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EXTENSION OF CR STRUCTURES ON PSEUDOCONVEX
CR MANIFOLDS WITH ONE DEGENERATE EIGENVALUE

SANGHYUN CHO

(Received June 20, 2001, revised February 12, 2002)

Abstract. Let M̄ be a smoothly bounded orientable pseudoconvex CR manifold of
finite type with at most one degenerate eigenvalue. Then we extend the given CR structure
onM to an integrable almost complex structure on the concave side ofM. Therefore we may
regardM as the boundary of a complex manifold.

1. Introduction. Suppose thatM̄ is an abstract smoothly bounded orientable CR
manifold of dimension 2n − 1 with a given integrable CR structureS of dimensionn − 1.
SinceM̄ is orientable, there are a smooth real nonvanishing 1-formη and a smooth real vector
fieldX0 on M̄ so thatη(X) = 0 for allX ∈ S andη(X0) = 1. We define the Levi form ofS
onM̄ by iη([X′, X̄′′]), X′,X′′ ∈ S. We may assume that̄M ⊂ M̃, in C∞ sense, wherẽM is
a smooth manifold.

In [5], Catlin has studied an extension problem of a given CR structure onM to an
integrable almost complex structure on a 2n-dimensional manifoldΩ with boundarybΩ , so
that the extension is smooth up to the boundary and soM lies inbΩ . Under certain conditions
on the Levi form (cf. [5, Theorem 1.1, Theorem 1.3]), this shows that an abstract CR manifold
can be locally embedded inCn [1, 13, 16].

In this paper, we study an extension problem of a given CR structure onM whenM is
a pseudoconvex CR manifold of finite type with one degenerate eigenvalue and dimRM =
2n− 1. For a given positive continuous functiong onM, whereg = 0 onbM, the boundary
ofM, we define

S+
g = {(x, t) ∈ M × [0,∞); 0 ≤ t ≤ g (x)} .

Then our main result is the following theorem:

THEOREM 1.1. Let (M̄,S) be a smoothly bounded pseudoconvex CR manifold of finite
type with at most one degenerate eigenvalue and dimRM = 2n − 1. Then there exists a
positive continuous function g on M and a smooth integrable almost complex structure L on
S+
g such that for all x ∈ M, L(x,0) ∩ CTM = Sx . Furthermore, if JL : T S+

g → T S+
g

is the map associated with the complex structure L, then dt (JL(X0)) < 0 at all points of
M0 = {(x,0) ; x ∈ M}.
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Note that we extend the given CR structure onM to the concave side (instead of convex
side) ofM. When dimRM = 3, the author proved the same result whenM̄ is a pseudoconvex
CR manifold of finite type [8]. We also note that ifM is strongly pseudoconvex, this case was
handled in [5, Theorem 1.1].

In general, Theorem 1.1 does not imply that the given CR structure can be locally em-
bedded inCn [12]. On the other hand, a theorem of Newlander-Nirenberg [14] shows that an
integrable almost complex manifold is acomplex manifold. Therefore, if we let(M,S) be as
in Theorem 1.1, then we have the following corollaries.

COROLLARY 1.2. We may regard (M,S) as a boundary of a complex manifold.

COROLLARY 1.3. LetD be a complex manifold withC∞ boundary bD, and dimCD =
n. Suppose that the almost complex structure on D extends smoothly to a manifold M̄ ⊂ bD,
where M̄ is a smoothly bounded pseudoconvex CR manifold of finite type and the Levi-form
of M̄ has one degenerate eigenvalue and dimRM = 2n− 1. Then D can be embedded into a
larger complex manifoldΩ so that M lies in the interior of Ω as a real hypersurface.

REMARK 1.4. In [6], the author showed that any smooth compact pseudoconvex com-
plex manifoldD̄ of finite type with dimCD = n, n ≥ 2, can be embeded into a larger complex
manifoldΩ . Corollary 1.3 is a generalization of this result to some special non-compact com-
plex manifolds.

REMARK 1.5. If (M,S) has at least three positive eigenvalues, Catlin [5] has extended
the given CR structure ofS to the pseudoconvex side of̄M [5, Theorem 1.1]. IfM is also
pseudoconvex, this result implies the local embedding of CR structures inCn.

In [5], Catlin has introduced certain nonlinear equations which stem from deformation
theory of an almost complex structure (Section 2). The linearized forms of these equations are
simply the∂̄-operator fromΛ0,1 ⊗ T 1,0 toΛ0,2 ⊗ T 1,0 (Section 2). To overcome difficulties
in subelliptic estimates for̄∂ nearbM, we choose a Hermitian metric onS+

g so thatS+
g takes

on the formSε = M × [0, ε]. To this end, we choose, for eachx0 ∈ M, a noneuclidean
ball that is of sizeδ = g (x0) in the transverse holomorphic direction and of sizeδ1/2 in
strongly pseudoconvex tangential holomorphic directions, and of sizeτ (x0, δ) in the weakly
pseudoconvex tangential holomorphic direction. We choose the metric so that the unit ball
aboutx0 ∈ M corresponds to the above noneuclidean ball withδ = g (x0).

To show thatτ (x0, δ) is invariantly defined (i.e., independent of coordinate functions),
we choose special coordinates defined nearx0 ∈ M (Proposition 3.1). These change of coor-
dinates shall have an independent interest in studying weakly pseudoconvex CR manifolds of
finite type. In terms of these special coordinates, the weakly pseudoconvex tangential holo-
morphic vector fieldL1 has a special representation so that we can define another quantity
µ(x, δ), which is a smooth function ofδ andx and it is obtained by taking sucessive brackets
of L1 andL̄1 and hence defined invariantly. A technical difficulty is to show that the brackets
mixed withL1 and the strongly pseudoconvex tangential vector fields are not major terms
in determiningµ(x, δ). Then we show thatτ (x, δ) ≈ µ(x, δ) (Proposition 3.5), and hence
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τ (x, δ) is defined invariantly. To get an 0< ε ≤ 1/2 subelliptic estimates (other than 1/2
estimates of Catlin [5]), we also need some precise estimates forη([L1, L̄k]), 2 ≤ k ≤ n.
This difficulty comes from the fact that we have a Dirichlet condition onM0 and hence we
need to control the boundary integral terms, which were not occured in dimension three case,
onM0 (In usual∂̄-estimates we deal with forms which vanish onM0 and hence there are no
boundary integral terms). Section 3, 4 and 5 contain these estimates in detail.

After this, we technically construct a family of plurisubharmonic functions with large
Hessian using the properties ofτ (x, δ) andµ(x, δ). In performing the subelliptic estimates,
we use(n − 2)-positive eigenvalue conditions onMσ to handle the boundary integral terms
onMσ , and we use the existance of a family of plurisubharmonic functions with large Hes-
sian to handle the components vanishing onMσ . This will give us uniform 1/m subelliptic
estimates for̄∂ on each non-euclidean ball. Then we get the estimates, so-called “tame esti-
mates”, which are required in the Nash-Moser theorem [14] for the approximate solution to
the linearized equation.

2. Deformation of almost complex structures. Let (M,S) be a CR manifold as in
Section 1 and setΩ = M × (−1,1). In this section we extend the given CR structureS on
M to an almost complex manifold(Ω,L), and study a deformation problem of the almost
complex structureL onΩ so that the new (deformed) amost complex structure is integrable
(or close to be integrable).

Assume thatL is an almost complex structure onΩ . Let A be a smooth section of
Γ 1(L) = Λ0,1(L) ⊗ L, whereΛ0,1(L) denotes the set of(0,1) forms with respect toL.
Observe that ifA is sufficiently small, then the bundleLA = {L + Ā(L) ; L ∈ L } defines
a new almost complex structure and ifL̄′ and L̄′′ are sections ofL̄, thenL̄′ + A(L̄′) and
L̄′′ + A(L̄′′) are sections ofLA. Similarly, if ω is a section ofΛ1,0(L), thenω − A∗ω is a
section ofΛ1,0(LA), where the adjointA∗ maps fromΛ1,0(L) toΛ0,1(L) and is defined by

(2.1) (A∗ω)(L̄) = ω(A(L̄))

for all L̄ ∈ L̄ andω ∈ Λ1,0. We want to chooseA so that

(ω − A∗ω)([L′ + A(L′), L′′ + A(L′′)]) = 0 .

By linearizing, i.e., by ignoring terms whereA orA∗ appear more than once, we obtain

(2.2) ω([L′, A(L′′)])+ ω([A(L′), L′′])− A∗ω([L′, L′′]) = −ω([L′, L′′]) .
LetL = L′ +L′′ denote the decomposition of a vectorL ∈ CTz whereL′ ∈ Lz andL′′ ∈ L̄z.

For sections̄L1, L̄2 of L̄, we define

(2.3) (D2A)(L̄1, L̄2) = [L̄1, A(L̄2)]′ − [L̄2, A(L̄1)]′ − A([L̄1, L̄2]′′) .
Note that this definition is linear in̄L1 andL̄2, and henceD2A is a section ofΓ 2 = Λ0,2(L)⊗
L. It follows from (2.1) and (2.3) that (2.2) is equivalent to the equation

(2.4) D2A = −F ,
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whereF is a section ofΓ 2 defined by

(2.5) F (L̄1, L̄2) = [L̄1, L̄2]′ .
Note thatF measures to what extentL fails to be integrable. IfL defines a CR structure on
M and if we wantLA to define the same CR structure onM, then this means thatA must
satisfyA(L̄′) = 0 onM wheneverL̄′ is a section ofL̄ that is tangent toM. This is a Dirichlet
condition on some of the components of the solution (2.4).

If we defineD3 : Γ 2 → Γ 3 = Λ0,3(L)⊗ L by

D3B(L̄1, L̄2, L̄3) = [L̄1, B(L̄2, L̄3)]′ − [L̄2, B(L̄1, L̄3)]′ + [L̄3, B(L̄1, L̄2)]′
− B([L̄1, L̄2]′′, L̄3)+ B([L̄1, L̄3]′′, L̄2)− B([L̄2, L̄3]′′, L̄1)

(2.6)

for B ∈ Γ 2, then it follows thatD3F = 0 [5, Lemma 3.2]. Then we have the following
formal solution of the extension problem [5, Theorem 4.1].

THEOREM 2.1. Suppose that M is an orientable CR manifold of dimension 2n − 1
such that the CR dimension equals n − 1. Then there exists an almost complex structure L∗
on Ω = M × (−1,1) such that L∗ is an extension of the CR structure on M, and such that it
is integrable to infinite order at M in the sense that if ω is a section of Λ1,0(L∗) and L̄1, L̄2

are sections of L̄∗, then ω([L̄1, L̄2]) vanishes to infinite order along M .

Let M andΩ be as in Theorem 2.1. The next theorem shows that the above formal
extension is essentially unique [5, Theorem 4.2].

THEOREM 2.2. Suppose that L and X are almost complex structures onΩ that extend
the CR-structure on M0 = {(x,0) ; x ∈ M}, and that are integrable to infinite order on M0.
Then there exists a diffeomorphismG ofΩ onto itself that is the identity when t = 0 and such
that G∗X approximates L to infinite order near M0 in the sense that if X is a section of L,
thenG∗X differs from a section of L by a vector field which vanishes to infinite order on M0.

By Theorem 2.1, we have an almost complex structureL∗ onΩ , that is integrable to
infinite order alongM0 = {(x,0); x ∈ M}. Let η be a smooth non-vanishing one form on
M that satisfiesη(L) = 0 for all L ∈ Sx, x ∈ M, and that defines the Levi form ofM
as in Section 1. We can clearly extendη to all of Ω so that it still annihilatesS(x,t) for all
(x, t) ∈ Ω, whereS(x,t) now denotes the space of vectors inL∗

(x,t) that are tangent to the
level set of the auxiliary coordinatet . Then we have the following theorem which is a formal
solution of local embedding problem. One canrefer a proof to, for example, [3, Proposition
3].

THEOREM 2.3. Let x0 ∈ M . Then there are a small neighborhood U of x0 and
a constant c > 0 so that for each x ∈ M ∩ U, there are almost holomorphic functions
f1, . . . , fn defined on Ū so that if Fx = (f1, . . . , fn), then Fx(x) = 0 and

(a) |dFx | ≥ c on Ū , and
(b) L̄fj vanishes to infinite order at x0 for each L ∈ L.
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REMARK 2.4. SupposeL∈S(x,0). Then(Fx0)∗L differs from a section ofT 1,0(Fx0(M))

by a vector field which vanishes to infinite order at 0. Therefore the imageFx0(M) is a smooth
real hypersurface inCn with defining function given byr(w) = t ◦ F−1

x0
(w).

In order to define the type ofx0 ∈ M, we use the (almost) holomorphic functionFx
constructed in Theorem 2.3.

DEFINITION 2.5. Let(x0, U, Fx0) be as in Theorem 2.3. Then we define the type of
x0 is equal to the type ofFx0(x0) = 0 ∈ Cn in the sense of D’Angelo [9].

SetT (x0) = the type ofx0 ∈ M, and set

T (M̄) = max{T (x0) ; x0 ∈ M̄} = m .

Under the assumption that the Levi-form ofM has(n − 2)-positive eigenvalues, we may
assume thatm is an even integer.

Let us take(Ω,L∗) constructed in Theorem 2.1. Choose a smooth real vector fieldX0

onΩ that satisfiesX0t ≡ 0 andη(X0) ≡ 1 inΩ . SetY0 = −JL∗(X0) so thatX0 + iY0 is
a section ofL∗ that is transverse to the level set oft . LetG : Ω → Ω be a diffeomorphism
such thatG fixesM0 and

G∗Y0|(x,0) = ∂

∂t

∣∣∣∣
(x,0)

, x ∈ M .

SinceM is orientable, we may assume thatdt (JL∗(X0)) < 0. Thusdt (Y0) > 0 alongM0,
which shows thatG preserves the sides ofM0, i.e.,G mapsΩ+ = {(x, t) ; 0 ≤ t < 1} into
itself. If we setL0 = G∗L∗, then clearlyZ̃ = −iG∗(X0 + iY0) is a section ofL0 such that
alongM0,

Z̃ = −iX0 + ∂

∂t
.

We writeZ̃ = X̃ + g (x, t)∂/∂t whereX̃t ≡ 0, and setLn = g −1Z̃. ThenLn = ∂/∂t + X,
whereXt ≡ 0. We fix a smooth metric〈 , 〉0 that is Hermitian with respect to the structureL0

onΩ . Note that alongM, we haveLn = ∂/∂t−iX0 anddt = (1/2)(dt+iη)+(1/2)(dt−iη),
which implies that∂t = (1/2)(dt + iη). Hence∂t (L) = (1/2)dt (L)+ (i/2)η(L) and

∂t ([X1, X̄2]) = i

2
η([X1, X̄2])

for all X1,X2 ∈ S(x,t), alongM.

