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Abstract. We study smooth foliations of compact manifolds where the set of noncom-
pact leaves has zero Lebesgue measure (and is nonempty). We review a simple example due
to Reeb and provide two new examples that show more complicated behavior that may occur.

1. Introduction. Typically, if a foliation has one noncompact leaf, it has many non-
compact leaves. In [1], Hurder inquired about how small the set of noncompact leaves in a
foliation could be, and asked what features a foliation with few compact leaves would have.
A foliation is calledcompact if all leaves are compact, aredsentially compact if the set of
noncompact leaves has zero Lebesgue measure. Here we consider the qualitative behaviour
of essentially compact folieons that are not compact.

An example of an essentially compact foliation is in Reeb’s thesis [4]. Reeb included the
example to show that the global Reeb stability theorem for codimension one foliations could
not be extended to higher codimensions. In Reeb’s example, every leaf is proper and the
closure of the set of noncompact leaves forms a compact submanifold. Vogt has generalized
Reeb’s construction in [3].

We offer some new examples, showing the following

THEOREM 1.1. There exists a C*° essentially compact foliation of a compact mani-
fold so that the closure of the set of nhoncompact leaves is not a submanifold. Also, there
exists a C* essentially compact foliation of a compact manifold so that there are nonproper
noncompact leaves.

We give the first example in Section 3 and the second example in Section 4.

In all of these examples, the set of noncompact leaves is uncountable. Vogt has shown
that this must be the case for codimension two foliations with at least one noncompact leaf,
and for oriented foliations of arbitrary codimension satisfying an additional cohomological
condition [3].

It would be interesting to find a single general construction that yielded many examples
of essentially compact foliations as well as that gave one or more of the known examples as
special cases.
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2. Reeb’sexample. Let M, be the producs” x S x S1. We will view $" as the
submanifoldy "/ x? = 1 of R**L. For a pointp in M, let x1(p) denote the projection to
thex; coordinate inR"*1. Let ¢ (p) andd(p) denote the projections gf to the first and the
seconds® factors, respectively.

Define the differential forms

w1 =4db,
w2 = [(1—sin6)? + xZ 1 d¢ + sind dx; .

It may be checked that the; andw; are nondegenerate and everywhere independent. Now
define a distribution onM,, by w1 = 0 andw, = 0. This system is integrable and hence
yields a foliationF, of M,,.

Note that the submanifolds_. defined byy = ¢, wherec is some constant, are saturated
by leaves ofF,,. As long as sim is not equal to one, all leaves &F, in N, are compact. They
are given by the equations

¢ — o= —SinG_ rotan( — when sing £ 0
= 1 sing 1—sin6 ’

¢ = ¢o when sird =0.

When sirg is equal to one, all leaves ¢, in N2 except two are noncompact. The leaves
in M2 are given by

1
¢ —do=— when x1 #0,

The noncompact leaves.vi; > are all proper and have the submanifdld» as their closure.

We can view this foliation as arising from the one-parameter family of foliations of the
submanifolds\., where the family is indexed by = ¢ in S1. Every foliation in the family
is a compact foliation, except the special foliation of the l&afo.

3. Second example. In this section, we describe an example of a dimension one
foliation of a compact three-dimensional manifold so that the set of noncompact leaves is
nonempty with Lebesgue measure zero. In this example, the closure of the set of noncompact
leaves does not form a submanifold. The foliation is not a one-parameter family of foliations
as is Reeb’s example, although it is obtained from a one-parameter family of foliations of
[—1, 1] x R by identifying the boundary with itself and adding a foliafedl, 1] x slasa
limit leaf to make the resulting manifold compact.

3.1. The basic idea. Le¥ be the manifold with boundary given liy-1, 1] x S x
[—1, 1]. We will construct a one-dimensional foliation g#f and then identify the bound-
ary of M with itself to get a foliation” of a compact three-dimensional manifold without
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boundary. Let(r, 6, z) denote the coordinates okl. We regardM as a thickening of the
two-dimensional cylinder

Ro={(0,0,2)|0 € Stz e[-1,1]}.

