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MONODROMY GROUPSOF HYPERGEOMETRIC FUNCTIONS
SATISFYING ALGEBRAIC EQUATIONS

MITsuo KATO AND MASATOSHINOUMI
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Abstract. The solutions of the algebraic equatigfi” + xy"™” — 1 = 0withn > p
andm > 2 satisfy a generalized hypergeometric differential equation with imprimitive finite
irreducible monodromy group. Thanks to this fact, we can determine the monodromy group
and the Schwarz map of the differential equation.

1. Introduction. A generalized hypergeometric function

n—1
[ @i ©
Jj=0
nfn-1(ao, a1, az, ..., ap-1:b1,b2, ... . bp-1:2) = Z — z,
=0 T ok
j=1

where(a, k) = I'(a + k) /I (a) satisfies a Fuchsian differential equation
nEnfl(QOa alv a27 ey anle blv b21 cee bnfl)

of rankn with singularities att = 0, 1 andoco. Beukers and Heckman [B-H] determined
»En—1 with finite irreducible monodromy groups. In [Kt], fayE2 with finite irreducible
primitive monodromy groups, Schwarz mapsR¥ — {0, 1, co} to P? defined by linearly
independent three solutions are studied. The images of Schwarz maps and their single-valued
inverse maps are determined.

1.1. Asstated in Theorem 5.8 in [B-H], under some conditjdf),—1 with irreducible
imprimitive monodromy group is essentially given by

(1.1)
<—a —a+1 —a+p—-1 o a+1 a+qg—-11 n—l)
nEn—1| —, , = e — e ,
p p p q q q n n
where(p,q) =1 andn = p + 4.
If we putz = (—p)Pq?n""x", the generalized binomial function (see Section 2)

(1.2) Y(a, —p/n, x)
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is (as a multi-valued function of) a solution of (1.1). We remark that (1.2) is a typical
example of quasi-hypergeometric function studied in [A-llall= —1/(mn) with m > 1,
then (1.2) is also a solution of the algebraic equation

1.3) Yy 4+ xy™ —1=0.
These facts were found by Lambert (see [Brn, p. 307]), Mellin (see [BIr]) and others.
Leta = —1/(mn) with m > 2. Then a set of linearly independensolutions of (1.3)

form a fundamental system of solutions of (1.1). As a consequence, we have the following
results. The projective monodromy group of (1.1) is imprimitive and irreducible of order
m"~1n! (Corollary 4.6). The closure of the image of the Schwarz map of (1.1) defined by
the ratio of linearly independent solutions is an irreducible algebraic curve projectively
isomorphic to

{yo:yi::ynal € P Hon(yg, ¥, oy =0, 1<k <n—1 k#n—p},
whereoy, is the elementary symmetric function of degke@heorem 4.5).

1.2. As applications, we state several topicsidoe= 3 case in Section 5. We give

a proof of Cardano’s formula for a cubic equation, using properties of generalized binomial
functions. We also give a uniformization e by theta functions, that is, if we pat= J (1),

the elliptic modular function, tn the solutions of (1.1) with = —1/12 p = 1,4 = 2 turn
out to be single-valued functions efand are expressed by the zero values of theta functions.

2. Generalized binomial function. In this section, we summarize several known re-
sults which can be found in [Brn], [BIr], etc.
For any complex numbetsands, put
coa, s) =1,

(1) cla,s) =al@+ks +1,k—1/k! (k>1),
and define
(2.2) Y, s, x) = Z cx (@, $)xk.

k=0

We cally (a, s, x) a generalized binomial function becaugéx, 0, x) = (1 — x)™“.
We will prove some properties af(«, s, x).

LEMMA 2.1.
(2.3) Y, s,x) =Y(—a,—s — 1, —x).