3. Construction of plurisubharmonic functions. Let M, Ω , X0 andL0 be as in
Section 2. In this section, we will construct a family of plurisubharmonic functions with
large Hessian (Theorem 3.6). For this purpose, we first construct special coordinate func-
tions defined in a neighborhood ofx0 ∈ M so that the coefficients of the weakly pseudocon-
vex tangential holomorphic vector fields satisfy some necessary estimates in new coordinates
(Lemma 3.7 and Proposition 3.8).
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Assume that̃x0 ∈ M. Then there are coordinate functionsx1, . . . , x2n defined on a
neighborhoodŪ of x̃0 with the property thatx2n = t and that

xk(x
′, t) = xk(x

′,0) , k < 2n ,

for (x ′, t) ∈ Ū , and that
∂

∂x2n−1
= −X0

at all points ofŪ ∩M. We take an orthonormal frame{L̃1, . . . , L̃n} of L0 defined onŪ . Let
x0 ∈ M∩U be fixed for a moment. If̃Lj is replaced byLj = ∑n−1

k=1 UjkL̃k whereU = (Ujk)

is a suitably chosen unitary matrix so that

(3.1)
i

2
η([Lj , L̄k])(x0) = δjkdj (x0) := dj,k(x0) , 1 ≤ j, k ≤ n− 1 ,

where 0≤ d1 ≤ d2 ≤ · · · ≤ dn−1, anddj (x0) is a smooth function defined on̄U satisfying
d2(x) ≥ d0 > 0 onŪ for a uniform constantd0 > 0, whileδjk is a Dirac delta function.

There is an affine transformationCx0 : R2n → R2n such that if(x ′,0) ∈ R2n are the
coordinates ofx ∈ M, then

Cx0(x
′, t) = (Px0(x

′ − x ′
0), t) := (u1, . . . , u2n) = u ,

where the(2n−1)× (2n−1) constant matrixPx0 is chosen so that in terms ofu-coordinates,

Lk|x0 = ∂

∂u2k−1
− i

∂

∂u2k
, 1 ≤ k ≤ n ,

X0|x0 = − ∂

∂u2n−1
.

(3.2)

Note that the second equality of (3.2) actually implies thatX0|(x ′,0) = −∂/∂u2n−1 at all
points ofM ∩ Ū , and hence that

Ln = −i ∂

∂u2n−1
+ ∂

∂t

alongM ∩ Ū .
We also note that the matrixPx0 is uniquely determined by the condition (3.2) and

uniformly non-singular onŪ , and depends smoothly for allx0 ∈ M ∩ Ū . In terms ofu-
coordinates, the vector fieldsLk, 1 ≤ k ≤ n− 1, can be written as

Lk =
(

∂

∂u2k−1
+

2n−2∑
j=1

akj (u)
∂

∂uj
+ ak(u)

∂

∂u2n−1

)

− i

(
∂

∂u2k
+

2n−2∑
j=1

bkj (u)
∂

∂uj
+ bk(u)

∂

∂u2n−1

)
,

(3.3)

whereakj , b
k
j , ak, bk are smooth real valued functions which vanish at 0. In the sequal we let

∂l , 1 ≤ l ≤ n, denote the holomorphic partial derivatives in thel-th variable of local complex
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valued coordinates. When we change the local coordinate functions, this partial derivative
operator will be written in new coordinates. We also let∂̃β denotes∂β or ∂̄β .

PROPOSITION 3.1. For each x0 ∈ M ∩ U and positive integer m, there are smooth
complex valued coordinates ζ = (ζ1, . . . , ζn), ζn = t + ix2n−1, defined near x0 such that in
ζ -coordinates, the vector fields L1, . . . , Ln−1 can be written as

L1 = ∂

∂ζ1
+
n−1∑
l=1

al(ζ )
∂

∂ζl
+
n−1∑
l=1

bl(ζ )
∂

∂ζ̄l
+

(
e(ζ )+ id(ζ )

)
∂

∂x2n−1
,

Lα = ∂

∂ζα
+
n−1∑
l=1

aαl (ζ )
∂

∂ζl
+
n−1∑
l=1

bαl (ζ )
∂

∂ζ̄l
+

(
eα(ζ )+ idα(ζ )

)
∂

∂x2n−1
,

(3.4)

where 2 ≤ α ≤ n− 1. Also, the coefficient functions satisfy

∂
j

1 ∂̄
k
1bl(0) = ∂

j

1 ∂̄
k
1a

α
l (0) = ∂

j

1 ∂̄
k
1b
α
l (0) = 0 , j + k ≤ m , 2 ≤ l ≤ n− 1,

∂̃ iβ∂
j

1 ∂̄
k
1e(0) = 0 , i = 0,1 , i + j + k ≤ m , 2 ≤ β ≤ n− 1 ,(3.5)

(∂1 − ∂̄1)
sd(0) = (∂1 − ∂̄1)

seα(0) = (∂1 − ∂̄1)
sdα(0) = 0 , s ≤ m .

PROOF. Let us take the vector fieldsL1, . . . , Ln and smooth coordinatesu defined near
x0 so that the vector fieldsLk, 1 ≤ k ≤ n − 1, have the representation as in (3.3). Therefore
(3.4) and (3.5) hold form = p = 0.

Assume by induction that there are smooth complex valued coordinatesζ = (ζ1, . . . , ζn)

defined nearx0 ∈ M so that in terms ofζ -coordinates, we can write the vector fieldsLν ,
1 ≤ ν ≤ n − 1, as in (3.4) where the coefficients satisfy the estimates in (3.5) form replaced
by p ≥ 0. Set

x2j−1 = ζj + ζ̄j , x2j = −i(ζj − ζ̄j ) , 1 ≤ j < n ,

x2n−1 = −i(ζn − ζ̄n), x2n = t ,

and set

Dk = ∂

∂xk
, 1 ≤ k ≤ 2n− 1 .

In x = (x1, . . . , x2n−1, t) coordinates, each vector fieldLν , 1 ≤ ν ≤ n − 1, can be
written as

Lν =
(

∂

∂x2ν−1
+

2n−2∑
l=1

cνl (x)
∂

∂xl
+ eν(x)

∂

∂x2n−1

)

− i

(
∂

∂x2ν
+

2n−2∑
l=1

dνl (x)
∂

∂xl
+ dν(x)

∂

∂x2n−1

)
,
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wherecνl , d
ν
l , eν, dν are smooth real valued functions. Set

x̃i = xi , i = 1,2 ,

x̃l = xl −
n−1∑
ν=2

∑
j+k=p+1

1

j !k! [D
j

1D
k
2c
ν
l (0)x

j

1x
k
2x2ν−1 +D

j

1D
k
2d
ν
l (0)x

j

1x
k
2x2ν]

for l = 3, . . . ,2n− 2, and set

x̃2n−1 = x2n−1 −
∑

j+k=p+1

1

(j + 1)!k! [D
j

1D
k
2e1(0)x

j+1
1 xk2]

−
2n−2∑
β=3

∑
j+k=p

1

(j + 1)!k! [DβD
j

1D
k
2e1(0)x

j+1
1 xk2xβ ]

−
n−1∑
ν=2

[
1

(p + 1)!D
p+1
2 eν(0)x

p+1
2 x2ν−1 + 1

(p + 1)!D
p+1
2 dν(0)x

p+1
2 x2ν

]

− 1

(p + 2)!D
p+1
2 d1(0)x

p+2
2 .

If we set

wj = 1

2
(x̃2j−1 + ix̃2j ) , 1 ≤ j ≤ n− 1 , wn = 1

2
(t + ix̃2n−1) ,

then inw-coordinates, the vector fieldsLα , 1 ≤ α ≤ n− 1, can be written as

L1 = ∂

∂w1
+
n−1∑
l=1

ãl(w)
∂

∂wl
+
n−1∑
l=1

b̃l(w)
∂

∂w̄l
+ (ẽ(w)+ id̃(w))

∂

∂x̃2n−1
,

Lα = ∂

∂wα
+
n−1∑
ł=1

ãαl (w)
∂

∂wl
+
n−1∑
l=1

b̃αl (w)
∂

∂w̄l
+ (ẽα(w)+ id̃α(w))

∂

∂x̃2n−1
,

where for 2≤ l, α, β ≤ n− 1, we have

∂
j

1 ∂̄
k
1 b̃l(0) = 0, ∂̃β∂

j

1 ∂̄
k
1 ẽ(0) = 0 , j + k ≤ p ,

∂
j
1 ∂̄

k
1 ã

α
l (0) = ∂

j
1 ∂̄

k
1 b̃
α
l (0) = ∂

j
1 ∂̄

k
1 ẽ(0) = 0 , j + k ≤ p + 1 ,

(∂1 − ∂̄1)
s d̃(0) = (∂1 − ∂̄1)

s ẽα(0) = (∂1 − ∂̄1)
s d̃α(0) = 0 , s ≤ p + 1 .

We perform the following change of coordinates:

ζ1 = w1 ,

ζl = wl −
∑

j+k=p+1

1

(j + 1)!k! [∂̄
j

1∂
k
1 b̃l(0)w̄

j+1
1 wk1] , 2 ≤ l ≤ n− 1 .

Then in terms ofζ -coordinates, we may write the vector fieldsL1, . . . , Ln−1 as in (3.4) and
the coefficients ofLα , 1 ≤ α ≤ n − 1, satisfy (3.5) wherem is replaced byp + 1. If we
proceed up tom-steps, we will get a proof of the proposition. �
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For eachx0 ∈ M ∩ U andδ > 0, we want to define a quantityτ (x0, δ) in such a way
that the sucessive derivatives of the coefficients ofLk, 1 ≤ k ≤ n − 1, up to a certain order
(less than or equal tom), change by no more thanδ on a nonisotropic ball aboutx0. We use
the special coordinatesζ = (ζ1, ζ2, . . . , ζn) defined nearx0 as in Proposition 3.1.

Assumex0 ∈ M ∩U . In terms ofζ -coordinates, we writeLk, 1 ≤ k ≤ n− 1, as in (3.4)
such that the coefficient functions satisfy the estimates in (3.5). Note that we may assume that
m is an even integer. Letb(ζ ) = e(ζ )+ id(ζ ) be the coefficient function of∂/∂x2n−1 in L1,
and set

bm−1(ζ ) := 2i Re

( ∑
1≤j+k≤m−1

1

j !k!∂
j

1 ∂̄
k
1d(0)ζ

j

1 ζ̄
k
1

)
:=

∑
1≤j+k≤m−1

bjk(x0)ζ
j

1 ζ̄
k
1 .

Then, by virtue of the estimates in (3.5), we may write:

b(ζ ) =
∑

1≤j+k≤m−1

bjk(x0)ζ
j

1 ζ̄
k
1 + iRe

( n−1∑
β=2

∑
j+k≤m/2−1

b
β
j,k(x0)ζ

j

1 ζ̄
k
1 ζ̄β

)

+ O(|ζ1|m + |ζ ′||ζ1|m/2 + |ζ ′|2 + |ζn|) ,
(3.6)

whereζ ′ = (0, ζ2, . . . , ζn−1, ζn). For 2≤ ν ≤ n− 1, let us write

(3.7) aν(ζ ) =
∑

1≤j+k≤m/2−1

aνj,kζ
j

1 ζ̄
k
1 + O(|ζ1|m/2 + |ζ ′|) ,

whereaν ’s are coordinate functions of∂/∂ζν in L1. Let x = (x1, . . . , x2n−1, t) be the real
coordinates ofζ and setDk = ∂/∂xk, 1 ≤ k ≤ 2n− 1.

Note that−ibm−1(ζ ) is a smooth real valued function which is an(m − 1)-th order
polynomial inζ1 andζ̄1. We leta(ζ ) be a real valued function defined by

(3.8) a(ζ ) := ∂

∂x1
(−ibm−1) = Im

[
∂

∂ζ1
b̄m−1

]
:=

∑
0≤j+k≤m−2

aj,kζ
j
1 ζ̄

k
1 .

Using the coefficient functionsbβj,k, a
ν
j,k andaj,k defined in (3.6)–(3.8), we set

Al(x0) = max{|aj,k| ; j + k = l} , l = 0,1,2, . . . ,m− 2 ,

El′(x0) = max{|aνj,k|, |bβj,k| ; j + k = l′, β, ν = 2, . . . , n− 1} , 0 ≤ l′ ≤ m/2 − 1 ,

and for eachδ > 0 we define

(3.9) τ (x0, δ) = min
0≤l≤m−2

0≤l′≤m/2−1

{(δ/Al(x0))
1/(l+2), (δ1/2/El′(x0))

1/(l′+1)} .

Setτ (x0, δ) = τ for a convenience. Then it follows from (3.9) that

(3.10) |∂j1 ∂̄k1a(0)| ≤ δτ−(j+k+2) , j + k ≤ m− 2 ,

and for 2≤ β, ν ≤ n− 1, we have

|∂j1 ∂̄k1aν(0)| ≤ δ1/2τ−(j+k+1) ,(3.11)

|∂̄β∂j1 ∂̄k1b(0)| ≤ δ1/2τ−(j+k+1) , j + k ≤ m/2 − 1 .(3.12)
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If we combine the estimates in (3.10) with the fact thatDs2bm−1(0) = 0, s ≤ m (because
(∂1 − ∂̄1)

sd(0) = 0, s ≤ m), we obtain, from the expression ofa(ζ ) in (3.8), that

(3.13) |∂̃ iβ∂j1 ∂̄k1b(0)| ≤ δ1−i/2τ−(j+k+1) , i = 0,1 , i ·m/2 + j + k ≤ m− 1 .

From the estimates in (3.10)–(3.13) together with the fact thatη(L1) ≡ 0 it follows, by
induction, that

(3.14)

∣∣∣∣∂j1 ∂̄k1η
(
∂

∂ζ1

)
(0)

∣∣∣∣ � δ1/2τ−(j+k) , j + k ≤ m/2 − 1 ,

becauseη(∂/∂ζα)(0) = 0, 1≤ α ≤ n− 1, andδ1/2 � τ .
Setωn = 1/2(dt + iη). SinceS is integrable it follows that̄ωn([L1, Lα]) = 0 alongM

and hence we have

(3.15) ∂
j
1 ∂̄

k
1η([L1, Lα])(0) = 0 , j + k ≤ m .

Combining the estimates in (3.5), (3.10)–(3.15) with the fact thatη([L1, L̄α])(0) = 0, 2 ≤
α ≤ n− 1, one obtains that

|∂j1 ∂̄k1dα(0)|, |∂j1 ∂̄k1eα(0)| � δ1/2τ−1 , j + k ≤ 1 ,

and hence that ∣∣∣∣∂j1 ∂̄k1η
(
∂

∂ζα

)
(0)

∣∣∣∣ � δ1/2τ−1 , j + k ≤ 1 .

If we use again the estimates in (3.5), (3.10)–(3.15) together with the fact thatη(Lα) ≡ 0,
1 ≤ α ≤ n− 1, we obtain, by induction, that∣∣∣∣∂j1 ∂̄k1η

(
∂

∂ζα

)
(0)

∣∣∣∣ � δ1/2τ−(j+k) , j ≥ 1, j + k ≤ m/2 − 1 ,(3.16)

|∂j1 ∂̄k1dα(0)|, |∂j1 ∂̄k1eα(0)| � δ1/2τ−(j+k) , j ≥ 1, j + k ≤ m/2 − 1(3.17)

for 2 ≤ α ≤ n − 1. To obtain the estimates for the derivatives of the form∂̄ l1 for l ≥ 2, we
note, from the estimates in (3.5), that

(3.18) (∂̄1 − ∂)sdα(0) = (∂̄1 − ∂)seα(0) = 0 , s ≤ m , 2 ≤ α ≤ n− 1 .