We will eventually identify the top
T={r.0.)|re[-11].0 € S"

with the bottom

B={(r0,-1)|re[-11],0 € S1}.
Also, the inner side

R_1={(-106,2)0 €8t ze[-1,1]
will be identified with the outer side

R1=1{1,0,2)|0 € $t,z € [-1,1]}.
Letp : R — ST be the map taking in Rto x mod 2t in S1. We first take
LY ={(0, p(¢). tanh¢ + 7))| ¢ € R}

as a single proper noncompact leaf #rlts closure contains the union of the circles
Z1={0,t,D|t e Rl =7 NRop

and
Z_1={0,t,-1)|re R} =BNRg,
so we add these as leaves as well.
For eacte in (—1, 1], define a submanifold, by

Se ={(r, p(¢), tanh¢p + em))|r e [-1,1], ¢ € R}.

EachS; is a long spiraling strip homeomorphic in the submanifold topologi to [—1, 1].
The manifoldM coincides with the union of the tap, the bottomB and all of the submani-
folds S,.

The noncompact Iealtg is contained in the submanifols}. This submanifold will be
saturated by leaves of the foliation. For alin (-1, 1), the submanifoldS, is saturated
by leaves of the foliation. A¢s| gets close to one, the angle at which the leaves pierce the
cylinder R should approach zero. Both the t@pand bottomB will also be saturated sets
for the foliation.

Lastly, we identify the boundary of1 with itself in such a way that the foliation be-
comes a foliation of the resulting space. The resulting manifold will be a compact, nonori-
entable three-dimensional manifold that is doubly covered by the three torus.

3.2. Explicit description. In this section we elaborate and formalize the description
just given.
Let
M =M\ (BUT US)
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be the complement aM and the union of the top, the bottom, and the two-dimensional
spiraling submanifold which contains the proper Ie%f

After removingB U7 US; from M, atopological cube remains. We parametrize it with
the coordinategr, ¢, ¢) as

M ={(r,¢p,tanh¢ + em))|r € [-1,1],e € (—1,1),¢ € R}.

The use of, ¢ ande is consistent with the previous use. Note that

3 9 , 8
2o ra-H=,
o6~ a0 T

so that the vector field/d¢ may be extended smoothly to all 8ff. Note also that

d d
— =1(1-z7%)—.
de 7( ¢ )az

First we define a vector fieldy on M. Let f be aC* function defined on the real
numbersR such that (i)f is even, (ii) £ (0) = O, (iii) f increases from = 0tor = 1/2, (iv)
f(@/2) =1, (v) f decreases from = 1/2 tor = 1, and (vi) f = 0 for all » with |r| > 1.
We defineFy on M by

ad

0
Fo(r,0,2) = f(r)g + T

The vector fieldFy is tangential to the tofi, the bottoms, the cylinderRo and each
submanifoldS,. Let 7o denote the foliation ofM integral to the vector field?.

The foliation Fy is tangential to the sideR_1 andR1, and we may turbulize it within
distance 14 from the sides to obtain a foliatiaf; which is perpendicular to the boundary
dM along the sides and tangential a1 at the top and bottom. Let be aC> bump
function such that (i} is even, (ii) p is identically zero forr| < 3/4, (iii) p increases for
3/4 < r < 1, and (iv) p is identically one folr| > 1. Define a new vector field, by

~ p(r)m\ 9 (P 0
F]_(r, ¢, 8) — (1_ p(r))FO =+ p(l") |:COS< ) % +S|n< 2 > 8}"} .

2

Note thatF; equalsFy when|r| < 3/4 and isC* tangent tod/dr at the sidesk_1 andR1
of M. The vectors)/d¢ andd/ar are tangential to the submanifolds, so that the foliation
JF1 integral toF; is also tangential t&, for all .

