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THE WAVELET TRANSFORM OF DISTRIBUTIONS

RAM S. RATHAK
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Abstract. The continuous wavelet transform is extended to certain distributions and
continuity results are obtained. Boundedness results in a generalized Sobolev space, Besov
space and Lizorkin-Triebel space are given.

1. Introduction. The wavelet transform af with respect to the wavelet is defined
by
(1.1) d(b,a) = (We)(b,a) = /R ¢y ((t —b)/a)dt/a",

provided the integral exists, whefe € R” anda > 0. Sometimes it is assumed that
a € R\{0}. If ¢ € L%(R") andy € L2(R™), then using the Parseval formula for Fourier
transforms, (1.1) can be written in the following form (cf. [2, p. 9]):

(1.2) (W) (b, a) = (27)" / FOD T (ao)p(@)do.
R’l

This form of the wavelet transform is very similar to that of a pseudo-differential operator with

symbolo (a, w) = ¥ (aw). Hence the theory of the wavelet transform (1.2) can be developed
in a manner similar to that of the pseudo-differential operator (cf. [11]).
A reconstruction formula for (1.1) is given by

(1.3) o) =W (b, a)l(x) = (Cy)~* /R /R ¢ (b, )y ((x — b)/a)dadb/a" ™,
+ n
where
(1.4) Cy =/ [V (0))?|w|™"dew > 0.
Rn

It has been proved by Perrier and Basdevant [6] thai/faatisfying the admissibility
condition (1.4) withh = 1, the wavelet transform is a linear bounded operator:
W:LP(R) > LP(R, L?(Rs,daja)) == WP, 1< p<oo,

and we have
_ _ p/2 1/p
(1.5) I f(b, a)llwr := </R </R If(b,a)lzda/a) db) < Apllflee,
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where the constamt, depends op andy. Moreover, the inverse wavelet transform given
by (1.3) withn = 1 is a linear and bounded operator:
WLl LP(R, L?(Ry,da/a)) — LP(R)
and we have for some constant> 0,

(1.6) I fllLr < DIfb,a)llwe, 1<p<oo.

We shall use the following Parseval relation (cf. [6]). Foe L?(R), ¢ € L” (R) with
1< p<oo,1/p+1/p’ =1andreal wavelel satisfying (1.4) we have

(1.7) | st = | ( | f<b,a>§(b,a>da/a>db.

Now, we define the Schwartz spag€éR™). An infinitely differentiable complex valued
functiong onR" is said to belong to the test function spaa®&”) if

(1.8) Ymp(@) = sup [(L+ |x)"DEp(x)| < 00

xeR™

forall m € No andB € N§. Here D? denotes(d/8x1)P1(3/8x2)%2 - - - (3/dx,)P with B =
(B1, B2, ..., By). The dual of the spacgis the space’ of tempered distributions (cf. [5])
We also recall the definitions of the Besov spdkjg, and the Lizorkin-Triebel space
Fy , from[10, p. 45].
Let @ (R") be the collection of all systeni®;}%*, € S(R") such that

]=
suppgo C {x; |x| < 2}
suppp; C {x; 27t < |x| <2/}, j=1,23, ...
that for every multiindext there exists a positive numbéy, with
2/ D¢ (x)| < Cy forall j=0,1,2,... andallx € R"
and that
o
quj(x) =1 foreveryx e R".
j=0
DEFINITION 1.1. Let—oo <5 < occand 0< g < oo. Assume thafg;(x)}72, €

D (RM).
(i) If0 < p < oo, then

B (R = {f; f € SRM, I fIBS R = 127 F ¢, Ff164(L,(R™)] < o0}.
(i) 1IfO0 < p < o0, then
5 R = (f; f € SR, IfIFS, RO = 129 F 1, FFIL,(R", £)]| < 00} .

For further properties of these spaces we refer to [10].
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Imposing suitable conditions aj we investigate the continuity of the wavelet transform
(1.2) and define the generalized wavelet transform of certain tempered distributions in Section
2. Using inequalities (1.5) and (1.6) we investigate the wavelet transform of céRain)’-
type distributions of Schwartz in Section 3. Using the definition (1.2) we study in Section 4
the wavelet transform on a certalr’-Sobolev space. In Section 5 a multiplier theorem of
Triebel is applied to (1.2) to obtain some boundedness results for the wavelet transform in the
Besov space), , and the Triebel-Lizorkin spacg; , forall s € Rand 0< p, g < co. The
paper extends some of the results of Perrier and Basdevant [6] and Moritoh [4].