Since we can write

(∂̄1 − ∂1)
s = ∂̄ s1 +

s−1∑
j=1

cj,s ∂̄
s−j
1 ∂

j

1 ,

wherecj,s ’s are integers, we conclude, from the estimates in (3.16)–(3.18), that∣∣∣∣∂j1 ∂̄k1η
(
∂

∂ζα

)
(0)

∣∣∣∣ � δ1/2τ−(j+k) , j + k ≤ m/2 − 1 ,(3.19)

|∂j1 ∂̄k1dα(0)|, |∂j1 ∂̄k1eα(0)| � δ1/2τ−(j+k) , j + k ≤ m/2 − 1(3.20)
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for 2 ≤ α ≤ n−1. By virtue of the estimates in (3.11)–(3.13) together with (3.19) and (3.20),
we obtain by induction that

(3.21)

∣∣∣∣∂̃ iβ∂j1 ∂̄k1η
(
∂

∂ζ1

)
(0)

∣∣∣∣ � δ1−i/2τ−(j+k+1) , i = 0,1 , i ·m/2 + j + k ≤ m− 1 .

These estimates are essential ingredients to obtain a uniform subelliptic estimates for∂̄ in
dilated coordinates.

Setτ (x0, δ) = τ for convenience and let

Rδ(x0) = {ζ ∈ Cn ; |ζ1| ≤ τ, |ζβ | ≤ δ1/2τ−1/2, β = 2, . . . , n− 1, |ζn| ≤ δ} ,
and define a dilation mapDδ : Cn → Cn by

Dδ(ζ ) = (τ−1ζ1, δ
−1/2ζ2, . . . , δ

−1/2ζn−1, δ
−1ζn) =: (w1, . . . , wn) = w .

Define

Qδ(x0) = Dδ(Rδ(x0)) = {w ∈ Cn ; |w1| ≤ 1, |wβ | ≤ τ−1/2, β = 2, . . . , n− 1, |wn| ≤ 1}
and setLδ1 = τ (Dδ)∗L1. Then, from the expression ofL1 in (3.4), we have

Lδ1 = ∂

∂w1
+ a1(Dδ(w))

∂

∂w1
+ b1(Dδ(w))

∂

∂w̄1
+
n−1∑
l=2

τδ−1/2al(D
−1
δ (w))

∂

∂wl

+
n−1∑
l=2

τδ−1/2bl(D
−1
δ (w))

∂

∂w̄l
+ τδ−1b(D−1

δ (w))
∂

∂y2n−1
,

wherewn = y2n + iy2n−1. Setηδ = δ−1η. Therefore,ηδ(∂/∂y2n−1) = 1 onM ∩ U .
SetB(w) = b(D−1

δ (w)). Recall the expression ofB(w) defined in (3.6). So we can
write:

τδ−1B(w) =
∑

1≤j+k≤m−1

bjk(x0)δ
−1τ j+k+1w1w̄

k
1

+ i Re

( n−1∑
β=2

∑
j+k≤m/2−1

b
β
j,k(x0)δ

−1/2τ j+k+1w1w̄1w̄β

)
+ O(τ ) .

Then as in Section 2 of [7], the non-negative condition fori/2ηδ([Lδ1, L̄δ1]) onQδ(x0) ∩ M
forces that

(3.22) |δ−1/2τ j+k+1b
β
j,k(x0)| � τγ � 1 , j + k ≤ m

2
− 1 ,

whereγ = (10× (m/2)!)−1. Therefore thebβj,k ’s, in the Taylor expansion ofb(ζ ), are not
the major terms in the definition ofτ (x0, δ) in (3.9), and the estimates in (3.22) show that

(3.23) |∂̄β∂j1 ∂̄k1b(0)| � δ1/2τ−(j+k+1)+γ , j + k ≤ m/2 − 1 , 2 ≤ β ≤ n− 1 .
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By using the estimates in (3.5), (3.14), (3.15), (3.22) and (3.23) together with the fact that
η(Lν) ≡ 0, 1≤ ν ≤ n−1, we can also show, by the method leading to (3.19) and (3.20), that∣∣∣∣∂j1 ∂̄k1η

(
∂

∂ζα

)
(0)

∣∣∣∣ � δ1/2τ−j−k+γ ,(3.24)

|∂j1 ∂̄k1dα(0)|, |∂1∂̄
k
1eα(0)| � δ1/2τ−j−k+γ , j + k ≤ m/2 − 1 .(3.25)

Using the estimates in (3.5) and (3.23)–(3.25), we can also show that

(3.26) |∂j1 ∂̄k1η([L1, L̄α])(0)| � δ1/2τ−(j+k+1)+γ , j + k ≤ m/2 − 1 , 2 ≤ α ≤ n− 1 .

Now we want to show that the coefficientsaν(ζ ) of L1 satisfy the estimates similar to
those in (3.26). Recalling the expression ofL1 in ζ coordinates as in (3.4), we set

L̃1 = L1 −
n−1∑
ν=2

aν(ζ )Lν , L̃α = Lα , 2 ≤ α ≤ n− 1 .

ThenL̃1 can be written as:

L̃1 = ∂

∂ζ1
+
n−1∑
l=1

ãl(ζ )
∂

∂ζl
+
n−1∑
l=1

b̃l(ζ )
∂

∂ζ̄l
+ b̃(ζ )

∂

∂x2n−1
,

where, from the estimates in (3.5), (3.11) and (3.23)–(3.26), we have

∂
j

1 ∂̄
k
1 ãl(0) = ∂

j

1 ∂̄
k
1 b̃l(0) = 0 , j + k ≤ m− 1 , 2 ≤ l ≤ n− 1 ,(3.27)

|∂j1 ∂̄k1 b̃(0)| � δτ−(j+k+1) , j + k ≤ m− 1 ,(3.28)

|∂̃β∂j1 ∂̄k1 b̃(0)| � δ1/2τ−(j+k+1)+γ , j + k ≤ m/2 − 1(3.29)

for 2 ≤ β ≤ n− 1.
If we combine the estimates in (3.27)–(3.29) and apply the methods leading to the esti-

mates in (3.26), we obtain that

(3.30) |∂j1 ∂̄k1η([L̃1,
¯̃
Lα])(0)| � δ1/2τ−(j+k+1)+γ , j + k ≤ m/2 − 1 , 2 ≤ α ≤ n− 1 .

Note that

i

2
η([L̃1, L̄α]) = i

2
η([L1, L̄α])− i

2

n−1∑
ν=2

aν(ζ )η([Lν, L̄α]) ,

where
i

2
η([Lα, L̄α])(0) = cα(x0) ≥ d0 > 0 , 2 ≤ α ≤ n− 1 ,

for an independent constantd0 > 0. If we use the fact thati/2η([Lα, L̄β ])(0) = 0 for α �= β

together with the estimates in (3.11) and (3.26)–(3.30), we obtain that

(3.31) |∂j1 ∂̄k1aν(0)| � δ1/2τ−(j+k+1)+γ , j + k ≤ m/2 − 1 , 2 ≤ ν ≤ n− 1 .
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Now set

T = L1 + L̄1 = ∂

∂x1
+

2n−2∑
l=1

al(x)
∂

∂xl
+ a2n−1(x)

∂

∂x2n−1
.

Then from the estimates ofa2n−1 in (3.5), and ofal, 3 ≤ l ≤ 2n− 2, in (3.31), it follows that

(3.32) |∂j1 ∂̄k1al(0)| � δ1/2τ−(j+k+1)+γ , j + k ≤ m/2 − 1 , 3 ≤ l ≤ 2n− 1 .

From (3.31), we conclude that the functionsaν(ζ ) are also not the major terms in the definition
of τ (x0, δ) in (3.9). Therefore we conclude from (3.23) and (3.32) that

(3.33) τ (x0, δ) = min {(δ/Al(x0))
1/ l+2 ; 0 ≤ l ≤ m− 2} ,

and hence it follows thatδ1/2 � τ � δ1/m, and ifδ′ < δ′′, then

(3.34) (δ′/δ′′
)1/2τ (x0, δ

′′
) � τ (x0, δ

′) � (δ′/δ′′)1/mτ(x0, δ
′′) .

In order to study howτ (x0, δ) depends onx0, it is convenient to introduce an analogous
quantityµ(x, δ) that is defined more intrinsically. Let us cover̄M by a finite number of
neighborhoodsUν , ν = 1, . . . , N , in Ω so that in eachUν , Proposition 3.1 holds. Let{χν}
be a partion of unity subordinated to the coordinate neighborhoods{Uν} ofΩ , and letm be a
given positive integer.

For anyj, k ≥ 0, j ≥ 1, we define

Lνj,kη(x) = i

2
L
j−1
1 L̄k1η([L1, L̄1])(x) , x ∈ Uν ,

and set

Cνl (x) =
∑
j+k=l

|Lνj+kη(x)|2 , 1 ≤ l ≤ m− 1 ,

and

Cl(x) =
N∑
ν=1

χνC
ν
l (x) .

SetM = (m+ 1)!, and for eachδ > 0, define

(3.35) µ(x, δ) =
( m∑
l=1

C
M/l+1
l (x)δ−2M/l+1

)−1/2M

.

Note that
∑m
l=1Cl(x) > 0 if the type atx is less than or equal tom. Thereforeµ(x, δ) is

defined intrinsically as a smooth function ofδ > 0 andx, for x satisfying
∑m
l=1Cl(x) > 0.

Let us fix x0 ∈ M ∩ U and take the smooth complex valued coordinatesζ = (ζ1, . . . , ζn)

defined onM ∩ U as in Proposition 3.1, where

ζj = 1

2
(x2j−1 + ix2j ) , 1 ≤ j ≤ n− 1 , ζn = 1

2
(t + ix2n−1) .

For eachδ > 0, setτ1 = τ2 = τ (x0, δ) andτk = δ1/2, 3 ≤ k ≤ 2n− 2, and define

(3.36) Pδ(x0) = {x ∈ R2n ; |xi | ≤ τi , 1 ≤ i ≤ 2n− 2, |x2n−1| ≤ δ, |t| ≤ δ} .
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Without loss of generality we may assume that there isν0 ∈ {1,2, . . . , N} such thatx0 ∈ Uν0

andχν0 ≥ 1/N onPδ(x0). Recall thatL1 can be written, inζ coordinates, as

L1 = ∂

∂ζ1
+
n−1∑
l=1

al(ζ )
∂

∂ζk
+
n−1∑
l=1

bl(ζ )
∂

∂ζ̄l
+ b(ζ )

∂

∂x2n−1
,

where, from the estimates in (3.5), (3.23) and (3.31), we have

|∂j1 ∂̄k1al(0)|, |∂̃β∂j1 ∂̄k1b(0)| � δ1/2τ−(j+k+1)+γ , j + k ≤ m/2 − 1 ,

|∂j1 ∂̄k1b(0)| � δτ−(j+k+1) , j + k ≤ m− 1 ,(3.37)

∂
j
1 ∂̄

k
1bl(0) = 0 , j + k ≤ m , 2 ≤ l, β ≤ n− 1 .

Therefore we may write

(3.38) Lj,kη(ζ ) = −∂j−1
1 ∂̄k1

[
Im

(
∂

∂ζ1
b̄(ζ )

)
η

(
∂

∂x2n−1

)]
+ Ej+k ,

whereEj,k satisfies, from the estimates in (3.37), that

(3.39) |∂̃ iβ∂l11 ∂̄ l21 Ej+k(0)| � δ1−i/2τ−(j+k+l1+l2+1)+γ

for i = 0,1, andi ·m/2 + j + k + l1 + l2 ≤ m− 1. From (3.37)–(3.39) it follows that

(3.40) |∂̃ iβ∂l11 ∂̄ l21 Lj,kη(0)| � δ1−i/2τ−(j+k+l1+l2+1)

for i = 0,1, andi ·m/2+ j + k+ l1 + l2 ≤ m− 1. By (3.39), (3.40) combined with a simple
Taylor’s theorem argument, we then have

(3.41) |Lj,kη(ζ )| � δτ−(j+k+1) , ζ ∈ Pδ(x0) .

By virtue of the definition ofµ(x, δ) in (3.35), (3.41) implies that

(3.42) µ(x, δ) � τ (x0, δ) , x ∈ Pδ(x0) .

Conversely, let us show thatµ(x, δ) � τ (x0, δ) for x ∈ Pδ(x0). Recall thatτ (x0, δ) is actually
defined as in (3.33). Set

(3.43) T (x0, δ) = min{l ; (δ/Al(x0))
1/ l+2 = τ (x0, δ)} .

Therefore there must exist integersj0, k0 with (j0 − 1)+ k0 = T (x0, δ) such that∣∣∣∣ 1

(j0 − 1)!k0!∂
j0−1
1 ∂̄

k0
1 a(0)

∣∣∣∣ =
∣∣∣∣ 1

(j0 − 1)!k0!∂
j0−1
1 ∂̄

k0
1

[
Im

∂

∂ζ1
b̄

]
(0)

∣∣∣∣
= δτ−j0−k0−1 .

(3.44)

Assuming thatχν0 ≥ 1/N , we obtain from the estimates in (3.38), (3.39) and (3.44) that

|Lν0
j0,k0

η(x0)| ≥ 1

2N
(j0 − 1)!k!δτ (x0, δ)

−j0−k0−1 ,

provided thatδ is sufficiently small. Again, by using the estimates in (3.38)–(3.44) and the
Taylor series method, we obtain that

(3.45) |Lν0
j0,k0

η(x)| ≈ δτ (x0, δ)
−j0−k0−1 , x ∈ Pδ(x0) .
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If we combine (3.45) and the definition ofµ(x, δ), we obtain that

(3.46) µ(x, δ) � τ (x0, δ) , x ∈ Pδ(x0) .

Combining (3.42) and (3.46), we have proved the following proposition.

PROPOSITION 3.2. If x ∈ Pδ(x0), then

(3.47) τ (x0, δ) ≈ µ(x, δ) .

COROLLARY 3.3. Suppose x ∈ Pδ(x0). Then

(3.48) τ (x0, δ) ≈ τ (x, δ) .

PROOF. If we setx = x0 in (3.47), we see thatµ(x, δ) ≈ τ (x0, δ). Since this holds for
x0 = x, it follows thatµ(x, δ) ≈ τ (x, δ). Hence (3.48) follows. �

REMARK 3.4. µ(x, δ) is defined intrinsically. That is, it does not depend on the choice
of a specific coordinates. Propositions 3.2 and Corollary 3.3 show that the quantityτ (x, δ) is
also defined invariantly, up to a universal constant, with respect to the coordinate functions.

Now we want to construct a family of plurisubharmonic functions with large Hessian.
The existence of these functions will be a crucial ingredient in the subelliptic estimates for
∂̄-type equation. Note that we are free to choosex0 ∈ M and δ > 0. Now assume that
xν ∈ M. Let us take the special coordinatesζ = (ζ1, . . . ζn) defined nearxν and write the
vector fieldsL1, . . . , Ln as in (3.4) satisfying (3.5). Also, letT (x0, δ) be defined in (3.43).
Let x = (x ′, t) be the real coordinates forζ , where(xν,0) = xν ∈ M. Setτ1 = τ (xν, δ),
τβ = δ1/2, 2 ≤ β ≤ n− 1, andτn = δ, and putα = (α1, . . . αn).