PrROOF
(—Dfer(—a, —s = 1)
= (=D (—a)(—a — (s + Dk + 1, k — 1)/k!
=a(l@a+sk+k—Da+sk+k—2)---(a+sk+1)

=cr(a, s).
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We note that) (o, —1, x) = (1 + x)* andy (0, s, x) = 1.
ProrPoOsITION 2.2. If none of «, s, s + 1 is zero, then the radius of convergence of
V(a, s, x) is|s*/(s + 1)**1|, where z¢ denotes the principal value.
PrROOF Put
T'(a + (s + k)
FA+kI(a+1+sk)

Then the radius of convergencewft, s, x) is the reciprocal of the upper limit ¢ |1/
First assume thatis not a negative real number. Then, from the Stirling’s formula:

Crlo,s) =(a+sk+1Lk—1)/k! =

I'(z) ~vV2777 Y% % as z—>o00 and |argz] <7 —8, >0,

we have
Dk s+1
G, [k~ @ GHDOT
A+ k) (a+ 1+ sk)s|
~ 1 + D8]
This proves the proposition fearwhich is not a negative real number.
Assume—1 < s < 0. For largek € N, chooser; € N andé; with 0 < §; < 1 such that

Re(w) + sk = —ng — 6.

a+ G +Dk fa+(s+ Dk’
1+k o+ 1+ sk

Then
[Ck (e, 8)| = |(a + 1+ sk, k — 1)|/ k!
=@+ 14sk) - (0 + 1+ sk+ng— 1)
X @+ 1+ sk+ng) - (a@+ (s+ Dk —1)|/k!
=|(—a —sk —ng,ng)| - (¢ +sk+ng+1, k—1—ng)|/k!
_ | (—a — sk)| - | (a + (s + k)|
IF'A+ kI (—a — sk —np) M (a + sk +n; +1)]
If s is a rational number, then the set= {8 | k € N} is finite, otherwises is dense in the
open interval0, 1). In any case we have

_ i |G @ (4 DT
T ko0 14k

— im (2% sk\ " (o + (s + Dk s+l
T k>0 1+k 1+k
== 6+ DT =16+ DTS

This proves the proposition farwith —1 < s < 0. From Lemma 2.1, the proposition holds
for any negative real numbermwhich is not—1. This completes the proof. O

1/k

lim sup|ck (a, )|

k— 00

LEMMA 2.3.
(2.4) ek, s) —cp(a —1,8) = cp—1(a +5,8), k>1.
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PROOF

crla, s) —cp(a — 1, 5)
ale+ks+1Lk—1) — (0« —D(ax+ ks, k—1)
k!
_(et+s)a+s+k-Ds+1 k-2
B (k — 1)!

=cp—1(a+s,s).

PrROPOSITION 2.4. Wk have the following two equalities.
(2'5) W(O{,S,x)—W(a—l,s,x):)ﬁ//(o[-ks,s,x),
(2.6) Vo +B,s,x) =y, s, )P(B,s,x).

PrROOF (2.5) follows immediately from (2.4).

Proof of (2.6). It is sufficient to prove
(2.7) @+ B,s)= Y cile,$)c;(B,s),

i+j=k
which is proved by induction fot. Consider
dr(B) = cr(a + B,s) — Z ci(a,s)cj(B,s)
i+j=k
as a polynomial o8 (o being a parameter) of degree at mbsErom (2.4), we have
di(B) —di(B— 1) =dk-1(B + ),

which vanishes by induction. Hendg(8) must be constar@. Sincec;(0, s) = 0 for j > 0,
we haceC = d;(0) = 0. This completes the proof of (2.7) whence of (2.6). O

COROLLARY 2.5. Lety/(s,x) = 9v/0a(0, s, x). Then we have the following:

(1) ¥/(s,x) isholomorphicin {x | |x| < |s*/(s + 1)**1|} with y/(s, 0) = 0.

2 Y(a,s, x)=explay'(s,x)).

PrROOF (1) holds becaus#’(s, x) = Zkzl G (o, $)x*, whereéi (o, s) = ci(a, s)/a
as in the proof of Proposition 2.2. (2) follows from (2.6). O

PROPOSITION 2.6. Let g = 2™/, For positive integers p, ¢ withn = p + ¢, the
equation (1.3) withm =1

(2.8) y'+xyP—1=0

has solutions

(2.9) fi@) = enyr(=1/n, —p/n.el’x), 0<j<n-—1,
in a neighborhood of x = 0,

210) & x Py (p.a/p —(e, x7V) . 0= j=p-1,

(2.11) el (=) Yy (=1/q. p/q. —(el(—0)Y)™), 0<j<q—1,
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in a neighborhood of x = oo.

PrROOF Puts = —p/n anda = 0in (2.5). Then we have
1-y(=1,5x)=x¥(—p/n,s, x),
which is equivalent to
(2.12) Y(=1/n, s, x)" + xy(=1/n,s,x)? —1=0.