We now define &> bump functior to use in defining a perturbatidh of F;. First we
must define some oth€r*° bump functions. Let be aC* bump function defined oR such
that (i) s is even, (ii)s is identically zero fore with |x| > 1, (iii) s is increasing fromx = —1
tox =0, and (iv)s(0) = 1/2. Let

G=A{rellrl =s(e)}.

Define aC* function g with domain[—1, 1] x [—1, 1] whose support i&; such that (i)g is
even with respect te ande, (ii) ¢(0, 0) = 1, and (iii) ¢ decreases on radial paths fr@f 0)
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to the boundary ot;. We definei by
—¢? 2 ’
h(r.g.e) =€ 90¢7 &) on M,
0 on M\M.

In the next section, we will show thatis smooth onM. The supporiH of 4 is the closure in
M of the set

{(r, ¢, 8) |Ir] < 5()/6%) .
The interior of this set is an open neighborhoodaf \ L‘l) in M\ M’. As |z| goes to one,
ther coordinates of points il# approach zero. The intersection&fwith M \ M’ is equal
to the union ofL}, Z1 andZ_1.
We define a new vector fielH as a perturbation of; by
d
F(V,¢,8) = Fl+h(r7¢a8)§'

Let F be the foliation integral t&. The vector fieldF is tangential taS, for all ¢, so thatS,
is saturated by leaves ¢ for all ¢.
Identify the boundary ofM with itself according to the equivalence relation

(r,0,2) ~ (—r,—0,—2).
Note that the boundary of the submanifddis identified with the boundary &_., since
(1, ¢, tanh(¢p + em)) ~ (-1, —¢, tanh(—¢ — em)),
and the togZ” and bottomB are identified according to the relation
0,1 ~ (—r,—0,-1).

The vector fieldF has appropriate symmetry so that the distribution it spans is mapped to
itself by the identifications.

3.3. Properties of the example. In this section, we demonstrate that the folfaton
an example of the first type in Theorem 1.1. First we show the symmetry of the foliation.

LEMMA 3.1. Suppose that the identifications of the boundary have not yet been made.
Suppose theleaf L, of F iscontained in Sg. Then it has boundary points

(=1,a,tanha +ex)) and (1, b, tanh(b + &),

for some real numbers a and 4. In addition, there is another leaf L_, of F contained in S_;
which has boundary points

(=1, —b, tan(—b —ex)) and (1, —a,tanh—a — em)).
ProOOF. The vector fieldF has the property that

F(r,p,e) = F(—r,—¢, —¢).
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Consider the restriction of to S;. The coefficient 0fd/d¢ in F is always positive when
Ir] < 1, and hence any ledf, in S, may be written as a graph

(3.1) Lo = {(r(¢), ¢, tane + em))| ¢ € [a, b]}.

The graph is over a compact intahbecause the coefficient 6fdr in F is positive for all
points inM’.

By the symmetry of", there is another ledf_, contained inS_, which may be written
as

LZ, ={(=r(®), —¢,tanh(—¢ — em))| ¢ € [a, b]}.
The boundary points of, are

(=1,a,tanNa + ex)) and (1, b,tanhb + em)),
and the boundary points @f~, are
(=1, =b,tanh(—b — er)) and (1, —a,tanh—a — en)),
proving the lemma. |

Next we show that the foliation is essentially compact.

LEMMA 3.2. The union of noncompact leaves of F forms a set of Lebesgue measure
zero.

PROOF. The saturated open s&t’ has full measure. We will show that all of the leaves
of F contained inM’ are compact. For any submanifa$d, wheree € (-1, 1), by Lemma
3.1, every leaf ofF in S, is homeomorphic to a closed interval, with one boundary component
with » = —1 and one boundary component with= 1.

After boundary points are identified, the boundary points of the lgadf S, are iden-
tified with those of the leal.”, of S_, so that the union of the two leaves forms a compact
leaf of the final foliation.