PROPOSITION 3.5. Suppose xν ∈ M ∩U . Then there exist a small constant a > 0 and
a smooth function hxν,δ on M ∩ U which satisfy the following:

(i) |hxν,δ(x)| ≤ 1 and hxν,δ ∈ C∞
0 (Pδ(x

ν)).
(ii) If |t| ≤ aδ and if hxν,δ is not plurisubharmonic at x = (x ′, t), then

T (x ′, aδ) < T (xν, δ) .

(iii) If x ∈ Paδ(xν), |t| ≤ aδ, and if the inequality

∂∂̄hxν,δ(x)(L, L̄) �
n∏
k=1

τ−2
k |bk|2

fails to hold at x = (x ′, t) for L = ∑n
j=1 bjLj , then T (x ′, aδ) < T (xν, δ).

(iv) For all x ∈ Pδ(xν) and all L = ∑n
j=1 bjLj at x,

|∂∂̄hxν,δ(L, L̄)| �
n∏
k=1

τ−2
k |bk|2 .

(v) |Dαhxν,δ(x)| ≤ Cα
∏n
k=1 τ

−αk
k , where Dα = ∂

β1
1 ∂̄

γ1
1 · · · ∂βnn ∂̄γnn , αi = βi + γi .
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PROOF. We use the definitions ofµ(x, δ), τ (x, δ), T (x, δ) and the fact thatτ (xν, δ) ≈
µ(x, δ) for x ∈ Pδ(xν). Then the proof of (i) through (v) follow the same lines as in the proof
of Proposition 3.1 in [7]. �

For eachε > 0, we setΩε = M × (−1, ε) andS(ε) = M × (−ε, ε). By adding up the
functionshxν,δ constructed in Proposition 3.5, we can construct bounded plurisubharmonic
weight functions so that the Hessian of these functions satisfy certain essentially maximal
bounds in a thin stripS(ε) of M0. The heart of these construction is the so-called “doubling
property" ofPδ(x0), which comes from the relation in (3.48). For a detailed proof of the
following theorem, one can refer to Section 3 of [4]. For each smallδ > 0, we setτ1(x) =
τ (x, δ), τ2(x) = · · · τn−1(x) = δ1/2 andτn(x) = δ as before.

THEOREM 3.6. For all small δ>0, there is a plurisubharmonic function ψδ ∈
C∞(Ωδ) which satisfies the following.

(i) |ψδ(x)| ≤ 1, x ∈ U ∩Ωδ.
(ii) For all L = ∑n

j=1 bjLj at x ∈ U ∩ S(δ),

(3.49) ∂∂̄ψδ(x)(L, L̄) ≈
n∑
j=1

|bj (x)|2τ−2
j (x) , and

(iii) |Dαψδ(x)| � Cα
∏n
k=1 τ

−αk
k (x), where Dα = ∂

β1
1 ∂̄

γ1
1 · · · ∂βnn ∂̄γnn , αi = βi + γi .

In D2-equation, we will assign a Dirichlet condition on one side ofbS+
g , and the Neu-

mann condition on the other side ofbS+
g . This fact leads us to another difficulty which was

not occurred in 1/2-subelliptic estimates of Catlin in [5]. To overcome this difficulty, we need
the following Lemma 3.7 and Proposition 3.8, which will be used in the proof of subelliptic
estimates forD2-equation in Section 5.

LEMMA 3.7. Let xν ∈ M ∩ U and set cn1k = ωn([L1, L̄k]), 1 ≤ k ≤ n. Then for each
small δ > 0, we have

|cn11(x)| � δτ (xν, δ)−2 , x ∈ Pδ(xν) ,(3.50)

|cn1k(x)| � δ1/2τ (xν, δ)−1+γ , x ∈ Pδ(xν) , 2 ≤ k ≤ n ,(3.51)

where γ = (10× (m/2)!)−1.

PROOF. AlongM ∩ U , we havedt = 1/2(dt + iη)+ 1/2(dt − iη) andLn = ∂/∂t −
i∂/∂x2n−1, which imply that∂t = 1/2(dt + iη). Hence (3.50) follows from (3.41). SinceL0

is integrable to infinite order alongM0, it follows that

(3.52) ∂∂̄t (L1, L̄n) = ∂∂̄t (L1 + L̄1, L̄n) = i

2
η

([
L1 + L̄1,

∂

∂t
+ i

∂

∂x2n−1

])

alongM∩U . Note that we can writeL1+L̄1 = T = T1+tT2+x2n−1T3, where the coefficient
functions ofT1 does not depend ont or x2n−1. From (3.5) together with the estimates of the
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coefficient functions in (3.37) it follows that∣∣∣∣∂j1 ∂̄k1 ∂∂t η(T1)(0)

∣∣∣∣ ,
∣∣∣∣∂j1 ∂̄k1 ∂

∂x2n−1
η(T1)(0)

∣∣∣∣ � δ1/2τ−(j+k+1)+γ ,

j + k ≤ m/2 − 1 .
(3.53)

Sinceη(L1 + L̄1) = η(T ) ≡ 0, we have

(3.54) ∂
j

1 ∂̄
k
1
∂

∂t
η(T )(0) = ∂

j

1 ∂̄
k
1

∂

∂x2n−1
η(T )(0) = 0 , j + k ≤ m− 1 .

Combining (3.53) and (3.54), we obtain that

|∂j1 ∂̄k1η(T2)(0)|, |∂j1 ∂̄k1η(T3)(0)| � δ1/2τ−(j+k+1)+γ , j + k ≤ m/2 − 1 .

Therefore it folows that∣∣∣∣∂j1 ∂̄k1η
([
T ,

∂

∂t
+ i

∂

∂x2n−1

])
(0)

∣∣∣∣ � δ1/2τ−(j+k+1)+γ , j + k ≤ m/2 − 1 ,

and this proves (3.51) fork = n.
When 2≤ k ≤ n− 1, we use the estimates in (3.26). �

For eachδ > 0, letψδ be the function constructed in Theorem 3.6. We need the following
proposition which will be used to prove Lemma 5.6 that is necessary for the estimates of (5.39)
and (5.40) in the subelliptic estimates ofD2 operator in Section 5.

PROPOSITION 3.8. For all small δ > 0 and for each α = (α1, . . . αn) we have

|cn11(x)D
αψδ(x)| ≤ Cαδτ(x, δ)

−2
n∏
k=1

τk(x, δ)
−αk ,(3.54)

|cn1,l(x)Dαψδ(x)| ≤ Cαδ
1/2τ (x, δ)−1+γ

n∏
k=1

τk(x, δ)
−αk(3.55)

for x ∈ S(δ)∩U . Here τ1(x, δ) = τ (x, δ), τk(x, δ) = δ1/2, 2 ≤ k ≤ n− 1 and τn(x, δ) = δ.

PROOF. Note that the functionsψδ in Theorem 3.6 were constructed by adding up func-
tionshxν,δ, xν ∈ M ∩U , constructed in Proposition 3.5, with supphxν,δ ⊂ Pδ(x

ν). By virtue
of (3.48), there is a smallc > 0, independent ofδ > 0, so that we can arrange points
xν = xν(δ) ∈ M ∩ U , ν ∈ I , satisfying

S(δ) ∩ U ⊂ ∪ν∈IPδ(xν) , and Pcδ(x
ν) ∩ Pcδ(xµ) = ∅ if ν �= µ .

Then, as in the proof of Lemma 3.3 in [4], there is a fixed integerN (independent ofδ) such
that any(N + 1) intersection ofPδ(xν)’s are empty.

Now assume thatx ∈ S(δ) ∩ U . Then there areν1, . . . , νl ∈ I , l ≤ N , such that
x ∈ Pδ(xνj ), 1 ≤ j ≤ l. By virtue of (3.48) again, it follows that

τ (x, δ) ≈ τ (xν1, δ) ≈ · · · ≈ τ (xνl , δ) ,
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independent ofδ. If we express the vector fieldsL1, . . . , Ln in terms of the special coordi-
nates in each neighborhood ofxνi , i = 1, . . . , l, then (3.54) and (3.55) follow from (3.50)
and (3.51), respectively. �

4. Special frames for almost complex structures. AssumeM̄ ⊂ M̃ and letϕ ∈
C∞(M̄) be a smooth real-valued function such thatϕ(x) > 0 for x ∈ M, andϕ(x) = 0,
dϕ(x) �= 0 for x ∈ bM. We can extendϕ toΩ by requiring that it be independent oft . Let
us denote byTp the type at a pointp ∈ M̄ and define

T (M̄) = max{Tp ; p ∈ M̄} .

Since the type condition is an open condition, it follows thatT (M̄) is well-defined and is
finite. In the sequal, we assume thatT (M̄) = m < ∞. We definer ∈ C∞(Ω) by r(x, t) =
t (φ(x))−2m and for anyε, σ, 0< ε ≤ σ ≤ 1, define

(4.1) Sε,σ = {(x, t) ∈ Ω ; ϕ(x) > 0 and 0≤ r(x, t) ≤ εσ 2m} .
REMARK 4.1. The quantitiesε andσ will be fixed later. If we setg (x) = ε · σ 2m ·

ϕ(x)2m, theng is the required positive function in the definition ofS+
g in Section 1 andSε,σ

equals toS+
g .

We define a subbundle ofL0 onSε,σ by lettingR(x,t) = {L ∈ L0
(x,t) ; Lr = 0}. Clearly,

the mapH defined byH(L) = L − (Lr)(Lnr)
−1Ln defines an isomorphism ofS ontoR

(at all points ofSε,σ ). Setµ1(x) = µ(x, εφ(x)2m), µ2(x) = . . . , µn−1(x) = ε1/2φ(x)m,
µn(x) = εφ(x)2m. We define a weighted metric〈 , 〉 onL0 by the relations:

〈H(Lj ),H(Lk)〉 = µj(x)
−1µk(x)

−1〈Lj ,Lk〉0 , 1 ≤ j, k ≤ n− 1

〈Ln,Ln〉 = ε−2ϕ(x)−4m ,

〈Ln,H(Ll)〉 = 0 , 1 ≤ l ≤ n− 1 ,

whereLl ∈ S, 1 ≤ l ≤ n − 1. Sinceµ(x, δ) is a smooth function ofx andδ, it follows that
〈 , 〉 is a smooth Hermitian metric onL0. Now, using Proposition 3.1, we shall coverSε,σ
by special (dialated) coordinate neighborhoods such that on each of them, there is a frameL
satisfying required good estimates.

PROPOSITION 4.2. There exist constants ε0 and σ0 such that if 0 < ε < ε0 and 0 <
σ < σ0, then on Sε,σ there exists for all x0 ∈ M with ϕ(x0) > 0 a neighborhood W(x0) ⊂
Sε,σ with the following properties:

(i) On W(x0) there are smooth coordinates y1, . . . , y2n so that W(x0) = {y; |y ′| <
σ,0 ≤ y2n ≤ σ 2m}, where y ′ = (y1, y2, . . . , y2n−1) is independent of t and the function y2n

is defined by y2n = ε−1ϕ(x)−2mt . Thus, M0 ∩ W(x0) and Mσ ∩ W(x0) correspond to the
points in W(x0) where y2n = 0 and σ 2m, respectively. Moreover, the point (x0,0) ∈ Ω,

which we identify with x0, corresponds to the origin.



EXTENSION OF CR STRUCTURES 339

(ii) The above coordinate charts are uniformly smoothly related in the sense that if
W(p̃0) andW(x0) intersect, and if ỹ and y0 are the associated coordinates, then

|Dα(ỹ ◦ (y0)
−1)| ≤ C|α|

holds on that portion of R2n where ỹ ◦ (y0)
−1 is defined. The constant C|α| is independent of

ε, σ, and x0,

(iii) OnW(x0), there exists a smooth frame {L1, . . . , Ln} for L such that if {ω1, . . . , ωn}
is the dual frame, and if Lk and ωk are written as

∑2n
j=1 bkj ∂/∂yj and

∑2n
j=1 dkjdyj , then

sup
y∈W(x0)

{|Dαy bkj (y)| + |Dαy dkj (y)|} ≤ C|α| ,

where C|α| is independent of x0, j, k, ε and σ .
(iv) With the frames as in (iii), set cn1l = ωn([L1, L̄l ]), l = 2, . . . , n. Then there is a

constant C > 0 independent of x0, ε and σ such that

(4.2) sup
y∈W(x0)

|cn1l(y)| ≤ Cσ 2m .

(v) There are constants c > 0 and C > 0 independent of x0, ε and σ such that if
Bb(x) denotes the ball of radius b about x ∈ Sε,σ with respect to the metric 〈 , 〉, then

(4.3) Bcσ (x0) ⊂ W(x0) ⊂ BCσ (x0) ,

and if Vol Bb(x0) denotes the volume of Bb(x0) with respect to 〈 , 〉, then

(4.4) cb2n−1σ 2m ≤ Vol Bb(x0) ≤ Cb2n−1σ 2m .

PROOF. We first coverM̄ by a finite number of neighborhoodsVν , ν = 1, . . . , N , inΩ
such that in eachVν there exist coordinates(u1, . . . , u2n) with the property thatu2n = t and
thatuk(u′, t) = uk(u

′,0), k < 2n, for (u′, t) ∈ Vν , and that∂/∂u2n−1 = −X0 at all points of
M ∩Vν . Also, we can arrange the neighborhoodsVν so that Proposition 3.1 holds on eachVν .

For any pointx0 ∈ M ∩Vν , we take coordinate functionsζ ν = (ζ ν1 , . . . , ζ
ν
n ) constructed

as in Proposition 3.1. Let us setζ ν = ζ and denote byLνk , the vector fieldsLk, 1 ≤ k ≤ n,
written in ζ ν-coordinates, and letx = (x1, . . . , x2n−1, t) be the real coordinates ofζ . In
ζ -coordinates, we may write:

Lνk = ∂

∂ζk
+
n−1∑
l=1

akl (ζ )
∂

∂ζl
+
n−1∑
l=1

bkl (ζ )
∂

∂ζ̄l
+ (ek(ζ )+ idk(ζ ))

∂

∂x2n−1
, 1 ≤ k ≤ n ,

where the coefficientsakl , b
k
l , ek, dk satisfy the estimates in (3.5) and (3.37).