If we replacex by s,é’jx, we know that (2.9) are solutions of (2.8).
Puts = ¢/p anda = 1in (2.5). Then we have

v (1/p, s, x)P —1=xy(1/p,s, x)",
which is equivalent to
(=) Y"1/ p, s, O + (—x) P/ [(=x) Y"1/ p, s, x)]P —1=0.

Putx; = (—x)~?/", and writex instead ofr;. Then we know that functions in (2.10) are
solutions of (2.8).
Now, puts = p/g ande = —s in (2.5). Then we have

v(—=1/q,s, )" —¢¥(=1/q,s,x) +x =0.
Then, by the same way as above, we know that functions in (2.11) are solutions of (2.8). This
completes the proof. O

COROLLARY 2.7. Ifox(yo, y1, ..., yu—1) denotesthe elementary symmetric function
of degree k, then we have

(2.13) ok (fox), f1(x), ..., fu1(x) =0, 1l<k<n—2k#n—p,
(2.14) Onp(fox), f1(X), .., fum1(x)) = (=) Px,
(2.15) on(fox), f1(x), ..., fum1(x)) = (=D)L,

For any positive integer, put

o]

(2.16) @jla, s, x) = x/ ZcHzn((x, s)xm,
=0

Then we have

n—1
(2.17) Yl s,x) =Y ¢j(as,x).
j=0
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PROPOSITION 2.8. Lets = —p/nandn = p + q. Then we have

pj(a, s, x) = cj(a, s)x’

—o+pn a+v
- - — = <v<g-1;
(218) XnFn l< p +nsoSMSp 11 +n»0_‘)_‘] ]
j+1 n—1n+1 n+j (=DPpPqgs ,
e R e ; x"].
n n n n n"

ProOE If k =nl (I > 1), then we have

1 1
cr(a, ) = ﬁa(a -pl+1lnl-1)= Fx(a —pl+1, pl = D(a, gl)

— (—1)P
=D (1, nl)

p—1 qg—1

pP'q" [[(=a/p+u/p. D] [(@/q+v/a. D)
_ 1 n=0 v=0
- (—1)-” n—1
n! [T@/n+a/n.D
=0

Ifk=nl+j (1< j<n-1),thenwe have

cr(a, s)

Tk

1 P . pJj . qj
= ofa—LZw 1l )(a— 2L 41,51 Y g1
j!(j+1,nl>°‘(“ e ”)(“ PR )(‘”n 1

al@+qj/n—j+1j-1 )7l (—a+ pj/n, ph(a +qj/n, ql)

1
——a<a—£(nz+j)+1,nz+j—1)
n

- T -1 G +1,nl)
p—1 q—1
pPlg" [ (—a/p+i/n+u/p. D] [(@/q+j/n+v/q.1)
= cj(a, )(=)" = P =
n! [T +D/n+a/n. D)
A=0

This implies (2.18).

COROLLARY 2.9. Lets = —p/n,n = p+qande, = /", Then y(a, s, ek x)
is, asa multi-valued function of z = (—p)?q?n"x", a solution of the differential equation
(1.2). If cj(er,s) # 0 for 0 < j <n—1,then y(a,s,ekx) 0 <k <n— Llarelinearly

independent.
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PROOF From (2.18), we know thap;(«, s, x) is a solution of (1.1) (see the lemma
below). From (2.16) and (2.17), we have

n—1
(2.19) Vs ek =Y el pie s, x),

j=0
which is thus a solution of (1.1). K;(c«,s) # O, theng;(a,s,x) # 0 andy (a, s, eﬁx),
0 <k <n -1, are linearly independent from (2.19). O

The following lemma is well-known.
LEMMA 2.10. If b = 1, then the differential equation
nEn—1(ao, a1, az, ... ,ap-1; b1, b2, ..., bp_1)
has solutions
2 Fy1(ao+1—bj, ... ap_1 +1—b;;
bo+1—bj....bjF1—bj ... by1+1—bji2):;0<j<n—1
atz = 0and
Z YpFy_1(aj+1—bo,...,a;j +1—by_1;
aj+1l—aoq,...,qj +/1\—aj,... ,aj+1—a,-1;1/2); 0<j<n-1
atz = oo.
PROOFE ,E,_1is defined by
n—1 n—1
(2.20) []‘[(0 +bj—1)—z ]_[(19+a,-)}u=o,
j=0 j=0
whered = zd/9z (see [Bly]). It is easily verified that functions in Lemma satisfy (2.201

