicdesl, [hicicacsl, [hic3), [hicicd]
is mapped to the subspace of H13(WU3) spanned by the classes
[@10303],  [dgvivedil, [dqviveindzl, [dqvivedsl, [dqvsds),  [idqvads].

Theclass [hgc%] is mapped to the class [iipv1v202] — [ii2v203] Modulo the above subspace.
ii-b) Theclass [h3c§], of degree 17, is mapped to the class [i3v3v3].
ii-c) The subspace spanned by the classes

[h1h3cSl, [hihzcicacsl, [hahaciesl, [hihac3l, [hihacical,  [hihacica],
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which are of degree 18, is mapped to the subspace spanned by the classes
li1dizviD3],  [ai3(vivads + vatav)].  [iiaii3(vivs + vaby)],
li1digvaal, [d1digvivets],  [idaiiavivain il .

5) The cokernel is generated by the following classes, namely,
i) theclasses of degree not equal to 4, 13, 17, 18,
i) theclass [ipv1v202] + [ii2v2v3] (Of degree 13),
iii)  theclasses[i1iiz(v3v3—v3v)], [A1ii3(v1v203—v3D102)], [H2iigv1v2Da], [dii3v213]
and [i2ii3v3v2] (of degree 18), and
iv) theclass[91]2 + 2[i] (of degree 4).

REMARK 1.10. Some classes have several different representations, for example,

[i1v1v20102) = [di2v203],  [d1diguivainvp] = [ii2iigv2v3],
lil2ii3v + d1iizv2Dp + fi1ligu1D iy — d1iigv3v3] = [fi1iiav1 D102 + ii2il3vi1] .
In particular,
[urv v, VK, VK, ] = (U107, VK, VK, V]
holds in H*+1(WU,) if |J1] + |J2| = |K1| + |K2| = g and| /1] = |K1].
REMARK 1.11. One might notice thay?/+%(WU,) = H%+(W,) ® C as vector
spacesify =2orqg = 3, where W = R,[c1, ... ,cg] ® Alh1, ha, ..., hglandH*(W,) is

the space of real secondary classes of real foliations with trivialized normal bundle. Recently,
this turns out to be true in general [4].

In what follows, we always assume that> 1 even though most of the claims remain
valid even ifg = 1.

2. Computational lemmas. First, we examine some relations among the Pontrjagin
classes. We denote lay; and byV; the j-th Pontrjagin character and thieth Chern character,
respectively. NamelyC; (resp. V;) are the Newton polynomials (cf. [10]) evaluated dgy
(resp.vj). We denote byC; the monomiaC{1 e CZ" whereJ = (j1, ..., jzq). Itis easy
to verify thatA(C;) = (v=1)' (V; + (=1)'V}).

The following lemma is easily shown by using the equatigd;) = (V—1)(V; +
(=D'Vp).

LEMMA 2.1. Let \V, denote the kernel of A restricted to Ry, [c1, . .. , c24]. Then N,
is generated by the monomials C; such that there are no decompositions J into J1 and J»
with |J1| < ¢ and |J2| < ¢. Denote by IC, the ideal of WO», generated by V,, namely,
Ky = {hio|w € Ny}. Then IC, is contained in the kernel of A. In particular, A(C;) = Oif
i>q.

For exampleC3 belongs ta\ if ¢ is odd. There are also elements of kehat do not
necessarily belong tg,,.
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LEMMA 2.2. Supposethat i;c; isaVey cocycleand let m be the number of entries of
I. upposealsothati,,—;+1+--+im+|J| > 2+1)g—t( — 1)/2holdssomer (1 < t < m).
Then A(hrcy) = 0in WU, In particular, we have the following:

1) A(hjey) =0inWU, if i, +|J| > 3q.

2) Ahihag—1cy) = OinWUq if 1 #£¢.

PrROOF. We setl’ = {ij—s+1,...,im}. Theni(hpcy) is a linear combination of
figvatp With |A| + [Bl = im—s1+ -+ im +1J| = (@ + -+ (g — 1 + 1) > 2.
Thusi(h;cy) = 0. By settingr = 1, we obtain 1). By setting = 2 and noticing that
im—1+|J| > 2¢q, we obtain 2). o

Certain elements with simple index sets belong tdXer

LEMMA 2.3. Let a be a positive integer and assume that ¢ + a is odd. Then we have
the following.