Setδ = εϕ(x0)
2m, and let us writeb(ζ ) = e1(ζ ) + id1(ζ ), wheree1(ζ ) andd1(ζ ) are

smooth real valued functions. Recall the Taylor expansion ofb(ζ ) at x0 (i.e., atζ = 0) in
(3.6). We then take the quantityτ (x0, δ) and the corresponding quantityµ(x, δ) defined in
(3.9) and (3.35), respectively. By Proposition 3.5, it follows thatµ(x0, δ) ≈ τ (x0, δ), and
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hence the estimates in (3.37) imply that

|∂j1 ∂̄k1b(0)| � δµ(x0, δ)
−j−k−1 , j + k ≤ m− 1 ,(4.5)

|∂̃β∂j1 ∂̄k1b(0)| � δ1/2µ(x0, δ)
−(j+k+1)+γ , j + k ≤ m/2 − 1 ,(4.6)

where∂̃β = ∂β or ∂̄β , 2 ≤ β ≤ n− 1, and∂k = ∂/∂ζk, 1 ≤ k ≤ n, andγ = (10× (m/2)!)−1.
Setµ = µ(x0, δ) for a convenience. We define new coordinatesy = Dε,x0(x) =

(y1, . . . , y2n) by means of dilation mapDε,x0 : R2n → R2n given by

(4.7) y = (µ−1x1, µ
−1x2, δ

−1/2x3, . . . , δ
−1/2x2n−2, δ

−1x2n−1, e
−1ϕ(x)−2mx2n) ,

whereϕ(x) is the functionϕ expressed in thex-coordinates ofx0. In terms of they-coordinates
we define an open setWb(x0) by

(4.8) Wb(x0) = {x ∈ Vν ∩ Sε,σ ; |yk(x)| < b, 1 ≤ k ≤ 2n− 1,0 ≤ y2n(x) ≤ σ 2m} .
Note that inWb(x0), y2n = 0 andy2n = σ 2m coincide withr = 0 andr = εσ 2m,

respectively, on the boundaries ofSε,σ . We define a frame{L1, . . . , Ln} inWb(x0) by setting

L1 = µ(x, δ)(Lν1 − r1L
ν
n) = µ(x, δ)H(Lν1) ,

Lk = ε1/2ϕ(x)m(Lνk − rkL
ν
n) = ε1/2ϕ(x)mH(Lνk) , 2 ≤ k ≤ n− 1 ,(4.9)

Ln = εϕ(x)2mLνn ,

whererk = (Lνkr)(L
ν
nr)

−1, andLνk is the vector fieldLk written inx-coordinates ofVν . Set

Lνk =
2n−1∑
l=1

ekl(x)
∂

∂xl
, 1 ≤ k ≤ n− 1 , and Lνn = ∂

∂t
+

2n−1∑
l=1

enl(x)
∂

∂xl
.

In terms of dilated coordinatesy in Wb(x0), we setEkl = ekl · D−1
ε,x0

, Rk = rk · D−1
ε,x0

,
Φ = ϕ ·D−1

ε,x0
andΦl = (∂ϕ/∂xl) ·D−1

ε,x0
.

By a direct calculation, one obtains that

(4.10) Rk = 2εm
∑2n−1
l=1 Eν,lΦ

2m−1Φly2n

1 + 2εm
∑2n−1
l=1 En,lΦ2n−1Φly2n

, 1 ≤ k ≤ n− 1 .

We set

|f |k,Wb(x0) = sup{|Dαy f (y)| ; y ∈ Wb(x0), |α| ≤ k} ,
and extend this norm to vector fields and 1-forms by using the coefficients of∂/∂yj or dyj .
By virtue of Proposition 3.2, it follows that for allx ∈ Wb(x0), we have

(4.11) µ(x, δ) ≈ τ (x0, δ) � δ1/m = ε1/mϕ(x0)
2 .

Combining (4.10) with (4.11), we conclude that for eachs ≥ 0 there areCs independent
of x0 andδ such that

(4.12) |δ−1µ(x, δ)Rk|s,Wb(x0) ≤ Csbε
1/m , 1 ≤ k ≤ n− 1 .
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ThereforeL1 can be written, iny-coordinates, as

L1 = µ(x, δ)

µ(x0, δ)

2∑
l=1

E1,l
∂

∂yl
+ µ(x, δ)ε−1/2ϕ(x0)

−m
2n−2∑
l=3

E1,l
∂

∂yl
(4.13)

+ µ(x, δ)ε−1ϕ(x0)
−2mE1,2n−1

∂

∂y2n−1
+ O(Ẽ) ,

where
|E1,1 − 1|s,Wb(x0) ≤ Cµ(x0, δ) , s ≤ m ,

|E1,2 + i|s,Wb(x0) ≤ Cµ(x0, δ) , s ≤ m ,
(4.14)

andẼ satisfies, from the estimates in (4.12), that

(4.15) |Ẽ|s,Wb(x0) ≤ Cε1/m , s ≤ m ,

for an independent constanntC > 0. By virtue of the estimates in (3.31), we also have

(4.16) |µ(x, δ)ε−1/2ϕ(x0)
−mE1,l|k,Wb(x0) ≤ Cτ(x0, δ)

γ , k ≤ m+ 1 , 3 ≤ l ≤ 2n− 2 .

Observe that the diameter in thex-coordinates ofWb(x0) is O(bµ(x0, δ)) � ϕ(x0) by
(4.11). Hence it is clear thatµ(x, δ)µ(x0, δ)

−1 andΦϕ(x0)
−1 are very close to 1 (independent

of x0 andδ) in Wb(x0) if b is small. We also observe thatµ(x, δ) is defined independently
of coordinate functions and thatτ (x0, δ) ≈ τ (x, δ) ≈ µ(x, δ) if x ∈ Wb(x0). Therefore it
follows thatµ(x0, δ) ≈ µ(p0, δ) andϕ(x0) ≈ ϕ(p0) if Wb(x0) ∩ Wb(p0) �= 0. These facts
prove (ii).

Now set

wk = 1

2
(y2k−1 − iy2k) , 1 ≤ k ≤ n− 1 , and wn = 1

2
(y2n − iy2n−1) ,

and defineDl = ∂/∂yl , 1 ≤ l ≤ 2n, andBm−1(y) = bm−1 ◦ D−1
ε,x0
(y), wherebm−1 is the

(m − 1)-th order polynomial ofb(ζ ) in ζ1 and ζ̄1 as in (3.6). We recall that the real part
e(ζ ) of the coefficient function of∂/∂x2n−1 in L1 satisfies the estimates in (3.5). Hence, by
combining (4.12)–(4.16), we obtain that

L1 = ∂

∂w1
+ µ(x0, δ)δ

−1Bm−1(y)
∂

∂y2n−1
+ O(E) ,(4.17)

X = L1 + L̄1 = ∂

∂y1
+ O(E) ,(4.18)

where

(4.19) |E|s,Wb(x0) ≤ Csε
γ/m , |µ(x0, δ)δ

−1Bm−1|s,Wb(x0) ≤ Cs

for an independent constantC > 0. Combining (4.17)–(4.19), we conclude that ifb ≤ √
σ ,

lim
σ→0

∣∣∣∣L1 −
(
∂

∂w1
+ µ(x0, δ)δ

−1Bm−1(y)
∂

∂y2n−1

)∣∣∣∣
s,Wb(x0)

= 0 , s ≤ m+ 1 .

SettingW(x0) = Wσ(x0) for sufficiently smallσ , we obtain (i) and (iii).
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To prove (iv), we recall thatLn = ∂/∂y2n − i∂/∂y2n−1 + y2nT , whereTy2n ≡ 0, and
thatL is integrable to infinite order alongM0. Hence

(4.20) cn1n = ωn([L1, L̄n]) = ωn
([
L1 + L̄1,

∂

∂y2n
− i

∂

∂y2n−1

])
+ O(y2n) .

Combining (4.18)–(4.20), we conclude that

(4.21) sup
y∈W(x0)

|cn1n(y)| ≤ C1(ε
γ/m + σ 2m) ,

whereγ = (10× (m/2)!)−1.
For the estimates ofcn1l, l = 2, . . . , n − 1, we need the estimates in (3.26). Then it

follows that|cn1l(y)| ≤ C1ε
γ/m, alongM0. SinceL1 andLl are tangential vector fields, for

2 ≤ l ≤ n− 1, it follows that

(4.22) |cn1l(y)| ≤ C1(ε
γ/m + |y2n|) ≤ C1(ε

γ/m + σ 2m) , y ∈ W(x0) ,

Now we assume thatε ≤ σ 2m2·γ−1
. Then (4.2) follows from (4.21) and (4.22).

By Proposition 3.5, it follows thatτ (x0, δ) ≈ µ(x, δ) for x ∈ W(x0). Since{L1, . . . , Ln}
is orthonormal with respect to〈 , 〉, we conclude that (4.3) and (4.4) hold ifσ is sufficiently
small. �

Using the special coordinatesy1, . . . , y2n and the special framesL1, . . . , Ln defined
in (4.9), we want to defineL2-operators with mixed boundary conditions. In the process of
subelliptic estimates forD2-operator, we will see that certain boundary integral terms onM0

occur. To handle these boundary integral terms, we need the following lemma.

LEMMA 4.3. There are a frame {X1, . . . , Xn} for L and its dual frame {η1, . . . , ηn}
so that if we set cnkn = ηn([Xk, X̄n]), 1 ≤ k ≤ n− 1, then

cnkn = 0 on W(x0) , k = 2, . . . , n− 1 ,

|cn1n|s,W(x0) ≤ Csσ
2m .

(4.23)

PROOF. With the framesL1, . . . , Ln andω1, . . . , ωn defined onW(x0) in (4.9), we let
bk(y), 2 ≤ k ≤ n− 1, be the smooth function satisfying

(4.24) ωn([Lk, L̄n])(y)+
n−1∑
l=2

b̄l(y)ω
n([Lk, L̄l])(y) ≡ 0 , y ∈ W(x0) .

Since the Levi-form ofL2, . . . , Ln−1 is always positive definite, (4.24) is solvable onW(x0).
Set

Xk = Lk , k = 1, . . . , n− 1, and Xn = Ln +
n−1∑
l=2

bl(y)Ll .

Then its dual framesηk, k = 1, . . . , n, are given by

ηk = ωk − bk(y)ω
n , k = 1, . . . , n− 1, and ηn = ωn .
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In terms of the new frames it follows from (4.24) that

cnkn := ηn([Xk, X̄n]) = ωn([Lk, L̄n])+
n−1∑
l=2

b̄lω
n([Lk, L̄n]) ≡ 0 , 2 ≤ k ≤ n− 1 ,

onW(x0) and

(4.25) cn1n := ωn([X1, X̄n]) = ωn([L1, L̄n])+
n−1∑
l=2

b̄l(y)ω
n([L1, L̄l ]) .

Therefore (4.23) follows from (4.25) and (4.2). �

Recall that a deformation ofL0 is a sectionA of the bundleΓ 1(Sε,σ ). In terms of the
special frames inW(x0), we writeA = ∑n

j,l=1Ajlω̄
l ⊗ Lj , and then define

|A(y)|s =
∑
|α|≤s

n∑
j,l=1

|DαyAjl(y)| ,

|A|s,W(x0) = sup{|A(y)|s ; y ∈ W(x0)} .
We suppose thatA satisfies

(4.26) |A|m+2n+3,W(x0) ≤ ε0

for a sufficiently smallε0 > 0.
We defineA(Sε,σ ) to be the space of sectionsA ∈ Γ 0,1(Sε,σ ; 0) such that alongM0,

A(L̄) = 0 wheneverL̄ ∈ T 0,1 ∩ CTM0. From now on, we assume thatA ∈ A(Sε,σ ). Then
we can define a deformationLA of L0 by

L̄A = {L̄+ A(L̄) ; L̄ ∈ L0
z, z ∈ Sε,σ } .

In terms of the framesX1, . . . , Xn, and its dual framesη1, . . . , ηn in W(x0) constructed in
Lemma 4.3, we define

XAj = Xj + Ā(Xj ) , j = 1, . . . , n ,

and letηjA be the dual frames. Set

(4.27) LAj = σ 1/4(XAj − (XAj r)(X
A
n r)

−1XAn ) , 1 ≤ j ≤ n− 1 , LAn = XAn

and

(4.28) ω
j
A = σ−1/4η

j
A , 1 ≤ j ≤ n− 1 , ωnA =

(
ηnA +

n−1∑
j=1

(XAj r)(X
A
n r)

−1η
j
A

)
.

Obviously, the framesωjA, for j = 1, . . . , n, are dual toLAj , andLAj r ≡ 0 for 1 ≤ j ≤ n− 1.
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Note that we can writeLn = ∂/∂y2n − i∂/∂y2n−1 + y2nT , whereTy2n ≡ 0. Assuming
thatA satisfies (4.26) for sufficiently smallε0 ≤ σ 2m2·γ−1

, it follows from Lemma 4.3 that

sup
y∈W(x0)

|ωnA([LAk , L̄An ])(y)| ≤ Cσ 1/4|A|1 , 2 ≤ k ≤ n− 1 ,(4.29)

sup
y∈W(x0)

|ωnA([LA1 , L̄An ])(y)| ≤ Cσ 2m+1/4 ,(4.30)

where the constantC > 0 is independent ofx0, σ andε.
In order to measure howLAj , j = 1,2, . . . , n, depend onA, we define

Pk(y;A) =
∑

k1,...,kN|k1|+···+|kN |≤k

N∏
ν=1

|A(y)|kν .

In the sequel, we assume thatA satisfies (4.26) for sufficiently smallε0.

LEMMA 4.4. For y ∈ W(x0), the following pointwise estimates hold:
(4.31) |LAk − σ 1/4Lk|s ≤ CsPs(y;A) , |ωkA − σ−1/4ωk|s ≤ Csσ

−1/4Ps(y;A)
for 1 ≤ k ≤ n− 1 and

(4.32) |LAn − Ln|s ≤ CsPs(y;A) , |ωnA − ωn|s ≤ CsPs(y;A) .
PROOF. From the expression ofLAk andωkA in (4.27) and (4.28), the error terms are the

finite product of derivatives as in (4.31) and (4.32). �

For the subelliptic estimates on the non-euclidean ballsW(x0), we still have to construct
a family of plurisubharmonic functions with maximal Hessian in dilated coordinatesy defined
in (4.7). By virtue of Theorem 3.6 there is a family of plurisubharmonic functions{ψδ(x)}δ>0

defined onΩδ ∩ U = {(x ′, t) ; t ≤ δ} ∩ U . We may assume that there is an open set
W̃ (x0) = WCσ (x0), for someC > 1, such thatW(x0) = Wσ (x0) � W̃ (x0) � Paδ(x0),
providedσ is sufficiently small. We define

Sρ = {y ∈ Ωρ ∩ U ; |y2n| < ρ} ,
and setδ0 = δ(x0) = εφ(x0)

2m and

(4.33) µ1(x) = µ(x, δ0) , µk(x) = ε1/2ϕ(x)m , 2 ≤ k ≤ n− 1 , µn(x) = εϕ(x)2m .

For anyρ > 0 we set

(4.34) µ
ρ
1(x) = µ(x, ρδ0) , µ

ρ
k (x) = (ρδ0)

1/2 , 2 ≤ k ≤ n− 1 , µρn(x) = ρδ0 .

THEOREM 4.5. For each small ρ > 0, there exists a C∞ plurisubharmonic function
λρ defined on W̃ (x0) � W(x0) satisfying the following:

(i) |λρ | ≤ 1 in W̃ (x0).
(ii) For all y ∈ Sρ ∩ W̃ (x0), and LA = ∑n

j=1 bjL
A
j , we have

∂∂̄λρ(y)(L
A, L̄A) ≈

n∑
k=1

|bk|2µ2
k(µ

ρ
k )

−2 .
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(iii) |LAλρ |2 � ∂∂̄λρ(y)(L
A, L̄A).

(iv) |Dαλρ | ≤ Cα
∏n
k=1µ

αi
k (x)(µ

ρ
k )

−αi , whereDα = ∂
β1
1 ∂̄

γ1
1 · · · ∂βnn ∂̄γnn , αi = βi+γi .

PROOF. Let {ψρδ0}ρδ0>0 be the family of plurisubharmonic functions constructed in
Theorem 3.6. Setλρ(y) = ψρδ0 ◦ D−1

x0
(y), whereDx0 is the dilation function defined in

(4.8). It is clear thatλρ is plurisubharmonic and satisfies (i). Note that the orthonormal frame
{L1, . . . , Ln} defined in (4.9) can be written asLj = µj(x)(L

ν
j − rjLνn), 1 ≤ j ≤ n− 1, and

Ln = µn(x)L
ν
n.