REMARK 2.1. Ifs = p/q withn = p + ¢, then we have, for& j <g —1,

o
j i
jla,s,x) = x/ chﬂq(a, s)x'd

=0
. o i o+ 1 j a+n—1 j
= cj(a, 5)x’ nFnl(_ T T e e
noqg n q n q
a+1l i1+ -1 1 i n
+ +i,_..,a+p+i, +],...,q ’q+ ,...,Q+J; " x").
p q D q9 9 q q q pPqi

3. Global properties of solutions of y" + xy? — 1 = 0. Assumes(s + 1) # O.
PutA(s) = {x||x] < |s*/(s + D*TL}. Theny (o, s, x) andy/(s, x) = 3y /9 (0, s, x) are
holomorphic inA(s) (Proposition 2.2 and Corollary 2.5).
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LEMMA 3.1. Assumes € R. Thenwe have |argy (—1,s, x)| < 7, or equivalently,
[Im v/ (s, x)| < 7 in A(s).

PrROOR Assumelm (s, x1)| = 7 for somex; € A(s). From (2.5) and (2) of Corol-
lary 2.5, we have

exp(—s (s, x1)) (1 — exp(—y'(s, x1))) = x1.

This implies® := argx1 = (+s + 2n)7 for somen € Z. Since Imy/’ (s, 0) = 0, there exist a
positive numberg (< |x1|) such that

My’ (s, re'?)| < 7 for0 < 1 < fp and|Im v/ (s, 10e'?)| = 7 .

Putxg = f0e!? andbg = ¥ (—1, 5, x0) (< 0). Sincey = ¥ (—1, s, x) defines an open map,
¥ (—1, s, ¢'t) maps some open interviah — 8, to + &) onto some open intervébg — §', bo +
8"). This contradicts the choice af. O

We assumép, ¢g) = 1 and putz = p + ¢. Recall thatf;(x), 0 < j <n — 1 given by
(2.9) are the solutions of the equation (2.8). The equation (2.8) has multiple roots at

. <—p(l+2j)
Xj =\ —————

(3.1) 5

)(p/n)"’/”(q/n)‘q/", 0<j<n-1,

wheree(x) = ¢27i* and atx = co. Note thatx = x; are solutions of
(—=p)Pqin~"x" =1.
LEMMA 3.2. Atx = x;, theequation (2.8) has a double root
(3.2) e((L+2))/2n)(p/q)""
andn — 2 simpleroots.

PROOFE The double root of the equation (2.8) is uniquely determined by (2.8) and
ny" 1 4+ pxyP~l =0. O

We know thatf; (x) are holomorphic imt := A(—p/n) = {x| |x| < (p/n)~P/"(g/n)~9/"}
and continuous in the closurk of A.
Put

(3.3) Dj = fi(4).
Then we haveD; = e(j/n)Dg and putD,, = Do.

LEMMA 3.3.

(3.4) (_1+2])n§argy§(1+2
n

(3.5) Dj N Djy1={fj(xp} = {fi+1(e)} = {e((L+2j)/2n)(p/q) "}
andD; N Dy =@ if j —k # +1.

])n for ye D;,
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PROOF The inequalities (3.4) follow from Lemma 3.1 and (2) of Corollary 2.5. These
inequalities imply thatD; N D, = @ if j — k # £1. Since any elementdd; N D;,1 is one
of (3.2), we have

Dj N Djy1 = {e((L+2))/2n)(p/q)""}
from (3.4). From Lemma 3.2, (3.5) follows. O

COROLLARY 3.4. Let y be aloop starting and ending at the origin and once sur-
rounding xo. Let y; = e(—pj/n)yo. Then, by the analytic continuation along y;, f;(x) and
fi+1(x) areinterchanged and other fi (x) are unchanged.

PROOF  Assumeyo (hence anyy;) acts trivially on{ fo, ..., fu—1}. Thenf;(x) are
entire functions. This contradicts Proposition 2.6. O

DEFINITION 3.1. LetE be a Fuchsian linear differential equation of rankn P,
Let Z = P! —{singular points of£}. Fix a base point;, € Z, and letV be the set of germs of
holomorphic solutions of atz,. Foranyy € m1(Z, zp) andf € V, the analytic continuation
v, f of f alongy is again inV. We considety, an element o5 L (V) and call the seM (E)
of all y, themonodromy group of E andM (E)/(its centey the projective monodromy group
of E.