The author would like to express his sincere gratitude to the referee for his valuable
advice.

2. The wavelet transform of tempered distributions. In this section we need the
test function spac§(R" x R) defined to be the space of all functiopss C*°(R"” x Ry)
such that forZ, k € Ng ande, 8 € N,

(2.1) Vewkp(@) = sup  |a'b*(9/0a) D¢ (b, a)| < 0.
(b.a)eR"xR
| <k+|B]

Clearly, the Schwartz spaggR” x R.) is contained inS(R” x R.).

THEOREM 2.1. Lety € S(R™). Then the wavelet transform (We) (b, a) is a continu-
ous linear map of S(R") into S(R" x R,).

PrROOE For¢, k € Ng anda, B € N, we have after differentiation and integration by
parts,

a'b®(8/9a)* DY (W) (b, a)

- (2n)—”b“fo P ¢ (w){a’(3/3a) Y (aw)}dw

R”n

= (27)7"b” / ei(b’“’)(iw)ﬂé(w)i”k(a)_g /
Rll

i ei(w,ay)(Dy)Z[(a), y)kW]dy>dw

n

ei(w,ay)Dﬁ [ Z (k!/xy)w*yklp(y)}dy)da)

|x|=k

— (Zn)fni€+k+|0(+,3|/ ei(b,w) Z (k‘/)\.') Z <§) (Dw)a78(wﬂ+k7€¢’§(w))

n
A=k S<a

< ( / (iay)ﬁ(Dy)f[W(y)]e“w’“«")dy)dw
R)l

ei(b,w) Z (k'/)\,') Z (g) w_SDZ_g(wﬂ+A_E$(w))

|x|=k

n

— (27_[)—111-£+k+|01+,3+25\ /



414 R. PATHAK
§ /Rn(Dy)sy‘s(Dy)e(y%(y))e"w‘”dydw
—n. o o o—39
= (2m) it 2] Mzk(kz/x!); <5) Z( o )
= o

x / ! PDAB, € 1, ) TP DT B (w)

X (Z (ﬁ) A8, ¥) /Rn yrSfyD§+6—y (y)‘I/_f(y))ei(w’“y)dy)dw,

y<é
Therefore, foll 8| + k > || + ¢, we can write

a*b¥(3/3a) D W (b, a)|

e sy () 5 ()50 5 (1)

[A =k §<a p=<a—§ y=<8 T<l+5—y
X |AB, L, 1, p)| |A'(S, ) A" (A, T, 9)]

x Rn<1+ |o]) BIHk=E=lol=Bln+1 pe=6=0 () |dw /(1 + |w])" T

7= 0+6— n
< | (L4 |yFBI=lel=lylntd pIFo=YFe g () dy /(L + [y,

so that
) F) 0+8—
VeykpWe) < D (kA D (‘;) 3 <a ; ) )3 (y) )3 ( ' )’)
A=k d=<a p=<a—3s y<8 T<l+5—y
X B, BV, T, 78, py € 1) Y|Bltk—t—|pl—[8]-4n+1,a—5—p (D)
X Vik+18]—|y ||t 4+n+1+5+1—y (¥) .

ThusWe (b, a) € S(R" x R,), and from the above inequality the continuity @fp also
follows.

In view of the above theorem the generalized wavelet transfith of T € ', the dual
of S(R" x Ry), can be defined by
(2.2) (W'T,¢) =(T,W¢), ¢eSR").
Using duality arguments we have:

THEOREM 2.2. Thegeneralized wavelet transform W’ : §' — §’ islinear and contin-
uous.

We can also analyse the wavelet transform by imposing a condition on the Fourier trans-
form of the wavelet) as follows:
Assume thaty € C*°(R") such that

(2.3) | = sgp(1+ lE) TP DYy ()] < oo,
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wherem € R, 0 < p < 1,a € Nj. Let us define the function spasg(R"” x R) to be the
set of allC*>-functionsg onR"” x R such that for, k € Ng anda, 8 € NJ,

(2.4) Yeakp(@) = sup |a‘3b"‘(a/8a)"Df¢(b, a)| <oo.
(h,a)eR"xR 4
Ct|a|<k+|Bl
L+|a|<m

THEOREM 2.3. Assume that the wavelet  satisfies (2.3). Then the wavelet transform
W isa continuous linear map of S(R") into S1(R"” x R.), and the generalized wavel et trans-
formisa continuous linear map of §;(R" x R;) into §'(R").