If we letL = ∑n
j=1 bjLj , then it follows by functoriality that

∂∂̄λρ(y)(L, L̄) = ∂∂̄ψρδ0(x)(dD
−1
x0
L, dD−1

x0
L̄)

= ∂∂̄ψρδ0(x)

( n∑
j=1

bjµjL
ν
j ,

n∑
k=1

b̄kµkL̄
ν
k

)

− 2Re

[ n−1∑
j=1

n∑
k=1

rj bj b̄kµjµk∂∂̄ψρδ0(x)(L
ν
n, L̄

ν
k )

]

+
n−1∑
j,k=1

rj r̄kbj b̄kµjµk∂∂̄ψρδ0(x)(L
ν
n, L̄

ν
n) .

(4.35)

From the expression ofrk(x) in (4.10) and (4.12) it follows that

(4.36) |rk(x)| � ε1/m(ρδ0) · µ(x, δ0)−1 for |t| ≤ ρδ0 .

If we combine (4.36) with the properties (ii) and (iii) of Theorem 3.6, we conclude that

(4.37) ∂∂̄λρ(y)(L, L̄) ≈
n∑
k=1

|bk|2µ2
k(µ

ρ
k )

−2 .

Note that the vector fieldsLAj ’s and its dual framesωAj ’s were written in terms ofLj ’s,

andηjA’s as in (4.27) and (4.28). By virtue of the expressions in (4.31) and (4.32) we can write

(4.38) ∂∂̄λρ(y)(L
A, L̄A) = ∂∂̄λρ(y)(L, L̄)+ O(A2ρ−2 + Aρ−3/2)|L|2 .

Recall thatA = 0 alongM and satisfies (4.26). Hence|A|0 � ε0ρ
2 provided|y2n| ≤ ρ.

Therefore it follows from (4.37) and (4.38) that

∂∂̄λρ(y)(L
A, L̄A) ≈

n∑
k=1

|bk|2µk(x)2(µρk )−2 .

This proves (ii). (iii) follows from the estimate

|LAλρ |2 �
n∑
k=1

|bk|2|LAk λρ |2 �
n∑
k=1

|bk|2µk(x)2(µρk )−2 ≈ ∂∂̄λρ(y)(L
A, L̄A) .

(iv) follows from the property (iii) of Theorem 3.6. �
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Next, we show that there exists a smooth Hermitian metric onSε,σ such that for allx0 ∈
M the framesLA1 , . . . , L

A
n given by (4.27) are orthonormal. ForL ∈ L0 andA ∈ A(Sε,σ )

satisfying (4.26), define a bundle isomorphismPA : L0 → LA byPA(L) = L+A(L). Define
a homomorphismHA : LA → RA, whereRA = {L ∈ LA ; Lr = 0}, by

HA(L) = L− Lr

XAn r
XAn = L− Ly2n

LAn y2n
LAn .

ThenHA ◦ PA is an isomorphism ofR ontoRA. We define a metric〈 , 〉A onLA by

〈(HA ◦ PA)L̄1, (HA ◦ PA)L̄2〉A = 〈L̄1, L̄2〉 , L̄1, L̄2 ∈ R ,

〈LAn ,LAn 〉A = 1 ,

〈(HA ◦ PA)L̄1, L
A
n 〉A = 0 , L̄1 ∈ R .

Note thatLAn is actually globally defined, so that the above conditions determine a metric on
LA. SinceLj , j = 1,2, . . . , n− 1, defined in (4.9), are an orthonormal basis ofL, it follows
thatLAj = (HA ◦ PA)Lj , j = 1,2, . . . , n − 1, are an orthonormal basis ofLA with respect
to 〈 , 〉A.

Let dV denote the volume form associated with the Riemannian metric〈 , 〉. In the
coordinates(y1, . . . , y2n) in W(x0) we can writedV = V (y)dy, wheredy = dy1 · · · dy2n,
and whereV satisfies

|V |s,W(x0) ≤ Cs and infV (y)
y∈W(x0)

> c > 0 ,

wherec is independent ofσ , ε andx0. We will define the inner product for two functionsg ,
h ∈ C∞(Sε,σ ) by

(g , h) =
∫

g h̄ dV .

LetΛ0,q(Sε,σ ;A) denote the space of(0, q)-forms with respect toLA onSε,σ , and set

Γ 0,q(Sε,σ ;A) = Λ0,q(Sε,σ ;A)⊗ LA .
Now let us define, for a given structureLA, whereA satisfying (4.26) for smallε0, theL2-
operators corresponding toDq : Γ 0,q → Γ 0,q+1 and its adjoint. We defineE0,q

c (Sε,σ ;A) to
be the set of smooth sectionsU of Γ 0,q(Sε,σ ;A) such that support ofU is a compact subset of
Sε,σ . LetE0,q

0 (Sε,σ ;A) denote the set of sections ofE0,q
c (Sε,σ ;A)with compact support in the

interior ofSε,σ . Suppose thatU = ∑n
l=1

∑
|J |=q UJl ω̄

J
A · LAl is an element ofΓ 0,q(Sε,σ ;A)

with compact support inW(x0). We define

(4.39) ‖U‖2 =
∫
Sε,σ

n∑
l=1

∑
|J |=q

|UJl |2dV ,

wheredV is the volume form given by the metric ofL0. Since{LA1 , . . . , LAn } is an orthonor-
mal frame, the quantity in (4.39) is independent of the frame neighborhoodW(x0). Thus, by
using a partition of unity, it follows that the norm in (4.39) extends to all ofΓ 0,q(Sε,σ ;A).
LetL2

q (Sε,σ , T
1,0
A ) denote the set of sections ofΓ 0,q(Sε,σ ;A) such that (4.39) is finite.
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DefineBq−(Sε,σ ;A) to be the set of forms inE0,q
c (Sε,σ ;A) such thatUJl vanishes onM0

whenevern �∈ J . (This is also independent of the frame neighborhoodW(x0).) Similarly,
defineBq+(Sε,σ ;A) to be the set of forms inE0,q

c (Sε,σ ;A) such thatUJl vanishes onMσ

whenevern ∈ J . We now define the formal adjointD′
q of Dq on E0,q

c (Sε,σ ;A) byD′
qU =

G ∈ E0,q−1
c (Sε,σ ;A) if for all V ∈ E0,q−1

0 (Sε,σ ;A),
(U,DqV ) = (G, V ) ,

where( , ) corresponds to the norm in (4.39). By combining (2.3) with (2.6) together with
integration by parts, it follows that ifU = ∑

ν UνL
A
ν ∈ Γ 0,k(Sε;A) is supported inW(x0),

then

(4.40) D′
kU =

∑
ν

(
∂̄∗Uν −

∑
µ

∑
j

∂ω
µ
A(L

A
j , L̄

A
ν )(L̄

A
j �Uµ)

)
LAν ,

where

∂̄∗Uν = −
∑

|J |=k−1

n∑
j=1

(LAj U
jJ
ν + ejU

jJ
ν )ω̄JA

−
∑

|K |=k−2

n∑
l=1

∑
i<j

ωlA([LAi , LAj ])UijKν ω̄lKA .

(4.41)

We now extend the definition of the operatorDq andD′
q to theL2-spaces. Define

L2
k(Sε,σ ;A) to be the set of all sectionsU of Γ 0,k(Sε,σ ;A) for which ‖U‖2 < ∞. We

define an operator
T : L2

q−1(Sε,σ ; T 1,0
A ) → L2

q(Sε,σ ; T 1,0
A )

by the condition thatU ∈ Dom(T ) andT U = F ∈ L2
q(Sε,σ ; T 1,0

A ) if for all V ∈ Bq−(Sε,σ ;A),
we have

(U,D′
qV ) = (F, V ) .

Similarly, we can defineS : L2
q(Sε,σ ; T 1,0

A ) → L2
q+1(Sε,σ ; T 1,0

A ). Note that these defini-
tions imply that ifU ∈ Dom(T ) (or Dom(S)), then T U = DqU (or SU = Dq+1U )

as in the sense of distribution theory. LetT ∗ : L2
q(Sε,σ ; T 1,0

A ) → L2
q−1(Sε,σ ; T 1,0

A ) and

S∗ : L2
q+1(Sε,σ ; T 1,0

A ) → L2
q(Sε,σ ; T 1,0

A ) be the Hilbert space adjoints ofT andS, respec-
tively. It follows that ifU ∈ Dom(T ∗) andV ∈ Dom(S∗), then

(4.42) T ∗U = D′
q (U) and S∗V = D′

q+1(V ) ,

as in the sense of distributions. Therefore it follows that

E0,q−1
c (Sε,σ ;A) ∩ Dom(T ) = Bq−1

+ (Sε,σ ;A) ,
E0,q
c (Sε,σ ;A) ∩ Dom(T ∗) = Bq−(Sε,σ ;A) .

Similar relations hold forS. Set

Bq(Sε,σ ;A) = Bq+(Sε,σ ;A) ∩ Bq−(Sε,σ ;A) .
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Then we can approximateU ∈ Dom(S) ∩ Dom(T ∗) byUµ ∈ Bq(Sε,σ ;A) in the graph norm
of S andT ∗ [5, Lemma 6.4].

LEMMA 4.6. Let U ∈ Dom(S) ∩ Dom(T ∗). Then there exists Uµ ∈ Bq(Sε,σ ;A) such
that

lim
µ→∞(‖Uµ − U‖ + ‖SUµ − SU‖ + ‖T ∗Uµ − T ∗U‖) = 0 .

Finally, suppose that we have proved the estimate

(4.43) ‖U‖2 ≤ C(‖T ∗U‖2 + ‖SU‖2)

for all U ∈ Bq(Sε,σ ;A). Then Lemma 4.6 shows that (4.43) holds for allU ∈ DomT ∗ ∩
DomS. Then from the usual̄∂-Neumann theory it follows that for allG ∈ L2

q(Sε,σ ; T 1,0
A ),

there exists an elementNG ∈ Dom(T ∗) ∩ Dom(S) such that

‖NG‖ ≤ C2‖G‖ ,
and

(G, V ) = (T ∗(NG), T ∗V )+ (SNG, SV ) , V ∈ Dom(T ∗) ∩ Dom(S) .

We will call N the Neumann operator associated withDq .

5. The subelliptic estimate forDq . In this section we prove a subelliptic estimate for
theDq -Neumann problem with almost complex structureLA. We setq = 2 in this section.

We first define tangential norms that will be used in the estimates. For anys ∈ R, set

|||f |||2s =
∫ σ2m

0

∫
R2n−1

|f̂ (ξ, y2n)|2(1 + |ξ |2)sdξ dy2n ,

wheref̂ (ξ, y2n) = ∫
R2n−1 e−iy ′·ξ f (y ′, y2n)dy

′. For any integerk ≥ 0 and anys ∈ R, set

‖f ‖2
s,k =

k∑
j=0

∣∣∣∣
∣∣∣∣
∣∣∣∣ ∂
jf

∂y
j

2n

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

s−j
.

Then, for any integerm ≥ 0 andf ∈ C∞(W(x ′)), set

‖f ‖2
m =

∑
|α|≤m

‖Dαy f ‖2 .

By using the coefficients ofU , we can easily define all of the above norms for any sectionU

of Γ 0,q . We recall thatA(Sε,σ ) is the space of sectionsA ∈ Γ 0,1(Sε,σ ; 0) such that along
M0, A(L̄) = 0 wheneverL̄ ∈ T 0,1 ∩ CTM0. We letC > 1 and 0< c ≤ 1 be independent
constants which may vary in various estimations. Then the goal of this section is to prove the
following subelliptic estimate:

THEOREM 5.1. Suppose T (M̄) = m < ∞ and that A is a section of A(Sε,σ ). Then
there exist small positive constants σ1 and ε1 so that if ε < ε1, σ < σ1, and |A|m+2n+3,W(x0) ≤
ε, then the Dq -Neumann problem on Sε,σ with coefficient σ for the almost complex structure
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LA satisfies the following estimate for all forms U ∈ Bq(Sε,σ ;A) that are compactly sup-
ported in W(x0):

(5.1) σ−3‖U‖2 + LA(U)+ σ 1/2‖U‖2
1/m,1 ≤ C(‖SU‖2 + ‖T ∗U‖2) ,

where LA(U) is defined by

LA(U) =
n−1∑
k=1

n∑
l=1

∑
|J |=q

‖L̄Ak UJl ‖2 +
n−1∑
k=1

n∑
l=1

∑
|J |=q
n/∈J

‖LAk UJl ‖2

+
n∑
l=1

∑
|J |=q
n∈J

‖LAn UJl ‖2 +
n∑
l=1

∑
|J |=q
n�∈J

‖LAn UJl ‖2 .

(5.2)

We first state some necessary lemmas for the proof of Theorem 5.1 [5, Lemma 7.5].

LEMMA 5.2. Let Xj = ∑
k ajk∂/∂xk , j = 1, . . . , l, be smooth compactly supported

vector fields in Rd, and suppose that there exist a set K � Rd and a constant c > 0 such that
for all x ∈ K,

c < inf

{∑
j

|η(Xj )| +
∑
i<j

|η([Xi,Xj ])| ; η ∈ T ∗
x , |η| = 1

}
.

Then there exists a constant C independent of X1, . . . , Xl such that for all u ∈ C∞
0 (R

d) with
suppu ⊂ K and any integer s > (d + 5)/2,

c‖u‖2
1/2 ≤ C

[ l∑
j=1

‖Xju‖2 + ‖u‖2
∑
j,k

‖aj,k‖2
s

]
.

If n ≥ 3, then the(n−2) positive eigenvalue condition on the Levi-form ofM guarantees
the existence of at least one positive eigenvalue. SetX2k−1 = ReLAk andX2k = ImLAk for
1 ≤ k ≤ n− 1. Then Lemma 5.2 and the expression ofLAk in (4.27) show that

LEMMA 5.3. Assume that n ≥ 3. Then for all f ∈ C∞
0 (W(x0)),

(5.3) σ 1/2|||f |||21/2 ≤ C

n−1∑
k=1

(‖LAk f ‖2 + ‖LAk f ‖2)+ C‖f ‖2 .

For convenience, in what that follows we omit the notationA from the framesLA1 , . . . ,
LAn , andω1

A, . . . , ω
n
A, andLA. Note that inW(x0), we have technically chosen coordinates

in such a way thaty2n = 0 andy2n = σ 2m coincide withr = 0 andr = εσ 2m, respectively,
on the boundaries ofSε,σ . Then the following lemma can be proved by modifying the proof
of Lemma 7.7 in [5].

LEMMA 5.4. Suppose that f ∈ C∞
0 (W(x0)) and f vanishes either on M0 or on Mσ .

If σ is sufficiently small, say σ < σ1, then there exists a constant C independent of ε, σ, and
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x0 such that

(5.4) σ−4‖f ‖2 ≤ C(‖f ‖2
1/m + ‖L̃nf ‖2) ,

where L̃n = Ln or L̄n.

To handle the commutator terms, we need the following lemma.