We say thatM (E) is (or E is) reducible if there exists a non trivial subspadg of V
which is invariant under the action &f (E) and sayM (E) is (or E is) irreducibleif M(E)
is not reducible.

We say thatM (E) is (or E is) imprimitive if V has a direct sum decompositiéh =
Vi+ Vo+-- -4 Vi such that any element 8f (E) induces a permutation ¢¥1, Vo, ..., Vi}.

Choose a basis; (z), 1 < j <n of V. Then we have a holomorphic map

v(z) = [v1(z) 1 v2(2) 1+t o (2)]
of a neighbourhood af;, into P*~1. By taking analytic continuations af, we have a multi-
valued map (again denoted hypf Z into P~ which we call aSchwarz map of E.

Remark 3.1. If the Schwarz map has a single-valued inversenpathen the projec-
tive monodromy group of is isomorphic to the covering transformation groupr@f

The map ofa to P"~1 defined by fo(x) : fi(x) : ---: fu_1(x)]is extended to a multi-
valued map o — {xq, ... , x,—1} to P"~1 by the analytic continuations. Take the closure of
its image inP"~1, which we denote b, .

PrROPOSITION 3.5. Let ox(y) = orx(yo, y1, ..., yu—1) be the elementary symmetric
function of degree k. Then we have the equality

(3.6) Xn,pz{[)’OI)’li"'Iynfl]EP"71|ok(y):O’ l<k<n-1,k#gq}.
Put

n pq(a( LI ] 7))7!
(3.7) Tnp(Yo:y1: - yue1l) = (1) P q q)0 Yn—1

n (0 (yo, ...y yn—1))9
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Then z = 7, ,(y) definesan n! : 1 rational map of X, , to P! satisfying

(3.8) T, p([fo(x) : f1(x) it fum1(0)]) = (=p)Pqin™"x" .

The branch points of thismap are z = 0, 1, co with the ramification indicesn, 2, pq, respec-
tively. The covering transformation group is isomorphic to the symmetric group S, of order
n!.

PrROOF Denote by)?n,p the set of common zerosef, 0 <k <n—2, k # q. From
Bezout’s theorem;r,,,pb?” isann! : 1 map of)A(,l_,,7 to P1. From Corollary 2.7, we have

Xu,p C )A(n,p, that is, X, , is an irreducible component d?fn,p. From Corollary 2.7, (3.8)
holds and from Corollary 3.4, we know th§f acts on each fiber of, ,|x, ,. Consequently,
we must haveX,, , = X, .

The equality (3.8) implies that the ramification indexiatz = 0. From Corollary 3.4,
the index at = 1 is 2. From Proposition 2.6, we know that the ramification index-atoo
is pq. This completes the proof. O

The statement (2) of the following corollary is proved in [B-H, Proposition 2.6].

COROLLARY 3.6. (1) If p < n —1, then ¥(=1/n, —p/n,ekx),0 < k < n—1,
are solutions of a differential equation ,_1E,_2, the projective monodromy group of which
is isomorphic to the symmetric group S,, of order n!. Any n — 1 of the above solutions are
linearly independent.

(2) The projective monodromy group of

12 n—1 1 -11 -1
(39) nflEn72 (_7 Ty ey Y T p—7 R q—)
n’n n ' p P q q

isisomorphicto S,.

PrROOFE Proof of (1). Assume < n — 1 or equivalentlyy > 1. Pute = —1/n and
s = —p/n. Letg* be the integer such that

l<g*<n-1 and ¢gg¢*=1modn.

Thenp* := n —¢* also satisfiepp™ = 1 modn. Fork = p orq, putd;, = (kk*—1)/n. Note
g* > landd, > 0 becausg > 1. We easily have,+(«, s) = 0, and henceg«(«, s, x) =0
(see Proposition 2.8). Since

(—a+dp)/p=(a+q—dy/qg=p/n,
we have
pola, s, x)

— —a+p—-1a« a—i—/qtdq a+qg—1
=p-1Fu—2 S — .. seees

bl
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wherez = (—1)? pPqin~"x" as before. By the same way, we know that
{pj10<j <n-—1,j+# q*}forms a system of fundamental solutions of

—o —a+p—1 « a—l—/qtdq a+qg—1
n—1Ep 2| —, ..., ———, —, ..., s ey 5
(3.10) 4 PA q q q
n—1 p* 1
e e )

The equalities (2.19) imply that(—1/n, —p/n, sﬁx), 0 <k <n—1,are solutions of (3.10)
and moreover any — 1 of them are linearly independent. Since the projective monodromy
group of (3.10) is isomorphic to the covering transformation group,gf, which is isomor-
phic to S, from Proposition 3.5. This completes the proof of (1).

