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Abstract. We construct codimension-one, Lorentzian geodesible foliations of closed
three-manifolds having Heegaard splittingsof genus one. We prove that all the inner leaves
of a Reeb component of a codimension-one, totally geodesic foliation of a Lorentzian three-
manifold are spacelike, and the boundary leaf of a Reeb component is lightlike.

1. Introduction. Geodesibility of a given codimension-1 foliationF has been stud-
ied by several authors. Here geodesibility ofF means thatF is totally geodesic for some
complete Riemannian metric, and in this caseF is called complete Riemannian geodesible.
Let us first recall a couple of results about a codimension-1, totally geodesic foliationF of
a complete Riemannian manifold(M, g). Blumenthal and Hebda ([1]) showed that the uni-
versal covering ofM is a productL × R and the lift ofF is the product foliation{L × {∗}},
whereL is the universal covering of the leaves ofF . Oshikiri ([9], [10]) proved that any
Killing field with bounded length preservesF . Regarding codimension-1, complete Riemann-
ian geodesible foliations, we remark the following results. Carrière and Ghys ([3]) classified a
codimension-1, complete Riemannian geodesible foliation of a closed 3-manifold. Ghys ([5])
classified a codimension-1, complete Riemannian geodesible foliation of a closed manifold.
Thus a codimension-1, complete Riemannian geodesible foliation of a closed manifold is well
understood.

Now we consider codimension-1, Lorentzian geodesible foliations. Zeghib ([14]) con-
structed codimension-1, lightlike totally geodesic foliations. He constructed a lightlike totally
geodesic foliationF in the following cases:

(1) F is defined by a locally free action with codimension-1 orbits of a Lie group with
a 1-dimensional normal subgroup.

(2) F is the suspension of a foliationL of a Riemannian manifold(M, g) by a diffeo-
morphism ofM preservingL andg|TL.
Although this construction gives an example of a codimension-1, Lorentzian geodesible fo-
liation, we do not know whether it is complete Lorentzian geodesible or not (for example,
consider a non-singular flow on a 2-torus with Reeb components and the following). Carrière
and Rozoy ([4]) proved that the canonical lightlike totally geodesic foliations of a lightlike
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complete Lorentzian 2-torus areC0-linearizable. So there is a difference between complete
Lorentzian geodesible foliations and Lorentzian geodesible ones.

By the theorem of Blumenthal and Hebda ([1]), there exist no codimension-1, Riemann-
ian geodesible foliations of a closed manifold with finite fundamental group. We have the
following question.

QUESTION 1.1. Does there exist a codimension-1, Lorentzian geodesible foliation of
a closed manifold with finite fundamental group?

Although a Riemannian metric on a closed manifold is always complete, a Lorentzian
metric on a closed manifold isnot always complete. Hence it is a serious matter whether
to suppose completeness of Lorentzian metrics when we consider totally geodesic foliations
of closed manifolds. Recall that a geodesic ofan incomplete Lorentzian metric on a closed
manifold has an infinite Riemannian length whenever it is not closed. Thus if we consider, for
example, an Ehresmann connection for a foliation ([2]) of aclosed manifold, then it seems that
the assumption of completeness of the Lorentzian metric is unnecessary. Therefore it seems
meaningful to consider totally geodesic foliations of closed Lorentzian manifolds without as-
suming completeness. Hence, first of all, we consider codimension-1, Lorentzian geodesible
foliations. However, completeness must be important. Actually, the present author proved
the following (see [12]): There exists no totally geodesic foliation of a lightlike complete
Lorentzian 2-torus which contains at least twokinds of leaves among spacelike, timelike, and
lightlike ones. There is an example of a totally geodesic foliation of a lightlike incomplete
Lorentzian 2-torus which contains at least two kinds of leaves. We have a partial answer to
Question 1.1 as follows.

THEOREM 3.1. If a closed 3-manifold has a Heegaard splitting of genus one, then it
has a codimension-1 Lorentzian geodesible foliation.

We prove this theorem by constructing examples in Section 3.2. Each example has space-
like and lightlike leaves. So the following question arises.

QUESTION 1.2. Does a codimension-1, totally geodesic foliation of a closed Lorentzian
manifold with finite fundamental group have lightlike leaves?

In Section 4, we consider totally geodesic foliations consisting of spacelike leaves of
compact Lorentzian manifold, and codimension-1, totally geodesic foliations consisting of
timelike leaves of Lorentzian 3-manifold. We do not assume completeness of Lorentzian
metrics. We then have the following.

PROPOSITION 4.2. Let (M, g) be a compact Lorentzian manifold and F a totally ge-
odesic foliation of M consisting of spacelike leaves. Assume that F is tangent to ∂M and
(TF)⊥ is completely integrable. Then the distribution (TF)⊥ is an Ehresmann connection
for F .



LORENTZIAN GEODESIBLE FOLIATIONS 425

PROPOSITION 4.4. LetM be an orientable 3-manifold, g a time-orientable Lorentzian
metric on M, and F an orientable, codimension-1, totally geodesic foliation of M consisting
of timelike leaves. Denote the foliation determined by (TF)⊥ by H. Then the following hold.

(1) The lightlike vectors on TF determine two subfoliations L0,L1 of F .
(2) The distribution TH ⊕ TLi is completely integrable for i = 0,1. Therefore, if Hi

denotes the foliation determined by TH⊕TLi , i = 0,1, then (F ,H0,H1) is a total foliation
of M (We call it the total foliation associated with F).

In Section 5, we consider a Reeb component of a codimension-1, totally geodesic folia-
tion of a Lorentzian 3-manifold. Without assuming the completeness of metrics, we prove the
following

THEOREM 5.1. Let (M, g) be a Lorentzian 3-manifold and (D2 × S1,FR) a Reeb
component of a codimension-1, totally geodesic foliation F of M . Then all inner leaves of
FR are spacelike, and the boundary leaf ∂(D2 × S1) is lightlike.

The following corollary is an answer to Question 1.2 when the manifold is of dimension
three.

COROLLARY 5.9. Let (M, g) be a closed Lorentzian 3-manifold with finite fundamen-
tal group and F a codimension-1, totally geodesic foliation of M . Then F consists of at least
two kinds of leaves among spacelike, timelike, and lightlike ones.

Theorem 3.1 is a part of the author’s doctoral thesis ([13]), which is not published else-
where. Throughout this paper, we assume that manifolds, foliations and metrics under con-
sideration are smooth.

2. Preliminaries. We recall several basic definitions and results about totally geo-
desic foliations of Lorentzian manifolds. Section 2.1 is devoted to basic definitions. Section
2.2 contains several results in [12] and a corollary. In Section 2.3 we recall the definition of
Heegaard splittings of genus one, which will be used in Section 3.