LEMMA 5.5. Assume that n ≥ 3. Let U ∈ Bq(Sε,σ ;A) be compactly supported in
W(x0) and assume that |K| = q − 1 with n /∈ K and that 1 ≤ k ≤ n − 1. Set cnkn =
wn([Lk, L̄n]) and dnnk = ω̄n([Ln, L̄k]). Then

|(cnknLnUkKl , UnKl )| ≤ C(σLA(U)+ σ−1‖U‖2) ,(5.6)

|(dnknL̄nUnKl , UkKl )| ≤ C(σLA(U)+ σ−1‖U‖2) .(5.7)

PROOF. Note thatUkKl = 0 onM0 andUnKl = 0 onMσ . From (4.29) and (4.30), it
follows that

(5.8) |cnkn|0, |dnnk|0 ≤ Cσ 2m , 1 ≤ k ≤ n− 1 .

Let χ be aC∞ function defined onW̃ (x0) � W(x0) such that 0≤ χ ≤ 1, χ = 0 nearM0,
χ = 1 nearMσ and satisfies

(5.9) |χ |
s,W̃(x0)

≤ Cσ−2ms , s = 1,2, . . . .

Let us write

(5.10) (cnknLnU
kK
l , UnKl ) = (cnknχLnU

kK
l , UnKl )+ (cnkn(1 − χ)LnU

kK
l , UnKl ) .

By integration by parts we get, from the estimates in (5.8), that

(cnknχLnU
kK
l , UnKl ) = −(UkKl , cnknχL̄nU

nK
l )+ O(‖U‖2)

� σ · σ 4m‖χL̄nUnKl ‖2 + σ−1‖U‖2 .

Using the fact thatχ = 0 onM0,UnKl = 0 onMσ , and (5.9), we can perform integration
by parts for the function‖χL̄nUnKl ‖2 in a standard way. Then we get

(5.11) ‖χL̄nUnKl ‖2 = ‖χLnUnKl ‖2 + σ−4mO(‖UnKl ‖2 + L(U)) .

Combining (5.10) and (5.11), we get

|(cnknχLnUkKl , UnKl )| � σLA(U)+ σ−1‖U‖2 .

Similarly, we can estimate(cnkn(1 − χ)LnU
kK
l , UnKl ). This proves (5.6). The proof of (5.7)

is similar. �

For each smallρ > 0, we set

Sρ = {(y ′, yn) ; |y2n| < ρ} ∩ W̃ (x0) ,

and letλρ = ψρδo ◦D−1
x0
(y) be the plurisubharmonic weight functions constructed in Theorem

4.5, whereδ0 = εφ(x0)
2m.
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LEMMA 5.6. For each k, 1 ≤ k ≤ n− 1, set dn1k = ω̄n([L1, L̄k]) and let x = D−1
x0
(y).

Then on Sρ we have

|dn11(L̄nλρ)(y)| � σ 1/2τ (x, δ0)
2τ (x, ρδ0)

−2 ,(5.12)

|dn1k(L̄nλρ)(y)| � σ 1/2ρ−1/2τ (x, δ0)τ (x, ρδ0)
−1+γ , 2 ≤ k ≤ n− 1 .(5.13)

PROOF. Note thatdn1k = ω̄nA([LA1 , L̄Ak ]), whereωnA andLAk ’s are defined in (4.27) and
(4.28). Therefore it follows that

(5.14) dn1k(y) = σ 1/2ωn([L1, L̄k])(y)+ O(|A|1) .
Now assume thaty = (y ′, y2n) ∈ Sρ . Thenx = (x ′, t) = D−1

x0
(y) satisfies

|t| ≤ ρεφ(x0)
2m = ρδ0 .

Letµk(x) be defined as in (4.33). Then, by functoriality, it follows that

ωn([L1, L̄k])(y)(L̄nλρ)(y)
= µn(x)

−1ωn([µ1(x)H(L
ν
1), µk(x)H(L

ν
k)])(x)µn(x)L̄νnψρδ0(x)

= µ1(x)µk(x)ω
n([Lν1, L̄νk ])(x)L̄νnψρδ0(x)+ O(x2nL̄

ν
nψρδ0(x)) ,

where we have used the notation in (4.9) and the expression ofrk in (4.10).
Note thatτ (x, δ0) ≈ µ(x, δ0) ≈ µ(x, εφ(x)2m), andµk(x) ≈ δ

1/2
0 onW̃ (x0). Sincex ∈

S(ρδ0) (in x-coordinates), it follows from Proposition 3.8 and the property (iii) of Theorem
3.6 that (setδ = ρδ0 there)

|µ1(x)
2ωn([Lν1, L̄ν1])(x)L̄νnψρδ0(x)| � τ (x, δ0)

2(ρδ0)τ (x, ρδ0)
−2(ρδ0)

−1

= τ (x, δ0)
2τ (x, ρδ0)

−2 ,
(5.15)

and for 2≤ k ≤ n− 1, we have

|µ1(x)µk(x)ω
n([Lν1, L̄νk ])(x)Lνnψρδ0(x)|

� τ (x, δ0)δ
1/2
0 · (ρδ0)1/2 · τ (x, ρδ0)−1+γ (ρδ0)−1(5.16)

� ρ−1/2τ (x, δ0)τ (x, ρδ0)
−1+γ .

Assuming thatA satisfies (4.26), it follows that|A|1 ≤ ε0ρ
2 if y ∈ Sρ . Also, it follows from

the property (iii) of Theorem 3.6 that

(5.17) |x2nL̄
ν
nψρδ0(x)| � 1 , x ∈ S(ρδ0) .

If we combine (5.14)–(5.17), then (5.12) and (5.13) follow. �

We now want to prove Theorem 5.1. AssumeU = ∑n
l=1

∑
|J |=q UJl ω̄J ·Ll ∈ Bq(Sε,σ ;A)

with suppU ⊂ W(x0). Then from (4.40) and (4.41) it follows that

T ∗U = D′
qU = BU + C|U | ,
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where

(5.18) BU = −
n∑
l=1

∑
|K |=q−1

n∑
j=1

(LjU
jK
l )ω̄K · Ll .

Also, (2.6) shows that

(5.19) SU = Dq+1U = AU + C|U | ,
where

(5.20) AU =
n∑
l=1

∑
|J |=q

n∑
j=1

(L̄jU
J
l )ω̄

jJ · Ll .

Combining (5.18)–(5.20), we see that

(5.21) ‖AU‖2 + ‖BU‖2 ≤ 2‖SU‖2 + 2‖T ∗U‖2 + C‖U‖2 .

Let us writeU = U ′ + U ′′, where

U ′ =
n∑
l=1

∑
|J |=q
n∈J

UJl ω̄
J · Ll , U ′′ =

n∑
l=1

∑
|J |=q
n/∈J

UJl ω̄
J · Ll ,

and set

L(U ′) =
n∑
l=1

n−1∑
k=1

∑
|J |=q
n∈J

‖L̄kUJl ‖2 +
n∑
l=1

∑
|J |=q
n∈J

‖LnUJl ‖2 ,

L(U ′′) =
n∑
l=1

n−1∑
k=1

∑
|J |=q
n/∈J

(‖L̄kUJl ‖2 + ‖LkUJl ‖2)+
n∑
l=1

∑
|J |=q
n/∈J

‖L̄nUJl ‖2 .

Then we can write

(5.22) ‖AU‖2 + ‖BU‖2 = ‖AU ′′‖2 + ‖BU ′′‖2 + ‖AU ′‖2 + ‖BU ′‖2 + E(U ′, U ′′) ,

whereE(U ′, U ′′) denotes the (sum of) inner products(AU ′, AU ′′) and(BU ′, BU ′′).
Note that the Levi-form ofMσ has at least(n − 2)-positive eigenvalues and

U ′′ = 0 alongM0. Therefore we may proceed in the standard way as in [10, 11] forU ′′
and we get

(5.23) ‖AU ′′‖2 + ‖BU ′′‖2 ≥ c

(
L(U ′′)+

∫
Mσ

|U ′′|2dS
)
.

A typical term ofE(U ′, U ′′) looks like

(LkU
kK
l , LnU

nK
l )− (L̄nU

kK
l , L̄kU

nK
l ) ,
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wheren /∈ K and 1≤ k ≤ n − 1. SinceUkKl = 0 onM0 andUnKl = 0 onMσ , we can
perform the integration by parts and we get

(LkU
kK
l , LnU

nK
l ) = (L̄nU

kK
l , L̄kU

nK
l )− (ekL̄nU

kK
l , UnKl )

+ (ēnLkU
kK
l , UnKl )+ ([Lk, L̄n]UkKl , UnKl ) .

(5.24)

By integration by parts if necessary, the second and the third term of the right side of (5.24)
are bounded byσL(U ′)+ Cσ−1‖U‖2. If we write

(5.25) ([Lk, L̄n]UkKl , UnKl ) =
n∑
i=1

(ciknLiU
kK
l , UnKl )+

n∑
i=1

(diknL̄iU
kK
l , UnKl ) ,

wherecikn = ωi([Lk, L̄n]) anddikn = ω̄i ([Lk, L̄j ]), then wheni < n, the each term of
right is dominated byσL(U ′) + σ−1‖U‖2, by applying integration by parts if necessary. If
i = n, then (dnknL̄nU

kK
l , UnKl ) is bounded byσL(U ′) + σ−1‖U‖2. The remaining term

(cnknLnU
kK
l , UnKl ) can be handled by using Lemma 5.5. Therefore we conclude that

(5.26) |E(U ′, U ′′)| ≤ C(σL(U ′)+ σ−1‖U‖2) .

Let λ ∈ C∞(W̃ (x0)) with |λ| ≤ 1, and forf ∈ C∞(W(x0)), we define

‖f ‖2
λ =

∫
W(x0)

|f |2e−λdV .

Combining (5.22)–(5.26), we conclude that

‖AU‖2 + ‖BU‖2 ≥ c1

(
L(U ′′)+

∫
Mσ

|U ′′|2dV
)

+ 1

3
(‖AU ′‖2

λ + ‖BU ′‖2
λ)(5.27)

− CσL(U ′)− Cσ−1‖U‖2 ,

becausee−λ ≥ 1/3.
Now let us estimate‖AU ′‖2

λ + ‖BU ′‖2
λ. As in (4.2.3) of [11], we get

(5.28) ‖AU ′‖2
λ + ‖BU ′‖2

λ=Lλ(U ′)+
n∑
l=1

n−1∑
j,k=1

[(LkUknl , LjUjnl )λ− (L̄jU
kn
l , L̄kU

jn
l )λ] ,

whereLλ(U ′) = ∑n
l=1

∑
|J |=q
n∈J

∑n−1
k=1 ‖L̄kUJl ‖2

λ + ∑n
l=1

∑
|J |=q
n∈J

‖LnUJl ‖2
λ.

With the notationδk = eλLke
−λ, 1 ≤ k ≤ n− 1, we have

(δkU
kn
l , δjU

jn

l )λ = (LkU
kn
l , LjU

jn

l )λ(5.29)

+ O
(
σ−1/4‖(Lλ)U ′‖2 + σ 1/4

n−1∑
k=1

‖LkUknl ‖2
)
,
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where‖(Lλ)U ′‖2 = ‖∑n−1
k=1(Lkλ)U

kn
l ‖2. By the standard integration by parts method, we

obtain that

(5.30) ‖LkUknl ‖2 = ‖L̄kUknl ‖2 −
∫
M0

dnkk|Uknl |2dS + O(σL(U ′)+ σ−1‖U ′‖2) .

As in (5.24), we can write, for 1≤ j, k ≤ n− 1, as

(δkU
kn
l , δjU

jn
l )λ = (L̄jU

kn
l , L̄kU

jn
l )λ − (ekL̄jU

kn
l , U

jn
l )λ

+ (ēj δkU
kn
l , U

jn
l )λ + ([δk, L̄j ]Uknl , Ujnl )λ .

(5.31)

By integration by parts, if necessary, the second and third terms of (5.31) are bounded by
CσL(U ′)+ Cσ−1‖U ′‖2. To estimate([δk, L̄j ]Uknl , Ujnl )λ, we write

([δk, L̄j ]Uknl , Ujnl )λ =
n∑
i=1

(cikjLiU
kn
l , U

jn
l )λ +

n∑
i=1

(dikj L̄iU
kn
l , U

jn
l )λ(5.32)

+ (L̄j (Lkλ)U
kn
l , U

jn
l )λ ,

wherecikj = ωi([Lk, L̄j ]), anddikj = ω̄i([Lk, L̄j ]).
If i < n, then(dikj L̄iU

kn
l , U

jn

l )λ is bounded byσL(U ′) + Cσ−1‖U ′‖2. By integration
by parts, we can write

(5.33) (cikjLiU
kn
l , U

jn

l )λ = (cikj (Liλ)U
kn
l , U

jn

l )λ + O(σL(U ′)+ σ−1‖U ′‖2) .

If i = n, then(cnkjLnU
kn
l , U

jn
l )λ is bounded byσL(U ′)+ Cσ−1‖U ′‖2. By integration

by parts again, we can write

(dnkj L̄nU
kn
l , U

jn

l )λ = (dnkj (L̄nλ)U
kn
l , U

jn

l )λ −
∫
M0

dnkjU
kn
l Ū

jn

l e
−λdS

+ O(σL(U ′)+ σ−1‖U ′‖2) .

(5.34)

Combining (5.28)–(5.34), we obtain that

‖AU ′‖2
λ + ‖BU ′‖2

λ ≥
n−1∑
j,k=1

[
(L̄j (Lkλ)U

kn
l , U

jn
l )λ +

n−1∑
i=1

(cikj (Liλ)U
kn
l , U

jn
l )λ

]

+
n−1∑
j,k=1

(dnkj (L̄nλ)U
kn
l , U

jn
l )λ

−
n−1∑
j,k=1

∫
M0

(dnkjU
kn
l Ū

jn
l + C1σ

1/4dnkk|Uknl |2)e−λdS

+ cL(U ′)− C1σ
−1/4‖(Lλ)U ′‖2 − Cσ−1‖U ′‖2 .

(5.35)

With the notation

∂∂̄λ =
n−1∑
j,k=1

λjkω
j ∧ ω̄k ,
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the first sum of the right hand side of (5.35) is equal to
∑n−1
j,k=1(λjkU

jn

l , U
kn
l )λ. Now suppose

that |λ| ≤ 1 on W̃(x0). Let χ(t) denote the functionσ 1/4/3C1e
t and setφ = χ(λ). Then

χ
′′
(t) ≥ C1σ

−1/4χ ′(t)2, and we get

n−1∑
j,k=1

φjktj t̄k = χ ′(t)
n−1∑
j,k=1

λjktj t̄k + χ ′′(t)
∣∣∣∣
n−1∑
k=1

(Lkλ)tk

∣∣∣∣
2

≥ σ 1/4

9C1

n−1∑
j,k=1

λjktj t̄k + C1σ
−1/4χ ′(t)2

∣∣∣∣
n−1∑
k=1

(Lkλ)tk

∣∣∣∣
2

.

(5.36)

SinceM0 is pseudoconvex anddnkk > d > 0 for 2 ≤ k ≤ n− 1, it follows that

(5.37) −
n−1∑
j,k=1

∫
M0

(dnkjU
kn
l Ū

jn
l + C1σ

1/4dnkk|Uknl |2)e−λdS ≥ 0 ,

provided thatσ is sufficiently small. Thus, if we replaceλ byφ, then we conclude from (5.36)
and (5.37) that

‖AU ′‖2
φ + ‖BU ′‖2

φ ≥ σ 1/4

9C1

n−1∑
j,k=1

(λjkU
jn
l , U

kn
l )φ

+
n−1∑
j,k=1

(dnkj (L̄nλ)U
kn
l , U

jn
l )φ

+ cL(U ′)− Cσ−1‖U ′‖2 .