D I [(J1+D/214+a > q,then[hyyqcy; istrivial, where[(|J] 4 1)/2] denotes the
largest integer which is not greater than (]J] + 1)/2.

2) Ifj+a=>q,then[h,qCjlyistrivial.

PROOF. Setl = g + a. Then, up to multiplication of a constant,
h = ﬁq(va + Va) — ﬁqfl(U(H»l + Vg41) + 00— Iza(vq + ﬁq) s

because + a is odd. We now write\(c;) = Y aa p(vabp = vgva), WhereA + B = J,
and assume tha#| > |B|. It follows from the assumption tha&tb, + v;)(vavp + vpv4) =
—(v; — vy)(F£vavp — VBVA), wherea <t < q. Henceﬁq_,(vaH + ﬁa_:,.;)(vAﬁB +vpva) —
gyt (Vg—r +Vg—1)(vaVp £V V4) is an exact form. Therefore(i,14cy) is exact. The second
claim can be shown by using the equat©np= (~/—1)' (Vi + (—=1)'V;) and following almost
the same argument as above. ]

COROLLARY 2.4. If |J| > 2, then[hzy—1c;1; = 0. Ontheother hand, 2[h2,_1c2]) =
[h1c1c24-1]5 holds as elements of H4+1(WU,).

PROOF. The first equality follows from 1) of Lemma 2.3. The second equality follows
from the equationsp,—1C>];, = 0, which holds by 2) of Lemma 2.3 as we assumed that
q > 1. O

For example, in the case wheye= 3, [i5ca4], = 0. This cannot be deduced from 1) of
Lemma 2.2.

LEMMA 2.5. Ifgisodd, then [h coq—1ln = [hgcqg—1c41n = 0.

PROOF. Asg > 2, the following equation holds, namely,
_ _ 1. _ _
Mhycag—1) = d| itg-1itg(vg + Vg) — Sitailg—1(0g-1Vg + VgVg-1) | .

from which the triviality of[/,c2,—11; follows.
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We show that.(h,c,-1c4) is exact. Firste,_1c, is a linear combination of the cocycles
of the form
Sij = Wivg—1—i +Vg-1-iVi)(VjVg—j — Vg—jV;)
= (VjVjUg—1-iVg—j — Vg—1—iVg—jUiVj) + (Vg—1-iVjViVg—j — VjVg—jVg—1-iVj),
where 0< i, j < (¢ — 1)/2. The first term does not vanish if and onlyiif- j < ¢ and
2g — (i +j+ 1 < g. Under the condition we assumed orand j, it is equivalent to
j = g —1i— 1. The second term does not vanish if and only &1 —i + j < ¢ and

g +i—j < q. These conditions are equivalentte=i + 1 ori = j. Thusc,_1¢, is alinear
combination of the cocycles of the form

vivq,iflf)iﬁq,i — ViVg—i v; I_Jqﬂ;]_, and
ViVg—i—10i4+10g—i—1 — Vj+1Vq—i—10; Ug—i—1 .
Henceh,c,—1¢, is a linear combination of the cocyclds, B;, A} andB; defined respectively
by the formulae
Ai =g (Vjvg—i—10;Vg—i — ViVg—iViVg—i—1) ,
Bi = lig—1(v1 + 01) (V; Vg —10i Vg—i — Vi Vg—iViVg—i—1) ,
A} =11 (VjVg—i—1Di410g—i—1 — Vit 1Vq—i—10iVg—i—1) ,
B = iig—1(v1 + 1) (Vivg—i—10i410g—i—1 — Vi41Vq—i—1V;Vg—i—1) ,
where 0< i < (¢ — 1)/2. First, we assume that£ 0. ThenA; is exact because in this case
Ai = itg (Vi — 0;)(Vg—i—10i Vg—i + V;Vg—iVg—i—1)
= _d(ﬁqﬁi(vqfiflﬁi l_}q,,' + v Uqfil_)qfifl)) .
Here we used the factthat—i — 1 > (¢ — 1)/2 > 0 because > 1.
On the other hand, we have the following equation becagse 2 > ¢, namely,

Ao =iig(vg—1 — Vg—1) (Vg + V) = —d(ligiig—1(vg + Vg)) -
ThusA; is always exact. Finally, ag;2— 2 > ¢, the following equation holds, namely,
Bi = d(liniig—1(vivg—i—10; Vg—i + VjVg—iVjVg—i—1)) .
Similarly, A} andB; are also exact. O

Since the image off *(WO,) under[A] is written in terms ofi;, v; andv;, it consists
of the elements of degree at ma@st+ 4¢. But a slightly careful observation shows that the
image is much smaller.