PROOF Proceeding as in the proof of Theorem 2.1 we can write
ja’b* (8 /9a)* DY (W) (b, a)|
< (27)™"a" /R PRGOS (‘;‘) LD} D} (1) lu=awla” ||

A=k Y=o

x (“ 5 V) AP, 9\l NDET §(@)ldw

S<a—y

@D KR (;‘/‘) <O‘ s 5) A(B, 8)a Tt

A=k y=ajs<a—y

X/ ol B3I (1 4 aleoy =20 A DY =58 (09) d
Rn

e Y Y 3wy (j) (“g‘s) A(B.5)

M=k y<aé<a—y

> A (1+alwl)\}’\+€+m7,0(|)/|+k)|w|k+\ﬂ\*|5|*\}’\*€|DZ*V*5¢§(w)|da)

=2 Y Y Y @y (i) (“E‘S) AB.9)

[A|=k ¥y <a§<a—y
x fR n(l+a|w|)k+'/f"—“”—'y'—“”+1|Dg—y—%(w)|dw(1+ 2]

for|y|+¢+m — p(ly| + k) < 0. Therefore, fom < —¢ — |a| and? + |@| < k + |B], we
have

1a’b*(0/8a) DY W) (b, )l < @m)™ 3 3 37 ki/a) (“) (“ N V)
(2.5) M=k y <@ §<a—y Y

X A(B, 8, 1) Vi+|Bl-+18 Iy | —t+n+La—y—5(@) -
From this we conclude that the wavelet transform is a continuous linear m&@da) into
S1(R" x Ry).

As in Theorem 2.1 we define the generalized wavelet transi@fnof 7 € (S1)’, the
dual of S1(R" x R4), by (2.2) and get the second part of the theorem.
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3. Thewavelet transform of (D ») -typedistributions. In this section, to simplify
the analysis, we consider the wavelet transform (1.1)pfa R anda > 0. We define a
suitable test function space.

An infinitely differentiable complex-valued functighon R is said to belong to the test
function space, (R) if

1/p
(3.) v (¢) = (/ |<xa/ax)k¢<x>|”dx> <00, 1l<p<oo
R

for everyk € No. A variant of F, (0, o), denoted byF, (0, co) was studied by McBride
[3].

Another space with which we shall be concered SR x R), defined fo € R, a €
Ry and 1< p < oo, by

G,(RxRy}) = {¢ € C®(RxRy);: Bl () =

da r/2 1/p
(3.2) (/ / (|(@d/da + bd/db + D)k¢ (b, a)|2—> db) <0
RJR, a

forall k e No} .

Here we note that a differentiable functignsatisfies the partial differential equation
(3.3) (ad/9a +b3/3b+ D[y ((x —b)/a)/al = —x93/dx[Y((x — b)/a)/al,
and therefore, in general, we have
(ad/da + bdb + D¥[y ((x — b)/a)/a)
= (D! xd/00)" Y ((x —b)/a)/al, Kk € No.
Now, we prove the following:

THEOREM 3.1. Let¢ € F,(R) and ¢ € S(R) with (1.4). Then, for 1 < p < oo, the
wavelet transform W¢ defined by (1.1) is a one-to-one linear continuous map from F,(R)
onto G, (R x Ry) and W1 isgiven by (1.3).

PROOF. Let us assume that the real wavejete S(R) c LY(R) N L%(R) and¢ €
F,(R) C L?(R). Then differentiating under the integral sign in (1.1) with= 1, and using
the relation (3.3) and integrating by parts we can show that

(3.4)

(ad/da + bd/db+ VW (b, a) = /(aa/é‘va +53/3b+ DY ((x — b)/a)a ‘¢ (x)dx
R
= —/(x3/3X)1//((x —b)/a)a ¢ (x)dx
R

= /(xB/Bx + 1))V ((x — b)/a)a tdx.
R



WAVELET TRANSFORM OF DISTRIBUTIONS 417

Therefore, in general, we have

(ad/da +bd/db+ W (b, a) = (ad/da + bd/db+ LX(We) (b, a)
= W[(x8/3x + 1)*p1(b, a).

