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Abstract. In previous papers, the author defireedhotion of admissible functions for
digraphs and studied its properties. The notid admissible functions naturally comes from
the study of mean curvature functions of codimension-one foliations, and admissible functions
of foliated manifolds are represented by a divergence formula. In this paper, we show that the
similar divergence-like formula characterizes admissible functions of digraphs.

1. Introduction. LetD = (V(D), A(D)) be a finite digraph, which may have loops
and parallel arcs. In [7], the author defined a notion of an admissible funttion(D) — R
and studied its properties. The notion of admissible functions naturally comes from the study
of mean curvature functions of codimension-one foliations (see [9], [13]). Indedd/|eF)
be a codimension-one foliatiaf of a closed manifold. We assume tha/ and F are
oriented. A smooth functiorf : M — R is said to be admissible if there is a Riemannian
metric g on M such that- f is a mean curvature function g with respect to the metrig.
In this case, we have

f=divg(N),

whereN is the unit vector field onV/ orthogonal toF, and diy,(N) is the divergence of
N with respect to the metrig. From the view point of the paper [9], this situation can be
interpreted by digraphs, that is, we have the following characterization of admissible functions
on digraphs.

THEOREM. Let D beafinitedigraph. f isan admissible function if and only if there
isalabelling gp of D suchthat f =6,4,1, 1: A(D) — Rbeingidentically 1.

We shall give some definitions and preliminary results in Section 2, and shall prove this
theorem in Section 3.

The author would like to thank the referee for his valuable comments on the first manu-
script.

2. Préliminaries. Let D = (V(D), A(D)) be a not necessarily strict digraph, that
is, D may have loops and parallel arcs. In this paper, we consider only finite digraphs. An
element = (u, v) € A(D), which is an ordered pair of vertices (D), is called an arc of
D. The vertexu (resp.v) of e = (u, v) is called a tail (resp. head) and is denotedugy)
(resp.w(e)). (see [2] for generalities on graphs). A labellipg of D is defined by a pair
(gv, ga) with gy : V(D) — Ry andgy : A(D) — Ry, whereR; = {x € R| x > 0}. Set
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CoOD) ={f| f: V(D) — RyandCY(D) = {¢ | ¢ : A(D) — R}. Define the coboundary
operatos,,, : C1(D) — C%(D) by

1
8gu¢(v)=—( Y ga@p@— > gA(e/)qb(e/)).

WO\ Eab) JeA(D)
a(e)=v w(e)=v

Note that if the labelling)p is given bygy = 1 = g4, then the corresponding cobound-
ary operatoBg,, is the usual one (cf. [1], [12]). Note also th#g}, of a labeled digraphD, gp)
corresponds to the divergence of a Riemannian maniidldg). Indeed, define an integration
of f € CO(D) over a subseW c V(D) by

/W f=Y v f).

veW

To define an integration af € C1(D) for our purpose, we need some more definitions. For
subsetsX, Y c V(D) with X N Y = ¢, we set

I't(X,Y)={eec A(D)| ale) € X, w(e) € Y},
I'X,Y)={ec A(D)| w(e) € X, a(e) € Y}.

If Y = V(D) \ X, then['*(X, Y) is simply denoted by'*(X). For a subdigrapf c D,
we define the bounda®yH of H by 9H = I''(V(H)) U '~ (V(H)), and an integration of
¢ € CY(D) overdH by

/8 o= Yo aa@de)— Y gae)g(e).

eel't(V(H)) e'el'~(V(H))

Then we have the following Stokes’ Theorem like formula.

PrRoOPOSITION For a subdigraph H of alabeled digraph (D, gp), we have
/ Sgpd =/ ¢ forp e CL(D).
H oH

PROOF As the loops ofD give no contributions to the sums in the formula, we may
assume thab has no loops.

/H Sopd =D gv()8g0(v)

veV(H)
= > [ D w@s@— Y ga)oE)).
veV(H) ecA(D) e eA(D)

a(e)=v w(e)=v

Fore € V(H), as the ternys (e)¢ (e) appears with thet’ sign in the summation of(e) €
V (H) and with the -’ sign in the summation ab(e) € V(H), the termsga (e)¢ (e) cancel
each other and disappear in the summation. Thesummation of the last formula is taken
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for e with the ‘4’ sign for a(e) € V(H), w(e) ¢ V(H), and with the =’ sign for w(e) €
V(H),a(e) ¢ V(H). It then follows that

/H S = Y. gal@dle)— Y ga)g(e)

ec't(V(H)) e'el'~(V(H))

[ o 0
0H

A non-empty proper full subdigrapki of a digraphD is called a(+)-subdigraph (resp.
(—)-subdigraph) it~ (V(K)) = @ (resp.I' ' (V(K)) = ¥). Recall the definition of admis-
sible functions on a digrap® (cf. [7]). We call a functionf : V(D) — R admissible
if every minimal (4+)-subdigraph contains a vertexwith f(v) > 0, and every minimal
(—)-subdigraph contains a vertaxwith f(w) < 0. Here “minimal” means the usual set the-
oretical sense, that is, being non-empty and containing no non-empty gropsubdigraphs
(resp.(—)-subdigraphs). In casP has no(+)-subdigraphs, any functioi with f(v) > 0
and f (w) < 0 forsomev, w € V(D) or f = 0 is called admissible.