2.1. Definitions.

DEFINITION 2.1. LetM be a smooth orientable manifold. ALorentzian metric g on
M is a nondegenerate, symmetric, covariant 2-tensor of signature(+, · · · ,+,−). We call
(M, g) a Lorentzian manifold.

DEFINITION 2.2. Letg be a Lorentzian metric. A subspaceE ⊂ TxM is calledspace-
like (resp.timelike, lightlike) if the signature of the induced metricg|E is (+, · · · ,+) (resp.
(+, · · · ,+,−), (+, · · · ,+,0)). A vectorv ∈ TxM is calledspacelike (resp.timelike, light-
like) if g(v, v) > 0 (resp.g(v, v) < 0, g(v, v) = 0).

For a Lorentzian manifold, it is well-known that there exists the Levi-Civita connection,
that is, a connection which is torsion-free and compatible with the metric (see [8]).
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DEFINITION 2.3. A Lorentzian metricg on a manifoldM is calledtime-orientable if
there exists a non-singular, timelike vector field defined on entireM. When we fix a non-
singular, timelike vector fieldT onM, a Lorentzian metricg is calledtime-oriented, and a
lightlike or timelike vectorv ∈ TxM satisfyingg(v, T ) < 0 is calledpositive (in a usual term,
future-directed).

Positive lightlike or timelike vectors have the following good property (for a proof, see
[8]).

PROPOSITION 2.4 ([8]). Let (M, g) and T be as the above definition. Define

C(T |x) ={v ∈ TxM | v is timelike and g(v, T |x) < 0} ,
C̄(T |x) ={v ∈ TxM | v is timelike or lightlike, and g(v, T |x) < 0} .

Then we have av + bw ∈ C(T |x) (resp. C̄(T |x)) for any v,w ∈ C(T |x) (resp. C̄(T |x)),
a ≥ 0 and b > 0.

DEFINITION 2.5. A Lorentzian metricg is called(geodesically) complete if an affine
parameter of each geodesic can be defined on the entireR. Otherwiseg is called(geodesically)
incomplete. A Lorentzian metricg is calledlightlike (geodesically) complete if an affine pa-
rameter of each geodesic with a lightlike initial vector can be defined on the entireR.

REMARK 2.6. Even if a manifold is closed, a Lorentzian metric is not always com-
plete.

DEFINITION 2.7. A foliation F of a Riemannian or Lorentzian manifold(M, g) is
called totally geodesic if each leafL of F is a totally geodesic submanifold, that is, a sub-
manifold with the property that any geodesic with any initial vector inT L is contained in
L.

DEFINITION 2.8. A foliationF of a manifoldM is calledLorentzian geodesible if
there is a Lorentzian metricg onM for which F is totally geodesic. We callF complete
Lorentzian geodesible if we can chooseg to be a complete Lorentzian metric. We define a
lightlike complete Lorentzian geodesible foliation, in a natural fashion.

DEFINITION 2.9. LetL be a submanifold in a Lorentzian manifold(M, g). We call
L spacelike (resp.timelike, lightlike) if the tangent spaceTxL of L at x is a spacelike(resp.
timelike, lightlike) subspace ofTxM for eachx ∈ L.

We can easily prove the following proposition.

PROPOSITION 2.10. Every leaf L of a totally geodesic foliation of a Lorentzian mani-
fold is a spacelike, timelike, or lightlike submanifold.

Based on this proposition, we can call a leafL a spacelike leaf, a timelike leaf, or a
lightlike leaf whenL is spacelike, timelike, or lightlike, respectively.
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We introduce the concept of “an element of isometric holonomy”, which was called “an
element of holonomy” in [12], and is a generalization of “an element of holonomy” stated in
[1].

DEFINITION 2.11. LetH be a distribution. A piecewise smooth curveσ : [0, t0] → M

is called anH-curve if its tangent vectors lie inH. An element of isometric holonomy along
theH-curveσ is a family of maps{ψt : Vσ(0) → Vσ(t)}t∈[0,t0] which satisfies the following:

(1) The setVσ(t) is a plaque of the leaf containing the pointσ(t) for eacht ∈ [0, t0].
(2) The mapψt is an isometry from(Vσ(0), g|Vσ(0)) to (Vσ(t), g|Vσ(t) ) for eacht ∈

[0, t0].
(3) The curveψt (x) with parametert ∈ [0, t0] is anH-curve for eachx ∈ Vσ(0) and

ψt (σ (0)) = σ(t).
(4) The mapψ0 is the identity map ofVσ(0).

DEFINITION 2.12. LetF be a foliation ofM. A distributionD is called anEhresmann
connection for F if D satisfies the following:

(1) TM = TF ⊕ D.
(2) For everyF -curveτ : I → M and everyD-curveσ : I → M with the same initial

point σ(0) = τ (0), there exists a mapδ : I × I → M such that for every fixeds the curve
δ(·, s) is aD-curve andδ(·,0) = σ(·), and for every fixedt the curveδ(t, ·) is anF -curve
andδ(0, ·) = τ (·).

2.2. Relevant results about totally geodesic foliations. We state several relevant re-
sults about totally geodesic foliations. We first recall an equation discriminating whether a
foliation is totally geodesic or not.

PROPOSITION 2.13 ([12]). Let (M, g) be a pseudo-Riemannian manifold andF a codi-
mension k foliation of M . Then F is totally geodesic if and only if (LXg)(Y,Z) = 0 for all
X ∈ Γ ((TF)⊥) and Y, Z ∈ Γ (TF), where (TF)⊥ is the distribution consisting of all
vectors perpendicular to TF .

Now we review the concept of the STL-decomposition.

DEFINITION 2.14. Let(M, g) be a Lorentzian manifold andF a codimension-k, to-
tally geodesic foliation ofM. Denote the union of all spacelike leaves, timelike ones, and
lightlike ones ofF by S, T andL, respectively. The decompositionM = S � T � L (disjoint
union) is called theSTL-decomposition ofM byF .

The STL-decomposition satisfies the following

PROPOSITION 2.15 ([12]). The sets S and T are open in M, and L is closed in M .

Totally geodesic foliations of a lightlike complete Lorentzian 2-torus have the following
property.



428 K. YOKUMOTO

THEOREM 2.16 ([12]). Let (T 2, g) be a lightlike complete Lorentzian 2-torus. There
exists no totally geodesic foliation containing at least two kinds of leaves among spacelike,
timelike, and lightlike ones.

We have an easy corollary of this theorem.

COROLLARY 2.17. Let (M, g) be a Lorentzian manifold. Assume that there is a time-
like totally geodesic submanifold N diffeomorphic to the 2-torus such that there is a totally
geodesic foliation of N consisting of at least two kinds of leaves among spacelike, timelike,
and lightlike ones. Then g is lightlike incomplete.