Suppose the leavds. andL_, are as in Lemma 3.1. Consider the |&afafter identifi-
cations of the boundary are made. The boundary gairit, tanh(b + 7)) is identified with
the point

(-1, —b, —tanh(b + en)) = (=1, —b, tanh(—b — ex)) ,

a boundary point of the leal.”, contained inS_.. The other boundary pointl, —a,
tanh(—a — ex)) of LZ, is identified with
(=1,a, —tan—a — en)) = (-1, a, tanh(a + en)) ,

which is the second boundary component of the original leaf
In the case that the ledf goes through the poiri0, 0, 0), the two boundary points df
are identified, and hendealone becomes a compact leaf. ]

The next lemma describes the set of noncompact leaves.
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LeEMMA 3.3. The closure of the set of noncompact leaves is honempty, has Lebesgue
measure zero and is not a submanifold. There is an uncountable number of noncompact
leaves.

PrRooOF. The closure of the set of noncompact leavesis\ M’, which is clearly not
an embedded submanifold. The foliatidhagrees with the foliatiotF; on the setM \ M/,
which is a saturated closed set for both foliations. All leaves of the foligkipnontained in
M\ M’ are noncompact except fﬂFl’, the circlesz; andZ_1, and the four circular boundary
components of andB. O

Before demonstrating that the foliation is smooth, we compute partial derivatives of the
functionh.

LEMMA 3.4. Supposethat m, n and p are nonnegative integers. For a point (r, ¢, €)
in M’, the quantity

gmtntrp
az™m r”q&l’( 19 €)
is the sum of terms of the form
79 7¢2 k+l
(3.2) Cme ¢'r’! 2ekar ,(¢ €),

where C isaconstant and ¢, &, i, j, k and [ are nonnegative integers.

PrROOF. First we assume that = 0. From the definition of:, the result clearly holds
if n = p = 0. A short calculation shows that

O g, 6) = 629 2 (g2r 6y, and
or or

dh — g2
ﬁ(nqﬁ,e) = 2¢e < 9(¢°r, 8)+r (¢ r, 8))
demonstrating the claimifh = 0 andn + p = 1.

If we differentiates with respect tap or r again, we will only introduce polynomiat
terms,r terms and higher order partial derivativesgofThus, the higher order derivatives of
h with respect to- and¢ are given by the sum of terms of the form
kH g

0
(3.3) Ce™ ¢¢r]a oy l(¢ r, ),

whereC is a constant and j, kK and/ are nonnegative integers. Thus the lemma holds when
m=0.
Now we assume that > 0. We obtain the derivative by first differentiating with respect
to r and¢ to get a sum of terms of the form of expression (3.3). Using the facoittat =
(1 —z%)3/dz, itis easily seen that the partial derivative of such a term with respecisto
given by
grH+L,

9 PR ak-‘rlg 1 2
_ —¢° pi.] 2 _ - ¢ 4 /
9z [Ce O ek @ 8)} = A= P g @°r.e).
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Thus the lemma holds whem = 1.
If we differentiate with respect to again, using the product rule we get a sum of terms
of the appropriate form. Consequently, the lemma holds for arbitrary |

We will use the following lemma from Calculus to show that the funcfide smooth.
The proof is elementary, and so we omit it.

LEMMA 3.5. Let h andi be nonnegative integers, and let z = tanh(¢ + ). Then
,¢,2 i
im £ _
zl>1 (1 —z3)"
The vector fieldF; is clearly C*°. To show thatF is C*°, it suffices to show that the
functionh is C*°.

LEMMA 3.6. Thefunction/ is C®°.

PROOF. Lety be a path in the suppoH of 4 such that the pointg(r) are in M’ for ¢
in [0, 70), and the pointy (1g) is in M \ M’. We will show that for all nonnegative:, n and

ps
8m+n+ph

im — =
t—to 9z™MIr" P ()
The function is defined to be equal to zero @l \ M’, and hence this will prove the lemma.
Because the intersection &f and M \ M’ equaIsL(l) U Z1 U Z_3, we are concerned
with two cases: the case thatro) is in LY, and the case that(rg) is in Z1 U Z_1.
Casel. The limiting pointy (to) is in LY.
Thez coordinate ofy (1p) is between-1 and 1 so that there is some numhein [0, 70)
such that for all points (¢) with 7 in [c, 7p), the quantity
79
Ci
(1—z2)h
is bounded. Fom, n > 0, the quantity