Now, we apply the inequality (1.5) and get

da p/2 1/p
ﬂzf’<W¢)=< f ( f |W[(xa/ax+1)"¢1(b,a>|2—> db)
R\ /R, a

n
< Aplld/ox + Dfpllr < Ap Y (’r’) Ixd/3x)" ¢llLr
r=0
where the constam , depends op andy. From (3.6) we conclude tha¥ is a continuous
linear mapping fron¥,(R) into G ,(R x Ry).
Next, differentiating (1.3) with respect towithin the integral sign, using formula (3.3)
and integrating by parts we obtain

(3.5)

(3.6)

(xd/0x)p(x) = (Cw)_lf / (ad/da + bd/dab+ D*W (b, a)y ((x — b)/a)a *dadb .
RJR,

Therefore, in view of the inequality (1.6) we obtain the following estimate, fer g < oo,
l(xd /dx) ¢ () | o

r/2 1/p
< (D/Cﬁ(/R(/R |(a8/8a+b8/8b+1)kW(b,a)|2alda) db) .

From (3.7) we conclude tha¥ —1 is a continuous linear mapping 6f,(Rx Ry)into Fj(R).

To prove thatW is one-to-one, assume thidty = 0 for¢ € F, C LP. Operating on
both sides of this equation By ~1 we getW 1W¢ = 0. Thus¢ = 0. SoW¢ = 0 implies
thatg = 0.

Now, we show thaW is onto. Letp € F, C L,. ThenW¢ € G,(R x Ry), butw—1
(W¢) = ¢. Therefore, for every € F, there existsV¢ € G,(R x R,) that is mapped by
W~1to ¢. ConsequentlyW is onto also.

Clearly, W is a one-to-one and onto mapping fraip(R) ontoG ,(R x R,.). Therefore,
w~1is defined onG ,(R x R4). SinceW1W¢ = ¢ for all ¢ € F,, it follows thatw 1 is
given by (1.3).

In analogy to the Parseval relation (1.7) for the classical wavelet trandfarme define
the generalized wavelet transfoi f of f € Fi’7 by the relation

(3.7)

S 1 -
(3.8) (f(x),9(x)) = C_w((W/f)(b’ a), We)(b, a)),

whereg € F,(R) andCy, is given by (1.4) withm = 1.
Clearly W’ is a linear functional o ,(R x R); its continuity follows from Theorem
3.1. ThusW'f € G/,.
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Applying duality arguments to Theorem 3.1 we can also define the trandformof
9€G,(RxRy)by

(Wg,¢) =(fW¢),

where¢ € F,. ThenW"g is a continuous linear map of,. If we setg = W’ f, then
W9 = f = (W) 1g, the inverse of the generalized wavelet transform efG;,.

Thus we have the following:

THEOREM 3.2. Let f € Fi’7 and ¢ € S(R) satisfy (1.4) withn = 1. Then, for 1 <

p < oo, the generalized wavelet transform W’ f defined by (3.8) is a one-to-one continuous
linear map of F, onto G',.

4. Thewavelet transform on L?P-Sobolev space. One can measure the regularity of
a functiong in the scale of ar.”-Sobolev space. Feroo < s < coand 1< p < oo, then
LP-Sobolev sapcél! is defined to be set of aff € §'(R”") such that

(4.2) Il r = lleol*Gllzr

whered = F¢.
We are also concerned with the spagg ** of all measurable functions onR” x R4
such that

o P'/p 1/p'
(42) ||¢(s ')”WI[))’,S = ('/0 (/” |¢(b, a)lpdb> a‘glda) < 0,

1<p,p <o, seR.

Now, from (1.2) it follows that

(4.3) FIW (., 0)l(@) = ¥ (aw)p(©) .
Using the Haussdorff-Young inequality [8, p. 178] foxlp < 2,1/p + 1/p’ = 1, we have

- ) 1/p' ) 1/p'
(/ |w<aw>¢(w)|pdw) =(/ |FW<-,a>|”dw>
Rﬂ R"

1/p
scp,n</ |W<b,a)|”db> ,
Rﬂ

whereC, , > 0is a constant. Multiplying by ~1da and integrating from 0 too we get

(4.4)

> [e¢)

(4.5) / a_s_lda/ 1 (aw)p(@) | dw < (Cp,n)p// (Wb, a)Pdby? Pa—>—1da |
0 = 0

so that

)l | lel1d@)Pdo < (Cpn)? ok, )7 . .
R Wp'

P
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where
(4.6) cy = /R |V (aw)|” @lw)daja > 0
is assumed to be independenuofThus
(4.7) 190 < Con/ (T INGB. Dl

Furthermore, using the Haussdorff-Young inequality again, from (4.3) we also have
) 1/p _ . ) 1/p
</R |W(b,a)|” db) = </R IFl[w(aw)¢(w)](b)|”db>

1/p
= Dp’,n(/R II/f(aw)cb(w)I”dw) , Dy,>0.