Finally, we review a result about an element of isometric holonomy. LetF be a totally
geodesic foliation of a Lorentzian manifold(M, g) andH the distribution perpendicular to
TF .

PROPOSITION 2.18 ([12]). If an H-curve σ : [0, t0] → M intersects only spacelike or
timelike leaves, then there exists an element of isometric holonomy along σ .

2.3. Heegaard splittings of genus one. We recall Heegaard splittings of genus one of
closed 3-manifolds. See [6] for further detail about Heegaard splittings.

Let V1 andV2 denote two copies of orientedD2 × S1 ⊂ C × C, whereD2 denotes a 2-
disk. Letf : ∂V2 → ∂V1 be an orientation reversing diffeomorphism. Consider a topological
spaceV1 ∪f V2 and give it a differentiable structure in a certain way. We call the resulting
manifoldM. The couple(V1, V2) is called aHeegaard splitting of genus one of M. Define
curvesl, m by l : t 
→ (1, e2πit ) ∈ D2 × S1 andm : t 
→ (e2πit ,1). A simple closed
curve in∂(D2 × S1) is called ameridian (resp. longitude) if it is homotopic tom (resp. l)
on∂(D2 × S1). The fundamental groupπ1(∂(D

2 × S1)) is isomorphic to〈l | −〉 ⊕ 〈m | −〉,
where〈l | −〉 denotes the free group generated byl.

Let (V1, V2) be a Heegaard splitting ofM andf : ∂V2 → ∂V1 a gluing map definingM.
Let li andmi be a longitude and a meridian inVi , respectively. It is known that iff∗(m2) =
pl1+qm1 ∈ π1(∂V1), then(p, q) = 1. Whenf∗(m2) = pl1+qm1, we denoteM byL(p, q).
It is known thatL(0,1) ∼= S2 × S1 andL(1,0) ∼= S3. WhenL(p, q) is diffeomorphic to
neitherS2 × S1 norS3, it is called alens space of type(p, q).

3. Constructions of Lorentzian geodesible foliations. The goal of this section is the
following

THEOREM 3.1. If a closed 3-manifold has a Heegaard splitting of genus one, then it
has a codimension-1 Lorentzian geodesible foliation.

3.1. Examples and propositions. First, we construct an example of a codimension-1,
Lorentzian geodesible foliation ofSn−1 × S1.
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EXAMPLE 3.2. LetM̃ = Rn \ (0, . . . ,0). Define the Lorentzian metric̃g onM̃ by

g̃ = 1∑n
i=1 x

2
i

(
n−1∑
i=1

dxi ⊗ dxi − dxn ⊗ dxn

)
,

where(x1, . . . , xn) is the canonical coordinates ofRn. Define the vector field̃X by

X̃ =
n∑
i=1

xi
∂

∂xi
,

which is a Killing field onM̃. The distributionT F̃ defined by ker̃g(X̃, ·) is completely
integrable, and hence defines a totally geodesic foliationF̃ by Proposition 2.13. The map
ψ : (x1, . . . , xn) 
→ (2x1, . . . ,2xn) is an isometry preserving̃F . Thus we have a manifold
M = M̃/∼, a Lorentzian metricg onM, and a codimension-1, totally geodesic foliationF of
M. Clearly,M is diffeomorphic toSn−1 × S1. HenceF is a Lorentzian geodesible foliation
of Sn−1 × S1. �

REMARK 3.3. The Lorentzian manifold(M, g) obtained above is lightlike incomplete,
because{x1 = · · · = xn−2 = 0}/∼ satisfies the assumption of Corollary 2.17.

Second, we construct a totally geodesic foliation ofD2 × S1.

EXAMPLE 3.4. Recall Example 3.2. Consider the case whenn = 3, that is,

(
R3 \ {0}, g̃ = 1∑3

i=1 x
2
i

( 2∑
i=1

dxi ⊗ dxi − dx3 ⊗ dx3

))
.

Put

M+ = {(x1, x2, x3) | x2
1 + x2

2 − x2
3 ≤ 0, x3 > 0} .

Define the diffeomorphismΦ : M+ → D2(1)× R by

(x1, x2, x3) 
→
( √

2x1√
x2

1 + x2
2 + x2

3

,

√
2x2√

x2
1 + x2

2 + x2
3

, log
√
x2

1 + x2
2 + x2

3

)
.

The Lorentzian metric(Φ−1)∗g̃ onD2(1) × R is invariant by the additiveR-action. Hence
we have the Lorentzian metricg ′

1 onD2(1)× R/2πZ.
Let (x, y, t) denote coordinates ofD2(1) × S1, where(x, y) and(t) are the canonical

coordinates ofR2 andR, respectively. We then have

g ′
1 =


 1/2 − x2/(4 − 2x2 − 2y2) −xy/(4− 2x2 − 2y2) x

−xy/(4− 2x2 − 2y2) 1/2 − y2/(4 − 2x2 − 2y2) y

x y x2 + y2 − 1


 ,

where the right hand side is the matrix of components ofg ′
1 with respect to(x, y, t). The

foliation defined by kerg ′
1(∂/∂t, ·) is totally geodesic by Proposition 2.13. �
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Third, we changeg ′
1 with a Lorentzian metricg1 as follows. We change coordinates from

(x, y, t) to (r, θ, t), wherex = r cosθ andy = r sinθ . Then we have

g ′
1 =


 (r2 − 1)/(r2 − 2) 0 r

0 r2/2 0
r 0 r2 − 1




with respect to(r, θ, t). Consider aC∞ monotone increasing functiona : [0,1] → [0,1]
satisfying the following conditions:

(1) a(0) = 0 anda(1) = 1.
(2) There exists anε > 0 such thata(r) = r for all r ∈ [0, ε).
(3) (dna/drn)(1) = 0 for all integern > 0.

We changer with a(r). The resulting metric is justg1 in the next example.

EXAMPLE 3.5. ConsiderD2(1)× S1, whereD2(1) is the unit 2-disk inR2 andS1 =
R/2πZ. We denote the coordinates ofD2(1) × S1 by (x, y, t), where(x, y) and(t) are the
canonical coordinates ofR2 andR, respectively. Define the Lorentzian metricg1 by

g1 =




G11

2(a2 − 2)(x2 + y2)2
G12

2(a2 − 2)(x2 + y2)2
ax√

x2 + y2

G12

2(a2 − 2)(x2 + y2)2
G22

2(a2 − 2)(x2 + y2)2

ay√
x2 + y2

ax√
x2 + y2

ay√
x2 + y2

a2 − 1



,

where

G11 = 2(a2 − 1)x4 + (a4 + 2(x2 − 1)a2 − 2x2)y2 ,

G12 = xy(−a4 + 2(x2 + y2 + 1)a2 − 2(x2 + y2)) ,

G22 = a2(a2 − 2)x2 + 2(a2 − 1)y2(x2 + y2) .

