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Abstract. In previous papers, the author defineda notion of admissible functions for
digraphs and studied its properties. The notion of admissible functions naturally comes from
the study of mean curvature functions of codimension-one foliations, and admissible functions
of foliated manifolds are represented by a divergence formula. In this paper, we show that the
similar divergence-like formula characterizes admissible functions of digraphs.

1. Introduction. LetD = (V (D),A(D)) be a finite digraph, which may have loops
and parallel arcs. In [7], the author defined a notion of an admissible functionf : V (D) → R
and studied its properties. The notion of admissible functions naturally comes from the study
of mean curvature functions of codimension-one foliations (see [9], [13]). Indeed, let(M,F)
be a codimension-one foliationF of a closed manifoldM. We assume thatM andF are
oriented. A smooth functionf : M → R is said to be admissible if there is a Riemannian
metricg onM such that−f is a mean curvature function ofF with respect to the metricg.
In this case, we have

f = divg (N) ,

whereN is the unit vector field onM orthogonal toF , and divg(N) is the divergence of
N with respect to the metricg. From the view point of the paper [9], this situation can be
interpreted by digraphs, that is, we have the following characterization of admissible functions
on digraphs.

THEOREM. Let D be a finite digraph. f is an admissible function if and only if there
is a labelling gD of D such that f = δgD1, 1 : A(D) → R being identically 1.

We shall give some definitions and preliminary results in Section 2, and shall prove this
theorem in Section 3.

The author would like to thank the referee for his valuable comments on the first manu-
script.

2. Preliminaries. Let D = (V (D),A(D)) be a not necessarily strict digraph, that
is, D may have loops and parallel arcs. In this paper, we consider only finite digraphs. An
elemente = (u, v) ∈ A(D), which is an ordered pair of vertices inV (D), is called an arc of
D. The vertexu (resp.v) of e = (u, v) is called a tail (resp. head) and is denoted byα(e)

(resp.ω(e)). (see [2] for generalities on graphs). A labellinggD of D is defined by a pair
(gV , gA) with gV : V (D) → R+ andgA : A(D) → R+, whereR+ = {x ∈ R| x > 0}. Set
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C0(D) = {f | f : V (D) → R} andC1(D) = {φ | φ : A(D) → R}. Define the coboundary
operatorδgD : C1(D) → C0(D) by

δgDφ(v) = 1

gV (v)

( ∑
e∈A(D)
α(e)=v

gA(e)φ(e)−
∑

e′∈A(D)
ω(e′)=v

gA(e′)φ(e′)
)
.

Note that if the labellinggD is given bygV ≡ 1 ≡ gA, then the corresponding cobound-
ary operatorδgD is the usual one (cf. [1], [12]). Note also thatδgD of a labeled digraph(D, gD)
corresponds to the divergence of a Riemannian manifold(M, g). Indeed, define an integration
of f ∈ C0(D) over a subsetW ⊂ V (D) by∫

W

f =
∑
v∈W

gV (v)f (v) .

To define an integration ofφ ∈ C1(D) for our purpose, we need some more definitions. For
subsetsX,Y ⊂ V (D) with X ∩ Y = ∅, we set

�+(X, Y ) = {e ∈ A(D)| α(e) ∈ X, ω(e) ∈ Y } ,
�−(X, Y ) = {e ∈ A(D)| ω(e) ∈ X, α(e) ∈ Y } .

If Y = V (D) \ X, then�±(X, Y ) is simply denoted by�±(X). For a subdigraphH ⊂ D,
we define the boundary∂H of H by ∂H = �+(V (H)) ∪ �−(V (H)), and an integration of
φ ∈ C1(D) over∂H by∫

∂H

φ =
∑

e∈�+(V (H))
gA(e)φ(e)−

∑
e′∈�−(V (H))

gA(e′)φ(e′) .

Then we have the following Stokes’ Theorem like formula.

PROPOSITION. For a subdigraph H of a labeled digraph (D, gD), we have∫
H

δgDφ =
∫
∂H

φ for φ ∈ C1(D) .

PROOF. As the loops ofD give no contributions to the sums in the formula, we may
assume thatD has no loops.

∫
H

δgDφ =
∑

v∈V (H)
gV (v)δgDφ(v)

=
∑

v∈V (H)

( ∑
e∈A(D)
α(e)=v

gA(e)φ(e)−
∑

e′∈A(D)
ω(e′)=v

gA(e′)φ(e′)
)
.