PROPOSITION 2.6. Theimage of H*(WOy,) under [A] consists of the elements of de-
gree at most g2 — [¢/2]% + 4q, where [¢ /2] denotes the largest integer not greater than ¢ /2.

PrROOF. We show that the mapping annihilates Vey cocycles of degree greater than
g% — [q/2)? + 4q. Suppose thak;c, is a Vey cocycle such that(h;c,) is non-trivial in
WU,. Let 2/ — 1 be the smallest entry df Then|J| > 2g — 2i 4 2, becausé,c; is a Vey
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cocycle. It follows from 1) of Lemma 2.2 that< ¢ + 2i — 2 if a € I. Hence the number of
the entries of is at mos{ (¢ + 1)/2]. Therefore, if we write.(k;c;) as a linear combination
of the elements of the forida; v, vk, the degree of thé;-part is at most

q
Y. @-1)=q"—1[q/2".

t=q—[(q+1)/2]+1

On the other hand, the degreewgfuk is at most 4. Consequently, the degree of the cocycle
hycyis at mosiy? — [q/2]? + 4q. i

Finally, we recall the following proposition.

PROPOSITION 2.7 [2, Proposition 3.9]. Suppose that |/| > ¢ and |J] is even. Then
there is a well-defined element n; of WU, such that dn; = A(cy).

3. Writing the image by #; and c¢; with i, j < ¢. In this section, we study the
following question:

(Q) Isitpossible to write Inix] only in terms ofr; andc; withi, j < g ?
Theorem B of [2] shows that this is truegf= 1. The following proposition shows that the
answer is yes iff < 3.

ProPOSITION 3.1. The image of H*(WOy,) under [A] can be written in terms of
hi, ..., hyg—zandecy, ..., cq. Inparticular, 2[hzg—1c21n = [hiciczg—1];.

PrRoOF We can excludéip, 1 by virtue of 2) of Lemma 2.2 and Corollary 2.4. It
remains to show the following:

LEMMA 3.2. Leth;c; beaVeycocycleinWO,,. Thentheclass[h;c,1; isrepresented
by a linear combination of cocycles of the form [h;.cy/];,, where I’ < I and J' admits a
decomposition J' = Jj + J; with |J{| < ¢ and |J5] < g.

PROOF. Suppose thaf does not admit any decompositions as in the statement. Then
A(h;Cy) = 0 by Lemma 2.1, wher€; = Ciil . --Céj’. This means that(h;cy) can be
written as a linear combination of the cocycles of the farih; c;/) with J' < J and|J’| =
|J]. Therefore, ifl = {1}, then we can deduce the conclusion by the induction on the order of
J. If I £ {1}, the cocycles,c; as above need not be a Vey cocycle. However, gych is
cohomologous to a linear combiian of Vey cocycles of the form;.c;» with I’ < I. This
completes the proof of the lemma and Proposition 3.1. m]

The following corollary shows that the answer to (Q) is yes if we restrict ourselves to the
residual classes, namely, the clasggs ;] with |J| = 2q.

COROLLARY 3.3. The image of a residual class is non-trivial only if it is a linear
combination of the classes of theform [/ ¢ ], with 1 < gandJ < gq.

PROOF. First, Lemma 2.2 shows thath;c;) = 0if ioc > ¢g. We may assumé < ¢
by Proposition 3.1. m]
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We use the following classés;] belonging to In{A].

DEFINITION 3.4. We define an elemeﬁgiﬂ of WU, as follows. First, letP; 1 be
the Newton polynomial of degre@i + 1), and writePyi11 = Y y_oakx2+107 . Hereoy
is a polynomial inx;’s, which are uniquely determined by requiring that jfappears iy,
then eitherj is even orj > 2k + 1. We denote again bykz”l the element of W@, obtained
as the polynomiadrkz”rl evaluated by, ... , c3. We now set

i

= 2i+1

hoiv1 = E arh(hay10p )
k=0

and denote byﬁzm] the induced class a*(WU,), where 2 + 1 > q.