Here,a is the functiona(
√
x2 + y2) defined above, the right hand side denotes the matrix

of components of the metric with respect to coordinates(x, y, t), and we assume that the
numerator is divided by the denominator in 0≤ √

x2 + y2 < ε in each component of the
matrix.

The vector field∂/∂t is a Killing field, because all the components of the matrix are
independent oft . Since

g1 (∂/∂t, ·) = ax√
x2 + y2

dx + ay√
x2 + y2

dy + (a2 − 1)dt ,

the foliation defined by ker(g1(∂/∂t, ·)) is totally geodesic by Proposition 2.13. This foli-
ation is a Reeb foliation. Clearly,∂(D2 × S1) is a lightlike leaf, and the other leaves are
spacelike. �

Fourth, we want to glue two copies of Example 3.5 together. Since it is not possible in
general, we adopt the following tricks to accomplish it.
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PROPOSITION 3.6. Let (Mi, gi ) be a Lorentzian manifold with boundary, Ni a con-
nected component of ∂Mi , and hi : Ni × [0,1] → Mi a collar neighborhood such that
hi(Ni × 0) = Ni (i = 1,2). Let f : N1 → N2 be a diffeomorphism. Denote M1

⋃
f M2 by

M . Define a differentiable structure on M such that

h : N1 × [−1,1] → M = M1
⋃
f M2

(x, t) 
→
{
h1(x, t) for t ≥ 0
h2(f (x),−t) for t ≤ 0

is a diffeomorphism into M in a certain way. Assume that for all x ∈ N1 there exists
a local coordinate system (x1, . . . , xn−1) around x such that the local coordinate system
(x1, . . . , xn−1, t) in h(N1 × [−1,1]) ⊂ M satisfies the following:

(1) The (i, j)-component of g1 equals the (i, j)-component of g2 on h(N1 × 0) for all
i and j .

(2) There exists an ε1 > 0 such that all the components of g1 are functions depend on
only t on h(N1 × [0, ε1)), and their differentials of order ≥ 1 vanish on h(N1 × 0).

(3) There exists an ε2 > 0 such that all the components of g2 are functions depending
only on t on h(N1 × (−ε2,0]), and their differentials of order ≥ 1 vanish on h(N1 × 0).

Then

g =
{
g1 onM1 ⊂ M

g2 onM2 ⊂ M

is a C∞ Lorentzian metric on M .

PROPOSITION 3.7. Let V1 and V2 be oriented manifolds with compact connected bound-
ary. Let f : ∂V2 → ∂V1 be an orientation reversing diffeomorphism. Put M = V1

⋃
f V2.

Consider ∂V1 × [0,1], and regard id∂V1 and f as

id∂V1 : ∂V1 → ∂V1 × 0 and f : ∂V2 → ∂V1 × 1 .

If we take the orientation of V1 × [0,1] such that f : ∂V2 → ∂V1 × 1 is orientation revers-
ing, then the map id : ∂V1 → ∂V1 × 0 is orientation reversing, and M is diffeomorphic to
V1
⋃

id(∂V1 × [0,1])⋃f V2.

3.2. The proof of Theorem 3.1. We will construct a totally geodesic foliation of
L(p, q). LetV1 andV2 be two copies of an orientedD2(1)× S1. Consider(Vi, g1), whereg1

is the Lorentzian metric defined in Example 3.5. We change coordinates from(xi, yi, ti ) ∈ Vi
to (ri , θi, ti ), wherexi = ri cosθi andyi = ri sinθi . We regard theri-direction as a “collar
direction,” that is, the collar neighborhood is defined by

hi : ∂Vi × [0, ε] → Vi , (θi, ti , si ) 
→ (1 − si, θi , ti) .

Consider the gluing mapf : ∂V2 ∼= R2/2πZ2 → ∂V1 ∼= R2/2πZ2 defined by

f :
(
θ2
t2

)

→

(
q r ′
p s′

)(
θ2
t2

)
for some r ′, s′ ∈ Z ,
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whereqs′ − pr ′ = −1. Note thatf determinesL(p, q). In general, we cannot glue(V1, g1)

and(V2, g1) by using only Proposition 3.6. So we use Proposition 3.7 to get a Lorentzian
metric and a totally geodesic foliation ofL(p, q). We will carry out this by several steps.

Step 1. Denote coordinates of∂V1 × [0,1] by (θ, t, s), whereθ = θ1 and t = t1.
Consider the glued manifoldV1

⋃
id(∂V1 × [0,1])⋃f V2.

LEMMA 3.8. We can join the metric restricted on ∂V1 × 0 to the metric on ∂V1 × 1 so
that the constructed metric g ′ on ∂V1 × [0,1] satisfies the following conditions:

(1) All the components of g ′ with respect to (θ, t, s) depend only on s ∈ [0,1].
(2) The manifold ∂V1 × {s} is lightlike for all s ∈ [0,1].
PROOF. Note that

g1 =

 (a2 − 1)/(a2 − 2) 0 a

0 a2/2 0
a 0 a2 − 1


 ,

where the right hand side is the matrix of components ofg1 with respect to(ri, θi, ti ) ∈ Vi .
Hence we have

g1 =

 a2/2 0 0

0 a2 − 1 −a
0 −a (a2 − 1)/(a2 − 2)




with respect to the collar coordinates(θi, ti , si ) ∈ ∂Vi × [0, ε]. Since

g1 =

 1/2 0 0

0 0 −1
0 −1 0




on∂Vi × 0 ⊂ ∂Vi × [0, ε], the metric on∂V1 × 0 ⊂ ∂V1 × [0,1] is represented by
 1 0 0

0 1 0
0 0 −1




 1/2 0 0

0 0 −1
0 −1 0




 1 0 0

0 1 0
0 0 −1


 =


 1/2 0 0

0 0 1
0 1 0




with respect to the coordinates(θ, t, s) ∈ ∂V1 × [0,1]. Note that the inverse mapf−1 :
∂V1 × 1 → ∂V2 is represented by ( −s′ r ′

p −q
)
.