Proof of (2). In (3.9),p andg are symmetric so that we can remain the assumption of
p<n—1L1Putr=(—a+dy)/p=(+q—d;/q = p*/n Then, from Lemma 2.10, the
equation (3.10) has the special solution

1 Y n—1 d 1
zrn_an_2<r,r+—,... ,r+q—,... Jr+ 14+ L1+ =,
n n n p p
-1 1+d —d 1 ¢9g-1 —-d; —1
P I, 47% - 47 17 % ;1/z>.
pr p q q q
Thus the projective monodromy groups of (3.9) and (3.10) are mutually isomorphic, proving
(2). This completes the proof. O

4. Schwarz map of afamily of imprimitive ,E,_1. Assume(p, g) = 1 and put
n=p+4+q, s=-p/n, z=(=pPqinT"x", & =e(l/k) =k,
For an integem > 2, pute = —1/(mn) and define
(4.1) £ @) = et @ s el x) 0<j<n—1,

which is am-th root of f;(x). The following lemma is an immediate consequence of the
definition (4.1) of £ /™.

LEMMA 4.1. Wehave

FH™ e(p/m)x) = e(—1/mu) fi77" (1), for 0<j <n—2,
£ e(p/n)x) = e((n — 1)/ (mn)) fg7™ (x) .
When we considefj(l/’”)(x) as a multi-valued function of, we denote it byfj(l/’")(z).

LEMMA 4.2. f;l/'")(z), 0 < j <n—1, arelinearly independent solutions of differ-
ential equation (1.1).

PROOF  Sincec; (e, s) # 0,for0< j <n — 1, Corollary 2.9 proves the lemma. O
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Similar to (3.3), we put
D;l/m) _ fj(l/m)(A‘) )
Then we haveD(l/’") e(j/(mn))D(l/m) and can prove the following lemma and its corol-
lary from Lemma 3.3 and Corollary 3.4.
LEMMA 4.3.
= {e((1+ 21)/(2mn)>(p/q)1/"}, O<j<n-2,
DM ne/myDSY™ = (£ (ue)) = {e@/m) f™ (xa—))
= {e((2n — 1)/ 2mn))(p/q)"'"} .

COROLLARY 4.4. Let y; betheloop defined in Corollary 3.4. For 0 < j <n — 2,

by the analytic continuation along y;, f; d/m) (%) and £ l(i/lm)(x) are interchanged and other
fk(l/ ™ (x) are unchanged; by that along y,_1, f,ff/lm)(x) and e(1/m) fél/ ™ (x) are inter-
changed and other fk(l/ ™ (x) are unchanged.

From Lemma 4.2, a Schwarz map of (1.1) is given by
(4.2) 2eP = (0,1, 00} — £ @) : @ - V@1

We denote the closure of its image & ,{,'"), which is an irreducible curve iR" 2.

THEOREM 4.5. Assume (p,gq) = landputn = p+g¢q,s = —p/nanda =
—1/(mn), m > 2. Then we have the equality
(4.3)
Xy
={vo:y1:-:yu-1l € P oL ¥y, ...y ) =0,1<k<n—-1, k #q},
where oy isthe elementary symmetric function of degree k. Put
Pqd (og (g i -y )"
(4.4) m(,l;/;'")([yo:yltw:yn71])=(—1)"pf (o o oL )q
n (Gn(y01yls 7)’,,_1))

Thenz = rr(l/m)(y) defines an m”" 1! : 1 rational map of Xﬂ,’") to P! satisfying

@5 " e f(l/’”)( )i P D) = (—p)PginTx"

The branch points of this map are z = 0, 1, co with ramification indices n, 2, mpgq, respec-
tively.