Therefore,

S ) p/r 0 R R
/ a51</ W (b, a)|? db) da < (Dp/)n)l’/ aS1</ |1/f(aw)¢(w)|pdw)da
0 R” 0 R”?
= (Dp )’ /Rn qu(w)lplwlsdwa/,’p,
WhereCf/;’7 is given by (4.6). Thus
(4.8) Ip(®, )y = Dy n(CyPY Pl e, 1 p+1/p' =1.

From (4.7) and (4.8) we get thelfowing characterization of thé?-Sobolev space in
terms of the continuous wavelet transform, generalizing a result of Tchamitchian [9, p. 103]
and Theorem 3.1 of Perrier and Basdewant [6].

THEOREM 4.1. Assumethat the analysing wavelet satisfies the admissibility condition
(4.6). Then the continuous wavel et transformis a bounded linear operator from H/ (R") into
WPS(R*" x Ry)forl<p<21/p+1/p =1landforalls e R

Moreover, for allf € H (R"), we have
”¢”pr/ = ||¢(b,a)llwgax,
foralls e Rand 1< p,p' <2,1/p+1/p' =1

5. Boundedness of the wavelet transform in Triebel-Lizorkin and Besov spaces.
Perrier and Basdevant [6] have obtained certain boundedness result for the continuous wavelet
transform in Besov spaces. However, they restricted to the page> 1 as they used
Minkowski’s inequality in their analysis. In this section using the following theorem on mul-
tipliers by Triebel [10] we obtain a boundedness result for the wavelet transform in the Besov
spacij,,q(R”) and the Triebel-Lizorkin sachf,,q(R”) foralls e R,0< p,g < o0.
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THEOREM 5.1 (Triebel). Assumethat m : C*°(R") — C such that

(5.1) Imlly = sup sup(l+ |x|» /2| D¥m(x)| <00, N € Np.
le|<N xeR™"

Let —o0 < s < 0vand0 < g < oco. Let A(R") be either B}, ,(R" or F, (R") with
0 < p < oo. Then there exists a positive number C such that

(5.2) IF'mFf | Al < Cllmllv | f | Al
holdsfor all m € C*°(R") and all f € A with
N > |s|+3(n/p)+n+2 for B;’q
and
N > |s| +3n/(min(p,q)) +n+ 2 for F;’q.

The boundedness result for the wavelet transfonﬂjjg (R™) andF;,)q (R™) is given by
the following.

THEOREM 5.2, Let —oo < s < c0cand0 < g < oo. Let f € A, where A denotes
By (R with0 < p < ocoor F.q(R™ with0 < p < oo. Let N denote the natural number
such that

N > |s|+3n/p+n+2 for Bls,)q
and
N > |s| +3n/(min(p,q)) +n+2 for F;’q .
Assumethat i € C>®(R") and (2.3) holds. Then there exists a positive number C such that
(5.3) IWy £ 1Al < CA+a®N? sup [§1121 £ 1Al

le| <N

form+ (11— p)N <O.

PROOE Assume that

m(E) = ¥ (ak)
foré e R",a > 0. Then

Imlly = sup sup(L+ |52 D (ag)]
|¢|<N &£eR™

= sup supa® + |u|®)®2| DX ()]
la|<N u

(L+a®N/? sup sup(d + [ul®)' 2 D% (u)|

la| <N u

IA

(5.4)
1+ Ju])l!

< (1+a®»"N? sup su Gl

=d+a) |a\§5)\/ up(l-i-|M|)_’"+"""‘|

< @ +a®»N? sup ||y |m°.
la|<N

[(L+ [u) PR DY ()]
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In view of Theorem 5.1 we have
IWy f 1Al = IF Y @) Ff 1Al = |FimFf | Al < Clmlnllf | Al
Now, invoking the inequality (5.4) we get the desired estimate.
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