REMARK 3.5. 1) By asimilar argument as in the proof of Lemma 3.1 of [2], one can
show that the classéa,;1] can be calculated by using real connections. As we do not need
this fact here, we omit the proof.

2) Suppose that the complex normal bundle of the foliation is trivial. Thehak
are well-defined. In such a case we can consider also the codygle8k > ¢ by using
the Newton polynomial. For example, if complex codimension is equal to one [khagr=
[A(h1c1 — 2h2)] = —2Re Bott, where Bott = ujv1 (cf. Definition 1.2) is the Bott class
for transversely holomorphic foliations with trivial complex normal bundles. See [2] for the
details.

The C|aSS€Sh~2[+1] are non-trivial in general.

EXAMPLE 3.6[5,7]. LetM = C9*1\ {0}, and consider a holomorphic vector field

ad d
X(Ao,...,Ag) =dozo— +A1za— + -+ Agzg—
(%o 2 0 08zo ! 18Z0 ? qazq
where(zo, . .. , z4) is the natural coordinate @7+, Suppose that all;’s are non-zero and
none of the numbers; /1 ; is a negative real number. We denotebyhe holomorphic flow
given by X. ThenF restricts to a transversely holomorphic (real) flow on the unit sphere
§24+1in C9+1, By applying the Baum-Bott theory to Chern characters, we see that

Ag+l+)\z{+l+.”+)tz+l
AOAL - g

/2 ) hgi1=21Im (/=172
§2q

Here is another example such that the C[é$§+l] is non-trivial.
ExaMPLE 3.7[3,2,12]. Consider the foliatio® of SL(g + 1, C) defined as the left
cosets of the subgrou given byH = { (g Z) ; C € GlL(g, C)}, namely,F = {¢H ;

g € SL(¢g +1,C)}. Let I be any cocompact uniform lattice of G+ 1, C)/ T4, where

T is the maximal torus realized as a subgroup of diagonal matrices. Then the manifold
I'\SL(¢g + 1, C)/T7 inherits a foliation, sayF. We can show thalthz,+1](F) is a multiple

of the Godbillon-Vey class. At least fgr < 3, the multiplier is non-zero.
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We now state a condition of writing the image [of only in terms ofs; andc¢; with
i, j < q. Note that the condition in the proposition is clearly necessary.

PROPOSITION 3.8. Suppose that for any i, [hrcy]y - [ﬁz,»H] c [A](H*(Wogzi_l))),

where I < g and J < ¢. Thentheimage of H*(WO,,) isrepresented by linear combinations
of the secondary classes of theform [h;c ], where I < gandJ < gq.

PROOF. By Lemma 3.2, it suffices to show thm](H*(Wog;)) = [)\](H*(Wo‘z‘jl)))
forl > ¢g. We proceed by an induction dn Let i;c; be a Vey cocycle such that, = [
andJ < ¢g. Setl’” = I\ {I}, and consider the produgk;.c;1;. - [/]. As [hpcsl, €
[A](H*(Wogq_l))), we may assume thék e - [7] € [,\](H*(Wo(z‘j;)). On the other
hand, the cocycl@ (h;.c;)h; is written as a linear combination of the elements of the form
A(hpcthkHa,ﬁ), where2+1=1,3,...,l. Hencethe clag%;c,]; is a linear combination
of the classes of the forik ;ho 10} 1, with 2k + 1 < 1. O

4. Proof of thetheorems.

PROOF OFTHEOREM 1.8. The part 1) is obtained by atghtforward calculations. By
virtue of Propositions 2.6 and 2.7, we see that the secondary classes of degree greater than
11 vanish and that the only non-trivial Pontrjagin claskjg,. There remain the following
classeslhacals, [h1cals, [hicicali, [hicdli, [hicseals, [hicly andlhscal;.