A digraph D is said to be strongly connected if there is a directed path framv for
every distinct vertices, v € V(D). If D is not strongly connected, then there arandv €
V(D) so that there is no directed path fronto v. SetW, = {w € V(D)| there is a directed
path fromu to w}. Itis easy to see thdd[W, ], the subdigraph ob generated by the vertices
W,, is a(—)-subdigraph. Thus we have the following (cf. [7]).

LEMMA 1. Adigraph D isstrongly connected if and onlyif D hasno (4)-subdigraphs.

Now we recall some relevant facts on foliations (see [3] for generalities on foliations and
[11] for differential geometric aspects of foliations). L@, F) be a transversely oriented
codimension-one foliatiotF of a closed oriented manifolt/. The transverse orientation of
F determines a vector fiel on M transverse toF. A compact domairC c M is called
foliated if C is a union of leaves af. A foliated compact domai@'is said to b&+)-fcd (resp.
(—)-fcd) if N points outwards (resp. inwards) everywheresah(cf. [8], [9]). We obtain, in
a unique way, a digrapi(M, F) from (M, F), and from an arbitrarily given digraph, we
can construct a transversely oriented codimension-one foliation of a closed oriented manifold
(M, F) such thatD = I'(M, F). Indeed, we have

THEOREM O1 ([9]). Let (M, F) beasabove. For each (M, F) there exist a digraph
I'(M, F) and a nice transverse embedding v : I'(M, F) — (M, F). Furthermore, for each
arce € A(D), ¥ (Int(e)) intersects each compact leaf of 7 at most once.

THEOREM O2 ([9]). For any digraph D, thereis a foliated manifold (M, F) so that
D =T(M,F).

In these theorems, a vertexe V(D) = V(I'(M, F)) corresponds to a compact foliated
domainC, ¢ M and an are = (u,v) € A(I'(M, F)) to a compact leal. € F contained
in C, N C, with ¢(e) N L # ¥. The headv(e) and the taikv(e) of an arce are determined
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by the direction ofV so thatV goes fromCy . to Cy, () alongL. By the above construction,
(£)-fcd’s correspond tg+)-subdigraphs, respectively.

Let f be a smooth function oM. We call f admissible if there is a Riemannian metric
g on M such that— f coincides with the mean curvature function Bfwith respect tog
(see Walczak [13] or Oshikiri [5], [6]). A chacterization of admissible functions, which
was conjectured by Walczak and proved affirmaliiby the author (see Oshikiri [8]), is the
following.

THEOREM O3 ([9]). Let F bea transversely oriented codimension-one foliation of a
closed connected oriented manifold M. Assume that F contains at least one (+)-fcd. Then
f isadmissible if and only if f(x) > 0 somewhere in any minimal (+)-fcd and f(y) < O
somewhere in any minimal (—)-fcd. In case F contains no (+)-fcd’s, any smooth function f
with f(x) > 0and f(y) <O for somex,y € M or f =0isadmissible.

For a smooth functioh on M with a volume elemendV, define a functiod ;v () :

V(D) - Rby
Ty (h)(v) :/ hdV for ve V(D).
D,

Then we have

THEOREM O4 ([9]). For a smooth function f on M, the following two conditions are
equivalent.

(1) fisadmissibleon (M, F).

(2) Thereisavolumeelement dV on M sothat I'yy (f) isadmissibleonT'(M, F).

3. Proof and Remark. Let D = (V(D), A(D)) be a finite digraph andM, F) be
a codimension-one foliation witlt (M, 7) = D obtained in Theorem O2. To prove the
theorem, we need the following.

LEMMA 2. For any admissible function f : V(D) — R thereisa Riemannian metric
g of M suchthat T'yy a1, ¢)(h) = f, wheredV (M, g) isthe volume element of the Riemannian
manifold (M, ¢g) and —# isthe mean curvature function of F with respect to the Riemannian
metric g.

PROOF. Fix an arbitrary volume fordV on M. For eachv € V (D), choose a smooth
functionk, on D, with supgk,) C Int(D,) andev kydV = f(v). Definek : M — R by
k(x) = ky(x) for x € Dy, v € V(D). Ask, is smooth onD, and supgk,) C Int(D,), k is
a smooth function o such thatl"yy (k) = f. Furthermore, ag is admissible orD, k is
also admissible ot by Theorem O4. Thus, there is a Riemannian meto€ M so that—k
is the mean curvature function &f with respect tg. We deformk andg into # andg so that
Tav(m,g)(h) = f. To do this, recall the following fact (see [4], Lemma 3 (i), where the term
H' = ¢=2Y H should be corrected b§i’ = ¢~V H):