Hence we have
 −s′ p 0

r ′ −q 0
0 0 1




 1/2 0 0

0 0 −1
0 −1 0




 −s′ r ′ 0

p −q 0
0 0 1


 =


 s′2/2 −r ′s′/2 −p

−r ′s′/2 r ′2/2 q

−p q 0




on∂V1 × 1 ⊂ ∂V1 × [0,1] with respect to(θ, t, s) ∈ ∂V1 × [0,1]. (See Figure 1.)
Consider aC∞ GL(2,R)-valued function(

bs cs
ds ks

)
, s ∈ [0,1]
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FIGURE 1. f and id.

satisfying (
b0 c0
d0 k0

)
=
(

1 0
0 −1

)
∈
(

1 0
0 −1

)
GL+(2,R)

and (
b1 c1
d1 k1

)
=
( −s′ r ′

p −q
)

∈
(

1 0
0 −1

)
GL+(2,R) .

Note that such a function exists. Put

g ′ =

 bs ds 0
cs ks 0
0 0 1




 1/2 0 0

0 0 −1
0 −1 0




 bs cs 0
ds ks 0
0 0 1




=

 b2

s /2 bscs/2 −ds
bscs/2 c2

s /2 −ks
−ds −ks 0


 .

Note that signature of this matrix is(+,+,−). Thus we regardg ′ as the matrix of components
of the Lorentzian metric with respect to(θ, t, s) ∈ ∂V1 × [0,1].

Now we show thatg ′ satisfies the condition(2). We have

g ′|∂V1×{s} =
(

b2
s /2 bscs/2

bscs/2 c2
s /2

)
with respect to(θ, t) ∈ ∂V1 × {s}. Thus∂V1 × {s} is lightlike. This proves Lemma 3.8. �

REMARK 3.9. The foliation{∂V1 × {s}}s∈[0,1] is a totally geodesic foliation of(∂V1 ×
[0,1], g ′) by (1), (2) and Proposition 2.13.

Step 2. We change the parameters of each component ofg ′ to u(s), whereu is a
function satisfying the following:

(1) The functionu : [0,1] → [0,1] is aC∞ monotone increasing function.
(2) (dnu/dsn)(0) = (dnu/dsn)(1) = 0 for all integern > 0.

We denote a new metric by the same symbolg ′.
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Step 3. Put

g =



g1 on V1 ,

g ′ on ∂V1 × [0,1] ,
g1 on V2 .

Note thatg is aC∞ Lorentzian metric onV1
⋃

id(∂V1×[0,1])⋃f V2 by Proposition 3.6. We
define the desired foliationF by

F =



ker(g1(∂/∂t1, ·)) on V1 ,

{∂V1 × {s}}s∈[0,1] on ∂V1 × [0,1] ,
ker(g1(∂/∂t2, ·)) on V2 .

Note thatF is aC∞ totally geodesic foliation. Hence we have a Lorentzian geodesible folia-
tion ofL(p, q). This completes the proof.

4. Some properties of totally geodesic foliations. In this section, we study totally
geodesic foliations consisting ofspacelike leaves, and codimension-1, totally geodesic foli-
ations consisting oftimelike leaves of Lorentzian 3-manifolds. We do not assume the com-
pleteness of Lorentzian metrics.

First, we consider totally geodesic foliations consisting of spacelike leaves.

PROPOSITION 4.1. Let (M, g) be a Lorentzian manifold with or without boundary and
F a codimension-k, totally geodesic foliation consisting of spacelike leaves. Assume that F
is tangent to ∂M and the distribution (TF)⊥ is integrable. Then for an arbitrary metric h on
(TF)⊥, the foliation F is totally geodesic with respect to the Riemannian metric g|TF + h.

PROOF. By the assumption, we haveTM = TF ⊕ (TF)⊥. PutgR = g|TF + h. Then
the distributionTF is perpendicular to(TF)⊥ with respect togR. Let H be the foliation
determined by(TF)⊥. SinceF is totally geodesic, we have

(LXg)(Y,Z) = 0 for all X ∈ Γ (TH) and Y,Z ∈ Γ (TF) .
There exists a product neighborhoodU × V for eachx ∈ M, whereU is a plaque ofF and
V is a plaque ofH. Hence there exist linear independent,F -preserving, non-singular local
vector fieldsX1, . . . , Xk ∈ Γ (TH). If we describeX ∈ Γ (TH) asX = ∑

aiXi , then we
have

(LXgR)(Y,Z) = (L(∑ aiXi ) gR)(Y,Z)

=
∑

ai {Xi(gR(Y,Z))− gR([Xi, Y ], Z)− gR(Y, [Xi,Z])}
=
∑

ai{Xi((g|TF )(Y,Z))− (g|TF )([Xi, Y ], Z)− (g|TF )(Y, [Xi,Z])}
=
∑

ai{Xi(g(Y,Z)) − g([Xi, Y ], Z)− g(Y, [Xi,Z])}
=
∑

ai(LXi g)(Y,Z) = 0 .

ThereforeF is totally geodesic with respect togR. �

If M is closed, by Proposition 4.1 and [1] we can prove the following
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PROPOSITION 4.2. Let (M, g) be a compact Lorentzian manifold and F be a totally
geodesic foliation consisting of spacelike leaves. Assume that F is tangent to ∂M and (TF)⊥
is completely integrable. Then the distribution (TF)⊥ is an Ehresmann connection for F .

PROOF. LetH be the foliation determined by(TF)⊥. CoverM by a product foliation
charts{Ui × Vi}mi=1, whereUi is anF -plaque andVi is anH-plaque. Leth be a metric on
(TF)⊥, and define the Riemannian metricgR by g|TF + h. We haveTF ⊥ (TF)⊥ with
respect togR. Let d be the distance determined bygR. Consider a Lebesgue numberρ with
respect to{Ui×Vi}mi=1, that is, any set with the diameter< ρ is contained inUi×Vi for some
i. Hence anyF -plaqueP with the diameter< ρ with respect togR|P is contained inUi × Vi

for somei.
Let σ : [0,1] → M be an arbitraryH-curve andτ : [0,1] → M be anF -curve with the

length< ρ/2. We will construct a mapδ : [0,1]× [0,1] → M satisfying Definition 2.12 (2).
Decompose[0,1] = [t0, t1] ∪ [t1, t2] ∪ · · · ∪ [tl−1, tl] so thatt0 = 0, tl = 1, andσ([ti−1, ti ])
has the length< ρ/2 for all i. The curveσ([t0, t1]) ∪ τ ([0,1]) has the length< ρ. Hence
there exists ani0 such thatσ([t0, t1]) ∪ τ ([0,1]) ⊂ Ui0 × Vi0.

LEMMA 4.3. We can construct an element of isometric holonomy along σ |[t0,t1]
{ψt : Vσ(0) → Vσ(t)}t∈[t0,t1]

so that Vσ(0) = Ui0 × σ(0) and Vσ(t) = Ui0 × σ(t).