PrOOF We denote the right hand side of (4.3)ﬁ§[,lf,m) for the moment. Since

Yy = £,
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we have, from Proposition 3.5’,,(,%”1) cX ,(,ﬁ{,m). By Bézout's theorerm,g,ll/,m) is anm”1n! :

1 map ofX ﬂ,’") to P! and from (3.8) it satisfies (4.5). On the other han&{,’") restricted to
X,(i,lf,’") hasm”~1n! points in any generic fiber because the covering transformation group of
X,%’") includess,, from Corollary 4.4 and multiplication af(1/m) to coordinatey, 1 from
Lemma 4.1. Hence we ha\)ef,%'") = )A(,%’"). The ramification index at = cc is mpg from
Proposition 2.6. This completes the proof. O

COROLLARY 4.6. Leta = —1/(mn), m > 2, then the differential equation (1.1) has
imprimitive finite irreducible projective monodromy group of order m”™~1n!.

PROOF The order of the projective monodromy group of (1.1) is equal to the degree of
75" which ism"~1n! from the above theorem. Lé% and I} be loops once surrounding
z = 0 andz = 1, respectively. From Lemma 4.1 and Corollary 4.4, bbtrand I'; induce
permutations on the se{a(fj(l/'")n 0 < j < n — 1} of one dimensional subspaceﬁ;l/'")).
Hence the monodromy group of (1.1) is imprimitive.

Since neithef(—a +k)/p —I/n nor (a + k)/q — I /n is an integer for any integeksand

[, (1.1) is irreducible from Proposition 3.3 of [B-H]. O
COROLLARY 4.7. For any positive integer m, n and g satisfyingl < ¢ <n — 1 and
(n,q) = 1, the algebraic set
{vo:yr:-:ync1l € P o ¥ ... 9" ) =0, 1<k <n—-1, k #q}

isirreducible.

PROOF The statement is true for = 1 from Proposition 3.5 and for > 2 from
Theorem 4.4. |

5. ¥(a, —1/3,x). Inthissection, we give several results concerningite, —1/3, x).

5.1. A proof of Cardano’s formula.

LEMMA 5.1.
_ 2
(5.1) W(=1/2, —1/2,x) = LT VX" H42 V2x+4,
(5.2) Y110 = 2TYIZ4

2

PROOF From (2.17) and (2.18), we have

1 11 1 1 3 1
—1/2,-1/2,x) = oF1( 2, —2; Z; —=x2) — ZxoF1( 1,0, =5 —=x2) .
vtz -1/ =2 1(2 2’2 4x> 22 1( 2 4x>

SincexFi(a, b; b; x) = (1 — x)74, (5.1) is proved.
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If Kk > 1, then we have
cx(—1,1) = —(k, k — 1)/ k!
= —k(k+1)---(2k —2)/k! = —(2k — 2)!/(k!(k — 1))
=-1-3--- (2 =32kl = —(1/2, k — 1)2% 2k
= (=1/2, k)4 /(2k!) .
Hence we have (5.2).

LEMMA 5.2.
Yv(—=1/3,-1/3, x)

1 1+4 , 1/2_|_1 3 4 N 1+4 , 1/2-'_1 ~1/3
(5.3) AT 2 3\ 2\" 27" 2

1/2 1/3 1/2 1/3
1/ 4 1 1/, 4 1

=(z(1+ =x3 ) —(F(1+243) -Z
(2( +27x) +2) (2( +27’6) 2) ’

where cube roots take positive valuesiif x isa positive small number.
ProOOF From (2.17) and (2.18), we have
¥(=1/3,-1/3,x)

(i 1121 45 1 (21242 4,
_3235 67353735 X -x32 X

_op(_ 112 4\ 1 (124 4.,
2N\ T e 33 27 32" WNe 33 27 )

which is equal to, from Remark 2.1,
9o(—1/3.1/1; —x%/27) — 1/3x ¢o(1/3, 1/1; —x/27)
=y(-1/3,1; —x%/27) — 1/3x ¥(1/3, 1; —x°/27)
=l (-1, L —x%/2D1"3 = 1/3x [y (-1, 1; —x/27)] 73

|:1+\/1+4x3/27j|1/3 1 |:1+\/1+4x3/27j|1/3
= — =X
2 2

3

due to (5.2). This proves the lemma.
THEOREM 5.3 (Cardano). The eguation
X34+3pX—2¢=0
hasroots
(5.4) 2 (a+vVri+a?) P el (q -V +?)®. o=m<2

where 3 = ¢27//3 and cube roots must be chosen such that

©5) (4 + VTR g~ = .
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PrROOF Theorem follows from Lemma 5.2 and Proposition 2.6. O