8k+l
2
W(”ﬁb s 8)|y(r)

P piri

approaches zero agyoes torp and(r¢?, ) approaches the boundary 6f Thus, a term of
the form (3.2) goes to zero, and hence all partial derivativésgef to zero ag goes tarp.
Case2. The limiting pointy (fg) isin Z1 U Z_1.
The quantity
ngrj 8k+lg
dekor!

is bounded oveM.

Ast approaches), the absolute value of thecoordinate ofy (r) approaches.JApplying
Lemma 3.5, we see that for(r), a term of the form shown in expression (3.2) goes to zero as
t approaches. Hence all partial derivatives @f go to zero as approaches. |
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We have shown thaf is a C* foliation such that the set of honcompact leaves is
nonempty, not a submanifold, and of Lebesgue measure zero.

We may unite this example with Reeb’s by viewing them in the following way. The
manifold M,, in Reeb’s example is foliated by the manifoldl§. This is a proper foliation,
and each lealjy is saturated by leaves of the original foliation. For all lea¥%@sexcept one,
the restriction of the original foliation oty is a compact foliation. In the second example,
we get a two-dimensional foliatiaf® of M from the submanifolds, and’5 after boundary
identifications. The foliatiotF® of M is a proper foliation, with each leaf fof¢ saturated by
leaves of the original foliatiorF. For all leaved.. of F¢ except those coming froffi andS?,
the restriction of the foliatiotF to L. is a compact foliation. So, to generalize the construction
of the second example, we would want to find a proper foliation that is saturated by leaves of
a foliation of higher codimension so that the restricted foliations are almost always compact
foliations.

4. A variation of an example of Sullivan. In the two examples described so far, all
leaves of the foliations are proper. By making a small alteration to Sullivan’s counterexample
to the periodic orbit conjecture [2], we construct an example of a foliation with nonproper
leaves such that the set of noncompact leaves has measure zero, demonstrating the second
part of Theorem 1.1.
Let G be the group of matrices of the form
1 x vy
0 1 z]1,
0 0 1

wherex, y andz are real numbers. Lel be the subgroup of; consisting of elements
with integer entries. The left-invariant forms @hare spanned by the elemeats, dy and

n=dz—xdy.
Let M equal the produdt/I" x S1 x S1. Leta andpg be the coordinates in the first and
the second? factors, respectively. Define the vector figicon G/ I" by
dx(Y) = (sin(2B8)) cosa ,
dy(Y) = —(sin(2B)) sina + 2 cog B cosa
n(Y)=cofB, da(Y)=2sitB, dB(Y)=0.
Note that integral curves saturate the submanifglés c, wherec is constant, so as in Reeb’s
example, we will get a one-parameter family of foliations indexe@by
Then, wherg # 0 andg # n, integral curves of satisfy
o =At +ao,
x = (cotB)[sin(rt + ag) — Sinap] + x0,
y = (cotB)[cog(\t 4+ ag) — COSap] + cof B sin(At + ap) + yo,

27 /A 27 /) 27 /)
/ dZ(Y)=/ 77(Y)+/ xdy(Y) =0,
0 0 0
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wherei = 2 sirf 8. So, wheng is not equal to 0 orr, all leaves are compact.
Wheng equals 0 otr, we obtain

dx(Y)=0, dy(Y)=2cosx, n¥)=1, da(Y)=0, dY)=0.
Solutions are given by
x=2x0, y=(2cosp)+yo, z=(1+2xgC0OSa0)+ 20,
a=ag, B=PHo.
When the ratio of 2 cagp to 1+ 2xg cosap is irrational, the leaf is noncompact and dense in
the submanifold given by
x=x0, a=ao, P=Pho,
and hence is nonproper. When the ratio is rational, all leaves are compact.
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