PROOF. Let p : Ui0 × Vi0 → Vi0 be the projection. Define the vector fieldY on
p ◦ σ([t0, t1]) tangent toVi0 by

Yp ◦ σ(t) = d

dt
(p ◦ σ)

∣∣∣∣
t

.

Define the vector fieldX onUi0 × σ([t0, t1]) tangent toH by p∗X = Y . The vector field
X is F -preserving and tangent toH. Hence a local one-parameter group generated byX

determines an element of isometric holonomy alongσ |[t0,t1]
{ψt : Ui0 × σ(0) → Ui0 × σ(t)}t∈[t0,t1] . �

Define the mapδ1 : [t0, t1] × [0,1] → M by

δ1(t, s) = ψt (τ (s)) .

Putτ1(s) = δ1(t1, s). By the definition of elements of isometric holonomy, the curveτ1 has
the length< ρ/2. Constructδ2 : [t1, t2] × [0,1] → M by applying the same argument as
above toσ([t1, t2]) ∪ τ1([0,1]). Repeat this process and defineδ : [0,1] × [0,1] → M by

δ(t, s) = δi(t, s) when t ∈ [ti−1, ti ] .
Thisδ satisfies Definition 2.12 (2). Therefore(TF)⊥ is an Ehresmann connection forF . This
proves the proposition. �

Now we consider codimension-1, totally geodesic foliations consisting of timelike leaves
of Lorentzian 3-manifolds.
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PROPOSITION 4.4. LetM be an orientable 3-manifold, g a time-orientable Lorentzian
metric on M, and F an orientable, codimension-1, totally geodesic foliation consisting of
timelike leaves. Denote the foliation determined by (TF)⊥ by H. Then the following hold.

(1) The lightlike vectors on TF determine two subfoliations L0,L1 of F .
(2) The distribution TH ⊕ TLi is completely integrable for i = 0,1. Therefore, if Hi

denotes the foliation determined by TH⊕TLi , i = 0,1, then (F ,H0,H1) is a total foliation
of M (We call it the total foliation associated with F).

PROOF. Fix orientations ofM andF . By the assumption ofg, there exists a non-
singular, timelike vector fieldT onM. Since all the leaves ofF are timelike, we have a
splittingTM = TF ⊕TH. Letπ : TM → TF denote the projection defined by the splitting
TM = TF ⊕ TH. By straight computation,π(T ) is non-singular and timelike. Hence for
all L ∈ F we can regard(L, g|L) as an oriented, time-oriented, Lorentzian 2-manifold by
π(T )|L. Fix a leafL of F and a pointx ∈ L. Define two lightlike subspacesTxL0, TxL1 of
TxL by the following: Take linear independent, positive, lightlike vectorsV0, V1 on TxL so
that{V0, V1} equals the orientation ofTxL, and putTxL0 = Span{V0} andTxL1 = Span{V1}.
Define distributionsTL0, TL1 by

TL0 =
⋃
x∈M

TxL0, TL1 =
⋃
x∈M

TxL1 ,

which areC∞ subdistributions ofTF , proving(1).
We will prove thatTH⊕ TLi is completely integrable fori = 0,1. Letσ : [0,1] → M

be an arbitraryH-curve. Let{ψt : Vσ(0) → Vσ(t)}t∈[0,1] be an element of isometric holonomy
alongσ . Sinceψt is an isometry, the mapψt preservesL0 andL1. Define the vector fieldH
defined on

⋃
t Vσ(t) by

Hψt(p) = d

dt
ψt (p) .

LetLi ∈ Γ (TLi |∪t Vσ(t) ) be a frame. We have[H,Li] = liLi for some functionli . Therefore
TH ⊕ TLi is integrable. This proves the proposition. �

5. Reeb components of totally geodesic foliations of Lorentzian 3-manifolds. In
this section, we study Reeb components of codimension-1, totally geodesic foliations of
Lorentzian 3-manifolds. We do not assume the completeness of metrics under consideration.
We have the following

THEOREM 5.1. Let (M, g) be a Lorentzian 3-manifold and (D2 × S1,FR) a Reeb
component of a codimension-1, totally geodesic foliation F of M . Then all inner leaves of
FR are spacelike, and the boundary leaf ∂(D2 × S1) is lightlike.

PROOF. By taking a finite covering ofM, we can assume thatM is orientable,g is
time-orientable, andF is orientable. By the property of the STL-decomposition ofM by F
(Proposition 2.15), we have the following three cases:

(i) The setL ∩ (D2 × S1) is empty.
(ii) The setL ∩ (D2 × S1) contains∂(D2 × S1) and does not equal∂(D2 × S1).
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(iii) The setL ∩ (D2 × S1) equals∂(D2 × S1).
Consequently, we have the following five cases:

(1) All the leaves ofFR are spacelike.
(2) All the leaves ofFR are timelike.
(3) The boundary leaf∂(D2 × S1) and at least one of the inner leaves are lightlike.
(4) All the inner leaves ofFR are timelike and the boundary is lightlike.
(5) All the inner leaves ofFR are spacelike and the boundary is lightlike.
We will prove that the case (1) through the case (4) do not occur in the following propo-

sitions. Therefore only the case (5) occurs. �

PROPOSITION 5.2. The case (1) does not occur, that is, there exists no Reeb compo-
nent (D2 × S1,FR) of a codimension-1, totally geodesic foliation such that all the leaves of
FR are spacelike.

PROOF. Assume that there is a Reeb component(D2 × S1,FR) consisting of spacelike
leaves. By Proposition 4.2, the distribution(TFR)⊥ is an Ehresmann connection forFR.
But an inner leaf never cover the boundary leaf for any normal distribution ofFR, which is
contradiction. �

PROPOSITION 5.3. The case (2) does not occur, that is, there exists no Reeb compo-
nent (D2 × S1,FR) such that all the leaves of FR are timelike.

We need two lemmas to prove Proposition 5.3.

LEMMA 5.4. Let (Mi, gi ) be a pseudo-Riemannian manifold, i = 0,1,and ϕ : (M0, g0)

→ (M1, g1) be an isometry. Then the following hold :
(a) dϕ(∇XY ) = ∇dϕ(X)dϕ(Y ) for allX,Y ∈ Γ (TM0), where ∇ in the left (resp. right)

hand side is the Levi-Civita connection of g0 (resp. g1).
(b) If expxX is defined, then ϕ(expxX) = expϕ(x) dϕ(X).

PROOF. (a) Define∇̂XY = dϕ−1(∇dϕ(X)dϕ(Y )) for X,Y ∈ Γ (TM0). By a straight
computation, we see that∇̂ is the Levi-Civita connection. Hencê∇ = ∇.