If gITFQTM =g|TF®TM andg(X,Y) = ¢?5(X, Y) for X andY orthogonal to
F,thenh = e~ "k, where—h (resp.—k) is the mean curvature function &f with respect to
the metricg (resp.g).
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By this change of the metric, a8V (M,g) = e PdV(M,g), it follows that
[phdV (M, g) = [, e 2°kdV (M, 7). For eachy € V(D), choose a suitable functiqn, on
D, with supp(py) C Int(D,) and deform the metrig on D, so that[DU hdV (M, g) = f(v).
By settingp(x) = p,(x) for x € D,, v € V(D), we have the desired Riemannian metric of
M. d

PROOF OF THEOREM. Assume thatf is admissible. We shall show that there is a
labellinggp of D so thatf = §4,1. By Lemma 2, there is a Riemannian metyriof M such
thatT'yy (k) = f, wheredV is the volume element of the Riemannian manifgld, ¢) and
—h is the mean curvature function &fwith respect to the Riemannian metgicLet N be the
unit vector field onM orthogonal taF such that the orientation coincides with the transverse
orientation of 7. Then it is well-known that diy(N) = h.

Now, define a labellingp = (gv, ga) of D by

gv(v) =1 and ga(e) = AreaL., g|L.),

whereL,, e = (u,v) € A(D), is the unique leaf inD, N D, intersecting withyr(e) (cf.
Theorem O1), and Aréé., g|L.) is the volume of the Riemannian manifdald,, g|L.). Set
9T D, = {compact leaveg C 3D, with N pointing outwards o} andd— D, = {compact
leavesL c aD, with N pointing inwards orl.}. Then, for eaclv € V (D), we have

/h:/ divg(N) = > AreaL)— »  ArealL’).
Dy Dy

Ledt D, L'ed=D,

This implies, forv € V (D), that

F@) =Tay(h) = / h

D,
= Z Area(L) — Z Area(L))
Ledt D, L'€d— Dy
= Y g@— Y g
ecl't(v) e'el'(v)
=8g,1.

Thus,gp is the desired one.
Conversely, Assume that = §,,1 for some labellinggp. Then, by Proposition and

oD =, we have
/f:/ag,)l:/ 1=0.
D D oD

This implies thatf = 0 or f(u) > 0 andf(v) < O for someu, v € V(D). If D is strongly
connected, then, a8 has no(+)-subdigraphsy is, by definition, admissible. Assunie is
not strongly connected andl is a minimal(+)-subdigraph. AsH is a (+)-subdigraph, we
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havel't(V(H)) # ¢ andl'™(V (H)) = . It follows that

/f:/(sg[)]_:/ 1:/ 1>O,
H H OH r+(V(H))

which means thaf (v) > 0 for somev € V(H). For a minimal(—)-subdigraphk, by the
same argument, we ha\fg f < 0, which means thaf (w) < 0 for somew € V(K). Thus,
f is, by definition, admissible. This completes the proof. ]

REMARK. From the construction of the labelling in the proof, we get the following
result corresponding to Theorem O2 for a labeled digrdphyp):

For any labeled digraptD, gp), there are a foliated manifold/, ) and a Riemannian
metric g of M such thatD = I'(M, F) and the labellingyp is given as in the proof of the
theorem from the Riemannian metijc

In [10], the author studied a relation of Cheeger constant and strong connectivity of finite
digraphs. As a corollary to the theorem, we give a labeled digraph version of this result. To
this end, define Cheeger constan{Bhg) for a labeled finite digraphD, g) by

ch(D, g)

; ZeeaH ga(e)
=min{ =t 227
{ > vevmy 9v (V)

. . . 1
H is a subdigraph ob with Z v =3 Z gv(v)} )
veV(H) veV(D)

Recall that a digraph is weakly conneciéthe underlying graph is connected.

COROLLARY. Let D be a weakly connected finite digraph. Then, D is strongly con-
nected if and only if thereisa labelling gp of D suchthat ch(D, gp) > max,cv(p) 184, 1(v)].

ProOF. If D is strongly connected, then the functign= 0 is admissible, and, by the
theorem, there is a labelling, of D such thatf = §,4,1= 0. As ch(D, gp) > O, it follows
that ch(D, gp) > max,cv(p) 164, 1(v)| = 0.

Conversely, assume that there is a labelligg of D such that chD, gp) >
max,ev(p) | 8¢,1(v)|. If D is not strongly connected, then, by Lemma 1, there is-&
subdigraph. We may assume that, .y gv (v) < 1/2-3° _y(p) gv (v) (if not, consider
the (—)-subdigraphD \ H). AsdH = 't (H), by Proposition, it follows that

> gA(e)=/ 1:/ 59,)1<Ch(D,gD)~/ 1.
ecoH oH H H
Thus, we have

> 9ae) /5901 ch(D, gp)- | 1
H

econt < H_ — ch(D, gp).

Z gv (v) - /1 /1
veV(H) H H

which is a contradiction, and this completes the proof. ]

ch(D, gp) <
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