5.2. Auniformization ofyy(—1/12, —1/3, x).
LEMMA 5.4. Lets = —p/n. Then for any o, we have

n—1
(5.6) l_[ Y(a,s, 8}4)6) =1.

j=0

PROOF From (2.19), we have

n—1

. "

Y@, s,enx) =Y & ppla, s, x).
k=0

First we note

d
00(0,5,x) =1, %(O,S,x)zo and ¢¢(0,s,x) =0 for k> 1.
o

Put f (o) = [T'Z5 ¥ (e . &4x). Thenf(0) = 1 and

-1 n—1
df — 0V ; Y
e = Za(a,s,sﬁx)nw(a, s, &5 x) = ZE(G,S,SﬁX)
a=0 k=0 j#k a=0 (=0 a=0
n—1n-1 8(p n—1 8(p n—1
_ jkOPi 1 79 jk
Yy < (X )(X)
k=0 j=0 a=0 j=1 a=07 N\ =0
=0.

Sincef (e + B) = f(a)f(B), we havef (x) = f(0) exple df (0)/dw). This proves (5.6)0

Leta = —1/(3m) and puty; = fl.(l/’")(a, —1/3,x)for j =0,1,2 (as forf}l/'"), see
(4.1)). Then, from (4.3), (4.4) and (4.5), we have
1/m) GF" +y2" +yd"3 4

6.7 yo+y'+y; =0, =& ([yo:y1:y2D) = =——x
o TS T2 31 54(yoy1y2)?" 27

Let
J(t) = 127307 2(1 + 74412 4+ 196884* + 2149376@° + --.), h=¢"'"
be the elliptic modular function defined on the upper half plane.

LEMMA 5.5. Ontheupper half plane {z | Im(r) > 0}, we have a single-valued func-
tionx = x(r) sothat J(r) = —4x3/27and that x > O for t = e(1/3) + i witht > 0.

PROOF The assertion holds becausér) < 0 on the half linet = e(1/3) + ti with
t > 0 and becausé(t) has only triple zeros. O

Now we have the following theorem.
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THEOREM 5.6. Letm = 4,n =3,p = landa = —1/(mn), s = —p/n. Let
fj(l/'")(x), j = 0,1, 2 be solutions of (1.3) defined by (4.1). Let x = x(t) be the single-
valued function in the previous lemma. Then we have

YY) = €920, 7), M x(r)) = Co0(0, 1),
Y (x(0)) = e(1/8)C93(0, 1) ,
where h = ™7, Ho = [[32,(1 — h%) and C = 27 Y3e(1/24h~ Y121 .

(5.8)

PROOF  LetCa = {[yo: y1: y2l € P?|y§ + y{ + y5 = 0}. Then

713(!11/4) :Cq —> pl

satisfies, from (5.7),
54(yoy1y2)®

1/4
zrél/ "(yo: y1:y2l) =

It is well-known (see, for example [Akh]) that
(5.9) 7517 (19200, 7) : 90(0, 7) : e(1/8)93(0, 1)) = J (1) .
This together with the equality (5.6) implies that both

LYY 1Y 01 and [9200,7) 1 90(0, 7) ¢ e(1/8)93(0, 7)]
belong to the same fib(érr3(!ll/4))_1(J(r)). Hence for some fourth roots ¢’ of 1 and some
functionC’ = C’(r), we have
(D f YD DY — (07920, 1), C'e0(0, 7), C'é'e(1/8)93(0, 1)} .
If we putt = (—1+ +/3i)/2 + ti and letr to +o0, thenz = J(r) < 0 goes to—oc. Since,
from (5.3),

£ = el 27 R2(J1T= T () + DR - (V1= T (1) - DYHYA,

we have (5.8) for some functiofi = C(z) of z. Sinced2(0, 7)d0(0, 7)93(0, 7) = 2hY/*H
(JAkh]), C takes the value in the statement of the theorem. O

REMARK 5.1. We dealt with the case of = 4 because we used the identity
95(0, ) + 950, 7) — ¥3(0,7) =0
in the proof.
COROLLARY 5.7. Letamulti-valued function f(z) be a solution of
3E2(1/12,—1/24,11/24; 1/3,2/3) .

Then f(J (7)) turns out to be single-valued and a linear combination of C¥;(0, ), j =
0, 2, 3, where C isasin Theorem5.6.
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