(b) We can easily prove this by(a). �

LEMMA 5.5. The identity component of SO(1,1) is

{( √
c2 + 1 c

c
√
c2 + 1

) ∣∣∣∣ c ∈ R

}
,

the eigenvalues of

( √
c2 + 1 c

c
√
c2 + 1

)
are

√
c2 + 1+c and

√
c2 + 1−c, and the eigen-

vectors are t(1,1) and t(1,−1) (these are lightlike). Moreover,

√
c2 + 1 + c > 1 >

√
c2 + 1 − c (c > 0) ,√

c2 + 1 − c > 1 >
√
c2 + 1 + c (c < 0) .
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FIGURE 2. A half Reeb component inH0. FIGURE 3. L0 andH onL0.

PROOF OFPROPOSITION5.3. Let(FR,H0,H1) be the total foliation associated with
FR. We use the same notation as in Proposition 4.4. By [11], there exists a half Reeb compo-
nentHR/2

0 inH0 and an annular leafL0 ∈ HR/2
0 (see Figure 2). The foliationFR∩L0 = L0|L0

is a Reeb foliation. SinceTH0 = TH ⊕ TL0, there is the foliationH|L0 onL0. Take an ar-
bitrary pointz ∈ ∂L0. Start fromz alongH and consider the limitH-leaf c. The leafc is
closed. Put

N0 = c
⋃

(the connected component ofL0 \ c containingz) .

All the H-leaves inN0 \ c approachc (see Figure 3). Fix an arbitrary pointx ∈ c. By
parametrizingc, we define anH-curve

σ : [0,1] → D2 × S1, σ (0) = σ(1) = x ,

assuming thatσ proceeds in the direction where all theH-leaves inN0 \ c leave fromc. Let
L1 ∈ H1 be the leaf passing throughc. Consider a tubular neighborhoodT of c in L1, and
letN1 be the subset ofT which intersectsHR/2

0 . All the H-leaves nearc in N1 leave fromc
alongσ (see Figure 4).

Consider an element of isometric holonomy alongσ

{ψt : Vσ(0) → Vσ(t)}t∈[0,1] ,

whereVσ(t) is anFR-plaque. Leti denote 0 or 1. Note that the setNi ∩ Vσ(0) is a subset of
anLi -leaf. Fix a pointy(i) ∈ Ni ∩ Vσ(0) \ {x}. Letα(i) be the geodesic satisfyingα(i)(0) = x

andα(i)(1) = y(i). The vectorα̇(i)(0) is lightlike andy(i) = expx α̇
(i)(0). The mapψ1 is an

isometry from(Vσ(0), g|Vσ(0)) to (Vσ(1), g|Vσ(1)). By Lemma 5.4 andψ1(x) = x, we have

ψ1(y
(i)) = expx dψ1(α̇

(i)(0)) .

All the H-leaves nearc in Ni leave fromc alongσ . Henceψ1(y
(i)) is farther thany(i) from

x (see Figure 5).
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FIGURE 4. The setN1.

FIGURE 5. The mapψ1.

Thus there exists a constantli > 1 such that

dψ1(α̇
(i)(0)) = li α̇

(i)(0) ,

which is a contradiction by Lemma 5.5. Therefore there exists no Reeb component consisting
of timelike leaves. �

PROPOSITION 5.6. The case (3) does not occur, that is, there exists no Reeb compo-
nent (D2 × S1,FR) such that the boundary leaf ∂(D2 × S1) and at least one of the inner
leaves are lightlike.

PROOF. Assume that there is a Reeb component(D2 × S1,FR) such that the boundary
leaf∂(D2 ×S1) and one of the inner leaves ofFR are lightlike. PutF1 = ∂(D2 ×S1). LetF2

be a lightlike leaf ofFR|Int(D2×S1). LetNi be the foliation ofFi determined by the lightlike
vectors fori = 1,2. By [14], the one-dimensional foliation determined by the lightlike vectors
of a lightlike leafF is a Riemannian foliation ofF . Since the foliationN1 is a Riemannian
foliation ofF1 ∼= T 2, we have the following two cases:

(c) All the leaves ofN1 are closed.
(d) All the leaves ofN1 are dense.
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Let l andm be a longitude and a meridian onF1, respectively.
Case 1. There exists a C∞ closed curve c : S1 → F1 which is transverse to N1 and

homotopic to m. (This case occurs except the case (c) where the homology class of a leaf
L ∈ N1 is equal to [m].)

We extendc to aC∞ embeddinĝc : S1×[0, ε) → D2×S1 which satisfies the following:
(1) The set̂c(S1 × {t}) is on anFR-leaf for all t ∈ [0, ε).
(2) ĉ(s,0) = c(s) for all s ∈ S1.

Since the curvec is spacelike, there exists anε1 ∈ (0, ε] such that the curvêc(·, t0) is spacelike
for all t0 ∈ [0, ε1). Since the leafF2 approachesF1, there exists at1 ∈ (0, ε1) such that
ĉ(S1 × {t1}) ∩ F2 �= ∅. Hence the curvêc(·, t1) onF2 is transverse to the foliationN2. One
of the connected components ofF2 \ ĉ(S1 × {t1}) is a 2-disk, which is a contradiction by the
standard Euler class argument.

Case 2. The case (c) where the homology class of a leaf L ∈ N1 is equal to [m].
Fix a Riemannian metrich onD2 × S1. LetN⊥

i be the foliation ofFi perpendicular to
Ni with respect toh for i = 1,2. Fix a leafL ∈ N1 and parametrizeL by a diffeomorphism
c : S1 → L ⊂ F1. The curvec is transverse toN⊥

1 . We extendc to aC∞ embedding
ĉ : S1 × [0, ε) → D2 × S1 which satisfies the following:

(1) The set̂c(S1 × {t}) is on anFR-leaf for all t ∈ [0, ε).
(2) ĉ(s,0) = c(s) for all s ∈ S1.

LetX : ĉ(S1 × [0, ε)) → TF be aC∞ non-singular vector field satisfying

X|ĉ(s,t ) ⊥ ĉ∗
(
∂

∂s

)
for all (s, t) ∈ S1 × [0, ε)

with respect toh. The vector fieldX|c(S1) is spacelike and tangent toN⊥
1 . So there exists an

ε1 ∈ (0, ε] such that the vector fieldX|ĉ(S1×[0,ε1))
is spacelike. Since the leafF2 approaches

F1, there exists at1 ∈ (0, ε1) such that̂c(S1 × {t1}) ⊂ F2. Since the vector fieldX|ĉ(S1×{t1})
is spacelike, it is transverse toN2. Hence the orthogonal complement(Span{X})⊥|ĉ(S1×{t1})
in T F2 with respect toh is transverse toN⊥

2 . Therefore the curvêc(·, t1) is transverse toN⊥
2 ,

which is a contradiction. �

PROPOSITION 5.7. The case (4) does not occur, that is, there exists no Reeb compo-
nent (D2 × S1,FR) such that all the inner leaves of FR are timelike and the boundary is
lightlike.