First, the triviality of[23c3]; follows from Corollary 2.4. The relations among the other
classes are deduced from Corollary 2.4 and Lemma 2.1 applied to the cokyel€s and
h1Ca. The rest of the claims follows from the following relations:

A(h1cd) = V=1ii1(2va0p + v202)
Ahic3cr) = V—=Liin (V302 + v202 + 20v252)
A(hic]) = 6V =Liigv2o2 . O
PROOF OFTHEOREM 1.9. The part 1) is shown by some calculation using Theorem
1.7. The Pontrjagin classes other thapl], vanish by Proposition 2.7, and the secondary

classes of degree greater than 20 vanish by Proposition 2.6.
Other classes aff *(WOQg) are represented by the following Vey cocycles:

19| hses
18| hihacs, hihscics, hihacaca, hihaciea, hihae3, hihscicacs,
hihsc3es, hihac3, hihacic3, hihacica, hihacS

17| hsca, hscs, hace, hacaca, hacs, hacs

15| hacs, hacocs

13| hice, hicics, hicoca, th%Cm hicZ, hicicacs,
hlcicg, hlcg, hlc%cg, hlc‘llcz, hic3, hsca, hgcg, hsco

4 |co
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It follows from 1) of Lemma 2.2 that the cla$sscs], is trivial. The classes of degree 15
vanish by Lemma 2.5. There remain the classes of degrees 13, 17 and 18.

Among the classes of degree 175c4];, [hscg]k, [hgcg]k and[h3caca); are trivial. First,
the triviality of the classefhscsl; and[h5c§] » follows from Corollary 2.4. The triviality of
the clasghsc3]; follows from Lemma 2.1 applied ta(h3C3). Lemma 2.1 also shows that

A(hzc2Cq) = 0. By rewriting this equation in terms of the Vey basis, we obtain the relation

[hacacaly = (1/2)[hac3], = 0. Second, we show theitzc3], = 2[hscel, # 0in HY7(WU3).
By rewriting the equatioi(h3Ce) = 0 obtained by Lemma 2.1 and using the fact (h@t:g],\

and[hszcacy], are trivial, we obtain the first equality. The non-triviality follows from the part

1) becaus¢hac3l, = —2[v/—Lizvsvs].

We now examine the secondary classes of degree 13. The first five relations in the state-

ment are deduced from Lemma 2.1 applied to the cocyc1e§C4, h1c2Cy, h1c1Cs, h1Cg
andhlcg. Note that these relations already hold in ¥WU
Next, Corollary 2.4 shows tha{2sc2];, = [hicics]y in H*(WU3). On the other hand,
A(h3Cq) = 0 by Lemma 2.1. From this we see that
13 > 1. 5
[hzcaly = 4[h1€163h [h1cicocs]n + [hacslh + 2[h3czh.
We now have the following equations:
A(h1cd) = 24/ Tit1 (vai3 + v1v2012)
M(hic1cac3) = +/ =L (vivov3 + v3v1v2 + U:lsﬁlﬁz + 1)111217:13 + 2v1v20102) ,
AMhicies) = V=11 (v3v3 + v3v3 + 3(W3D112 4 viv2d))),
A(h1c2e3) = V=L (230102 4 vived}) 4 20353 + dvivpiiia)
A(hicier) = vV —=Tliig (d(vrv2b3 + v30172) 4 60303),
A(hacd) = 20V = Lig 33,
Mhacd) = —v/=Liz(v252 — 2(v1v2i1 + v10172) + 2v207)

+ X302 4 0255 — 2(v1020% + v20112))
+ ~/ =Ltz (v2v102 + V1V202)
+ 24/ —1uqv1v20102 .

From the part 1) it follows that these cocycles are linearly independent even if we pass into

the cohomology.

Finally, we deal with the secondary classes of degree 18. The relations between the

classes of degree 18 follows as in the case of degree 13 by considekinimstead ofi;.
On the other hand, the following equations holddA8(WUs):
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[h1h3c3l, = 2liiniiz(v3vs + vivaD192)],

[h1hacicacsls = [iiniiz(v1vais + v3i1iz + V3102 + v1vaDs + 201v20102)]
[h1hacieals = liiiz(v3vs + v3v3 + 3(W3D1d + v1v209))]
[h1hacicdl = [iiz(2(v31d + v1v2D3) + 20303 + AvivaD102)],

[hlhgclllcz]x = [111123(4(1)11121_)% + Ufﬁlf)Z) + 6”%55)] )
[h1hacSly = 20(i1iizv3o3] .

Now the linear independence of these classes follows again from the part 1). The proof is
completed. m]
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