(5.38)

Now we take the family{λρ}ρ>0 of plurisubharmonic functions with maximal Hessian
constructed in Theorem 4.5, and replaceλ in (5.38) by these functions. By Lemma 5.6 and
the fact thatτ (x, δ) ≈ µ(x, δ), we have, fory = Dx0(x) ∈ Sρ , that

|(dn11(L̄nλρ)(y)| � σ 1/2µ(x, δ0)
2µ(x, ρδ0)

−2 ,(5.39)

|(dn1k(L̄nλρ)(y)| � σ 1/2ρ−1/2µ(x, δ0)µ(x, ρδ0)
−1+γ , 2 ≤ k ≤ n− 1 .(5.40)

Also, it follows from (4.27) and (4.28) that

(5.41) |(dnj,k(L̄nλρ)(y)| � σ 1/2ρ−1 , 2 ≤ j, k ≤ n− 1 .

By virtue of Theorem 4.5 it follows that (assuming that we first takeρ0 ≤ σ 2m for sufficiently
smallσ ) there is, for each 0< ρ ≤ σ 2m, λ = λρ such that

(5.42)
n−1∑
j,k=1

λj,k(y)U
jn
l (y)Ū

jn
l (y) ≈

n−1∑
k=1

|Ukn(y)|2µ2
k(x)(µ

ρ
k (x))

−2 , y ∈ Sρ ,

whereµk(x) andµρk (x) are defined in (4.33) and (4.34), respectively.
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Combining (5.38)–(5.42), we then have that

‖AU ′‖2 + ‖BU ′‖2 ≥ cσ 1/2
n−1∑
j,k=1

(λjkU
jn
l , U

kn
l )+ cL(U ′)

≥ c(σ 1/2ρ−2/m‖U ′‖2 + L(U ′)) ,

becauseµ(x, δ0)2µ(x, ρδ0)−2 � ρ−1/m by (3.34). Then, by the theorem of Catlin [2], the
subelliptic estimates of order 1/m holds forU ′ and hence we get

(5.43) σ 1/2|||U ′|||21/m + L(U ′) ≤ C(‖AU ′‖2 + ‖BU ′‖2)+ ‖U ′‖2 .

Combining (5.21), (5.27) and (5.43), we conclude that

(5.44) ‖SU‖2 + ‖T ∗U‖2 ≥ c

(
σ 1/2|||U ′|||21/m + L(U)+

∫
Mσ

|U ′′|2dS
)

− Cσ−1‖U‖2 .

If n = 2, thenU ′′ = 0 onMσ , and ifn ≥ 3, then we have at least one positive eigenvalue.
In this case, we apply Lemma 5.3 forf replaced byU ′′ and get

(5.45) σ 1/2|||U ′′|||21/2 ≤ CL(U ′′) .

Combining (5.4), (5.44) and (5.45), we conclude that

σ−3‖U‖2 + L(U)+ σ 1/2|||U |||21/m ≤ C(‖SU‖2 + ‖T ∗U‖2) ,

for all U ∈ Bq(Sε,σ ;A), providedσ is sufficiently small.
For the estimates of the non-tangential derivatives ofU , we note thatLAn = ∂/∂y2n +X,

whereX = ∑2n−1
j=1 bj (y)∂/∂yj . Therefore a standard argument yields the inequality

(5.46)

∣∣∣∣
∣∣∣∣
∣∣∣∣ ∂f∂y2n

∣∣∣∣
∣∣∣∣
∣∣∣∣
2

−1+1/m
≤ C

(
1 +

2n−1∑
j=1

|bj |2W̃ (x0),2n+3

)
(|||f |||21/m + ‖L̄nf ‖2 + ‖f ‖2)

for all f ∈ C∞
0 (W̃ (x0)). This inequality can be applied withf = UJl to obtain (5.1) from

(5.46). This completes the proof of Theorem 5.1. �

We now define Sobolev spaces for sections ofΓ 0,q(Sε,σ ;A). Recall that the open sets
Bb(x0) satisfy (4.3) and (4.4) for eachx0 ∈ M. Choose a setTσ = {xσi ∈ M ; i ∈ I }
such that the setsBcσ/2(xσi ), i ∈ I , coverSε,σ , and such that no two pointsxσi and xσj
satisfy|xσi − xσj | ≤ cσ/4, where| | is the distance function onSε,σ . It follows that the sets

W(xσi ), i ∈ I , coverSε,σ and that there exists an integerÑ such that no point ofSε,σ lies in
more thanÑ open setsW(xσi ). Furthermore, there exist functionsζi , ζ ′

i (that are independent
of y2n) ∈ C∞

0 (W(x
σ
i )) such that

∑
i∈I ζ 2

i ≡ 1, and ifx ∈ suppζi , then

(5.47) ζ ′
i ≡ 1 inBc′σ (x) ,

and that bothζi andζ ′
i satisfy

(5.48) |ζi |k,W(xσi ) + |ζ ′
i |k,W(xσi ) ≤ Ckσ

−k .
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Now, letF be any section ofΓ 0,q(Sε,σ ;A). We define

‖F‖2
k,A =

∑
i∈I

‖ζiF‖2
k,A,W(xσi )

,

where

‖ζiF‖2
k,A,W(xσi )

=
n∑
l=1

∑
|J |=q

‖ζiF Jl ‖2
k,W(xσi )

,

andF = ∑n
l=1

∑
|J |=q F Jl ω̄

J
A · LAj is the decomposition ofF in terms of the frame of

W(xσi ). Moreover, the Sobolev norm‖ ‖k,W(xσi ) is taken with respect to they-coordinates

of W(xσi ). We defineH 0,q
k (Sε,σ ; T 1,0

A ) to be the set of all sectionsF of Γ 0,q(Sε,σ ;A) for

which ‖F‖k,A < ∞. If we defineL2
q(Sε,σ ; T 1,0

A ) to be the set of allF ∈ Γ 0,q(Sε,σ ;A)
such that‖F‖2 < ∞, then it is obvious that the norms‖ ‖ and‖ ‖0,A are equivalent on
L2
q(Sε,σ ; T 1,0

A ). SinceA(Sε,σ ) ⊂ Γ 0,1(Sε,σ ; 0), we define‖A‖k = ‖A‖k,0 for A ∈ A(Sε,σ ),
andHk(Sε,σ ;A) to be the set ofA ∈ A(Sε,σ ) such that‖A‖k < ∞.

We want to get an estimate in global form. DefineQ(U,U) = ‖T ∗U‖2 + ‖SU‖2.
By using the partition of unity as defined above satisfying (5.47) and (5.48), and from the
estimates in Theorem 5.1, we obtain the following

COROLLARY 5.7. There exist a fixed small σ and a constant ε1 > 0 such that for all
ε,0< ε < ε1 and all U ∈ Dom(T ∗) ∩ Dom(S),

(5.49) ‖U‖2 ≤ CQ(U,U) .

Now let us fixσ > 0 satisfying Corollary 5.7, and setW(x0) = Wσ(x0). Using Theorem
5.1 and the standard “bootstrap" method, we can get regularity estimates for the linearized
equation. The proof is similar to that in Section 9 of [5]. Here we use 1/m subelliptic
estimates instead of 1/2 subellitic estimates. Set� = DqD

∗
q +D∗

q+1Dq+1. In the sequel, we
assume thatA satisfies

(5.50) ‖A‖2n+3 ≤ ε0 .

THEOREM 5.8. Suppose thatU is the solution of �U = G,whereG ∈ H 0,q
k (Sε; T 1,0

A )

for all k > 0. Then

‖D∗
qU‖k + ‖Dq+1U‖k � ‖G‖k + (1 + ‖A‖k+2)‖G‖n+2 .

Now setE = D∗
q+1Dq+1U . Then we have the following estimates for the error termE

[5, Theorem 10.3].

THEOREM 5.9. Suppose that �U = G, where Dq+1G = 0 and G ∈ H
0,q
k (Sε; T 1,0

A )

for all k. Then E = D∗
q+1Dq+1U satisfies

‖E‖k−1 � ‖G‖k‖FA‖n+1 + ‖G‖n+1‖FA‖k
+ (1 + ‖A‖k+2)‖G‖n+1‖FA‖n+1 .

(5.51)

Note thatFA isD3-closed. Sinceq = 2, we immediately obtain
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COROLLARY 5.10. If U is the solution with respect to LA of �U = FA, then V ′ =
D∗

2U satisfies for all k = n+ 1, n+ 2, . . .

(5.52) ‖D2V
′ − FA‖k � ‖FA‖k+1‖FA‖n+1 + ‖A‖k+3‖FA‖2

n+1 .

6. Extension of CR structures. In this section we will prove Theorem 1.1 and Theo-
rem 1.4, using the estimates in Section 5. First, we describe the nonlinear extension operator.
For details, one can refer to Section 11 of [5].

If A ∈ A(Sε,σ ) is sufficiently small and if we setPA(L̄) = L̄ + A(L̄), thenL̄A =
{PA(L̄) ; L̄ ∈ L̄}. If we setQA(ω) = ω − A∗ω, thenΛ1,0

A = {QA(ω) ; ω ∈ Λ1,0(L)}. We
define a nonlinear operatorΦ : A(Sε,σ ) → Γ 0,2(Sε,σ ) by

(6.1) Φ(A)(L̄′, L̄′′, ω) = QA(ω)([PA(L̄′), PA(L̄′′)]) .
Obviously, ifΦ(A) = 0, thenLA is an integrable almost complex structure onSε,σ .

Note that there is a natural mapPA : Γ 0,2
A → Γ 0,2 defined by

(PAB)(L̄1, L̄2, ω) = B(PA(L̄1), PA(L̄2),QA(ω)) , B ∈ Γ 0,2
A .

Therefore it follows from the definition ofFA in (2.5) thatΦ(A) = PA(FA). We also note
that if d andA are small sections ofA on Sε,σ , then there exist sections∆+

A,d and∆−
A,d of

Λ
0,1
A ⊗ T

1,0
A andΛ0,1

A ⊗ T
0,1
A , respectively, such that

PA+d (L̄) = PA(L̄)+∆+
A,d(PA(L̄))+∆−

A,d(PA(L̄)) .

Similarly, there exist sectionsδ+A,δ and δ−A,δ of Hom(Λ1,0
A ,Λ

1,0
A ) and Hom(Λ1,0

A ,Λ
0,1
A ), re-

spectively, such that

QA+d (ω) = QA(ω)− δ+A,d(QA(ω))− δ−A,d(QA(ω)) .

Then it follows that∆±
A(d) = ∆±

A,d both depend linearly ond and that the coefficients de-

pend smoothly onA, and the mappingd → ∆A(d) = ∆+
A(d) + ∆−

A(d) is invertible. Then
Φ ′(A)(d), as an element ofΓ 0,2, satisfies

(6.2) Φ ′(A)(d) = (PA ◦DA2 ◦∆+
A)(d)− PA(hA(d)(FA)) ,

wherehA(d) : T 1,0
A → T

1,0
A denotes the adjoint ofδ+A(d) : Λ1,0

A → T
1,0
A . SinceΦ(A) =

PA(FA), we letUA be the solution of�UA = −FA, and then setVA = (DA2 )
∗UA and

dA = ∆−1
A (VA). Using the error estimates in Theorem 5.9 and Corollary 5.10, we then obtain

the following good estimates for the approximate solution ofΦ(A)+Φ ′(A)(d) = 0.

THEOREM 6.1. Suppose that A ∈ Hk(Sε,σ ,A) for all k. Then there exists dA ∈
Hk(Sε,σ ,A) for all k such that if k ≥ n+ 2,

‖dA‖k � ‖Φ(A)‖k + ‖A‖k+2‖Φ(A)‖n+2 ,(6.3)

‖Φ(A)+Φ ′(A)(dA)‖k−1 � ‖Φ(A)‖k‖Φ(A)‖n+2 + ‖A‖k+2‖Φ(A)‖2
n+2 .(6.4)
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Note that properties (6.3) and (6.4) of the nonlinear operatorΦ are the crucial ingredients
in the application of simplified Nash-Moser iteration process [15].

We recall thatFA vanishes to infinite order alongM0 (in x-coordinates!). This can be
stated iny-coordinates as follows. The proof is similar to that of Lemma 6.2 in [5].

LEMMA 6.2. Suppose that there exists a sectionF ∈ Γ 0,2(Ω̄+),where Ω̄+ = {(x, t) ∈
Ω ; 0 ≤ t < 1} such that F and all its derivatives vanish to infinite order alongM . Then for
all k,N = 0,1,2, . . . , and all x0 ∈ M,
(6.5) |F 0|k,W(x0) ≤ Ck,Nε

Nϕ(x0)
N ,

where F 0 means that F is written out in W(x0) according to the frames L0
1, . . . , L

0
n,

ω1
0, . . . , ω

n
0 of L0.

We can now prove the main theorems of this paper:

PROOF OF THEOREM 1.1. We will show that‖Φ(0)‖D < b for the smallb > 0
and the integerD, which are appeared in the variant of Nash-Moser theorem [15]. The rest
properties for theΦ(A) in the hypothesis of Nash-Moser theorem can be proved using the
relations in (6.3) and (6.4), and the estimates for� operator in Section 5.

Note that (5.48) and (6.5) imply that for eachi ∈ I ,

‖ζiF 0‖2
k,0 ≤ Ck,Nε

Nϕ(xσi )
N ,

whereζi ’s are defined before (5.47). After summing up overxσi , we get

(6.6) ‖F 0‖2
k,0,Φ ≤ Ck,N

∑
i∈I

ϕ(xσi )
NεN .

Since the choice of points that was made before (5.48) shows that the ballsBcσ/8(x
σ
i ),

i ∈ I , are all disjoint, we can obtain an upper bound onN(l), which is defined to be the
number ofi ∈ I such that 2−l−1 ≤ ϕ(xσi ) < 2−l. In fact, in terms of the〈 , 〉0-metric
introduced at the end of Section 2, the volume ofBcσ/8(x

σ
i ) is roughly bounded below by

εn+1σ 2n−1+2mϕ(xσi )
2m(n+2) ∼ εn+1σ 2n−1+2m · 2−2lm(n+2), and the〈 , 〉0-volume of the

region inSε,σ with 2−l−1 ≤ ϕ(x) ≤ 2−l is roughly bounded above byεσ 2m · 2−2ml . Thus,
we conclude that

(6.7) N(l) � ε−nσ−(2n−1)22ml(n+1) .

Thus (6.6) and (6.7) imply that ifN = 2ml(n+ 1)+ 1, then

‖Φ(A0)‖k = ‖F 0‖k,0 � Ck · ε
for sufficiently smallε. In particular, if we setk = D and chooseε to be sufficiently small,
then it follow that‖Φ(A)‖D < b. �

PROOF OFCOROLLARY 1.3. Clearly,M̄ ⊂ bD is a CR manifold satisfying all the
conditions of Theorem 1.1. Therefore we can extend the given CR structure onM̄ to the
outside ofD by Theorem 1.1. Then, by virtue of Theorem 2.2, the extended CR structure can
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be patched smoothly with the given complex structure onD. Therefore Corollary 1.3 follows
from the Newlander-Nirenberg theorem. �
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