PROOF. By the assumption of time-orientability ofg, we fix a non-singular, timelike
vector fieldT ∈ Γ (T (D2 × S1)). There exist two subfoliationsL0,L1 of FR|Int(D2×S1) by
Proposition 4.4. There exists the foliationN determined by the lightlike vectors on∂(D2 ×
S1) ∈ FR. Three foliationsL0,L1,N are orientable.

LEMMA 5.8. For all point p ∈ ∂(D2 × S1), there exists a neighborhood Vp around p
in D2 × S1 and a non-singular, FR-tangent vector field X(p) defined on Vp which satisfies
the following:

(1) X(p)|Vp ∩ ∂(D2×S1) is positive and lightlike.
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(2) X(p)|Vp ∩ Int(D2×S1) is positive and timelike.

PROOF. Fix an arbitrary pointp in ∂(D2×S1). Letϕ : Up → R2×[0,∞) be a foliation
chart aroundp, where we assume thatϕ(∂(D2×S1)∩Up) ⊂ R2×{0} and thatϕ−1(R2×{∗})
is anFR-plaque. We regard the standard coordinate(x1, x2, x3) ∈ R2×R as a local coordinate
of R2 × [0,∞). Let (gij ) be the matrix of components ofg with respect to(x1, x2, x3). Fix
a positive lightlike vectorvp atp. We can assume thatvp equals∂/∂x1 + b(p)∂/∂x2, where
b(p) ∈ R is a constant. We then have

0 = g
(
∂

∂x1
+ b(p)

∂

∂x2
,
∂

∂x1
+ b(p)

∂

∂x2

)
= g11(p)+ 2b(p)g12(p)+ (b(p))2g22(p) .

Consider the equation

g11 + 2b g12 + b2g22 = 0 .(1)

Since all the leaves ofFR are timelike or lightlike, we have

g11g22 − g2
12 ≤ 0 .

Now we will prove that there exists a neighborhoodVp ⊂ Up aroundp such that the
function g22 is positive onVp. Since∂/∂x1 + b(p)∂/∂x2 is lightlike andg11(p) g22(p) −
(g12(p))

2 = 0, we haveg22(p) �= 0. Sinceg|Tp(∂(D2×S1)) is positive indefinite, we have

gp

(
∂

∂x2
,
∂

∂x2

)
= g22(p) ≥ 0 .

Thus g22(p) > 0. Therefore there exists a neighborhoodVp ⊂ Up aroundp such that
g22|Vp > 0.

Sinceg22 �= 0 onVp, we can solve the equation (1) as

b = (−g12 ±
√

g12
2 − g11g22)/g22 .

Define the vector fieldX(p) defined onVp by

X(p) = ∂

∂x1
+ −g12

g22

∂

∂x2
.

This is anFR-tangent, non-singular vector field. We then have

g(X(p),X(p)) = (g11g22 − g12
2)/g22 .

HenceX(p)|Vp ∩ ∂(D2×S1) is positive and lightlike, andX(p)|Vp ∩ Int(D2×S1) is positive and
timelike. �

Fix a collar neighborhoodC : ∂(D2 × S1)× [0,1] → D2 × S1, whereC(∂(D2 × S1)×
{0}) = ∂(D2 × S1). For allp ∈ ∂(D2 × S1), define an open subsetV ′

p ⊂ ∂(D2 × S1) and a
constantεp > 0 such that

p ∈ V ′
p ⊂ ∂(D2 × S1) ∩ Vp , C(V ′

p × [0, εp)) ⊂ Vp .
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Put V̂p = C(V ′
p × [0, εp)). We have

⋃
p∈∂(D2×S1) V

′
p ⊃ ∂(D2 × S1). Hence there exist

pointsp1, . . . , pk ∈ ∂(D2 ×S1) such that
⋃k
i=1V

′
pi

= ∂(D2 ×S1). Let {ρi}ki=1 be a partition

of unity subordinate to the covering{V ′
pi

}ki=1. We extendρi to the functionρ̂i defined on

V̂pi = C(V ′
pi

× [0, εpi )) by

C(V ′
pi

× [0, εpi )) C−1−−→ V ′
pi

× [0, εpi )
prj.−−→ V ′

pi

ρi−−→ [0,1] .
Putε = mini∈{1,...,k} εpi . Then we haveε > 0 and

C(∂(D2 × S1)× [0, ε)) ⊂
k⋃
i=1

V̂pi .

PutO = C(∂(D2 × S1)× [0, ε)) and

X =
k∑
i=1

ρ̂i (X
(pi)|

V̂pi∩O) .

By Proposition 2.4, the vector fieldX is a non-singular,FR-tangent vector field onO which
satisfies the following:

(1) X|∂(D2×S1) is positive and lightlike.
(2) X|Int(D2×S1)∩O is positive and timelike.
Now, letN be a non-singular,L0-tangent, positive, lightlike vector field on Int(D2×S1).

Put

U1 = C(∂(D2 × S1)× [0, ε)) ,
U2 = D2 × S1 \ C(∂(D2 × S1)× [0, ε/2]) .

The family {U1, U2} is an open covering ofD2 × S1. Let {λ1, λ2} be a partition of unity
subordinate to{U1, U2}. Put X̂ = λ1X + λ2N . Then the vector field̂X is a non-singular,
FR-tangent vector field onD2 × S1 which satisfies the following:

(1) X̂|∂(D2×S1) is positive and lightlike.

(2) X̂|Int(D2×S1) is positive.

Let N̂ be the subfoliation ofFR determined byX̂. So we haveN̂ |∂(D2×S1) = N . By [11],
the restriction of any subfoliation ofFR to ∂(D2×S1) has Reeb components. So the foliation
N̂ |∂(D2×S1) has Reeb components. HenceN has Reeb components. However,N must be a
Riemannian foliation on∂(D2 × S1) by [14], which is a contradiction. Therefore there exists
no Reeb component(D2 × S1,FR) such that all the inner leaves ofFR are timelike and the
boundary is lightlike. �

We have an easy corollary of Theorem 5.1.

COROLLARY 5.9. Let (M, g) be a closed Lorentzian 3-manifold with finite fundamen-
tal group and F a codimension-1, totally geodesic foliation of M . Then F consists of at least
two kinds of leaves among spacelike, timelike, and lightlike ones.
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PROOF. By [7], the foliationF has a Reeb component. ThereforeF consists of at least
two kinds of leaves. �
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