For e ∈ V (H), as the termgA(e)φ(e) appears with the ‘+’ sign in the summation ofα(e) ∈
V (H) and with the ‘−’ sign in the summation ofω(e) ∈ V (H), the termsgA(e)φ(e) cancel
each other and disappear in the summation. Thusthe summation of the last formula is taken
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for e with the ‘+’ sign for α(e) ∈ V (H), ω(e) /∈ V (H), and with the ‘−’ sign for ω(e) ∈
V (H), α(e) /∈ V (H). It then follows that

∫
H

δgDφ =
∑

e∈�+(V (H))
gA(e)φ(e)−

∑
e′∈�−(V (H))

gA(e′)φ(e′)

=
∫
∂H

φ . �

A non-empty proper full subdigraphK of a digraphD is called a(+)-subdigraph (resp.
(−)-subdigraph) if�−(V (K)) = ∅ (resp.�+(V (K)) = ∅). Recall the definition of admis-
sible functions on a digraphD (cf. [7]). We call a functionf : V (D) → R admissible
if every minimal (+)-subdigraph contains a vertexv with f (v) > 0, and every minimal
(−)-subdigraph contains a vertexw with f (w) < 0. Here “minimal” means the usual set the-
oretical sense, that is, being non-empty and containing no non-empty proper(+)-subdigraphs
(resp.(−)-subdigraphs). In caseD has no(±)-subdigraphs, any functionf with f (v) > 0
andf (w) < 0 for somev,w ∈ V (D) or f ≡ 0 is called admissible.

A digraphD is said to be strongly connected if there is a directed path fromu to v for
every distinct verticesu, v ∈ V (D). If D is not strongly connected, then there areu andv ∈
V (D) so that there is no directed path fromu to v. SetWu = {w ∈ V (D)| there is a directed
path fromu tow}. It is easy to see thatD[Wu], the subdigraph ofD generated by the vertices
Wu, is a(−)-subdigraph. Thus we have the following (cf. [7]).

LEMMA 1. A digraphD is strongly connected if and only ifD has no (±)-subdigraphs.

Now we recall some relevant facts on foliations (see [3] for generalities on foliations and
[11] for differential geometric aspects of foliations). Let(M,F) be a transversely oriented
codimension-one foliationF of a closed oriented manifoldM. The transverse orientation of
F determines a vector fieldN onM transverse toF . A compact domainC ⊂ M is called
foliated ifC is a union of leaves ofF . A foliated compact domainC is said to be(+)-fcd (resp.
(−)-fcd) if N points outwards (resp. inwards) everywhere on∂C (cf. [8], [9]). We obtain, in
a unique way, a digraph�(M,F) from (M,F), and from an arbitrarily given digraphD, we
can construct a transversely oriented codimension-one foliation of a closed oriented manifold
(M,F) such thatD = �(M,F). Indeed, we have

THEOREM O1 ([9]). Let (M,F) be as above. For each (M,F) there exist a digraph
�(M,F) and a nice transverse embedding ψ : �(M,F) → (M,F). Furthermore, for each
arc e ∈ A(D), ψ(Int(e)) intersects each compact leaf of F at most once.

THEOREM O2 ([9]). For any digraph D, there is a foliated manifold (M,F) so that
D = �(M,F).

In these theorems, a vertexv ∈ V (D) = V (�(M,F)) corresponds to a compact foliated
domainCv ⊂ M and an arce = (u, v) ∈ A(�(M,F)) to a compact leafL ∈ F contained
in Cu ∩ Cv with ψ(e) ∩ L 	= ∅. The headω(e) and the tailα(e) of an arce are determined
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by the direction ofN so thatN goes fromCα(e) toCω(e) alongL. By the above construction,
(±)-fcd’s correspond to(±)-subdigraphs, respectively.

Let f be a smooth function onM. We callf admissible if there is a Riemannian metric
g onM such that−f coincides with the mean curvature function ofF with respect tog
(see Walczak [13] or Oshikiri [5], [6]). A characterization of admissible functions, which
was conjectured by Walczak and proved affirmatively by the author (see Oshikiri [8]), is the
following.

THEOREM O3 ([9]). Let F be a transversely oriented codimension-one foliation of a
closed connected oriented manifold M . Assume that F contains at least one (+)-fcd. Then
f is admissible if and only if f (x) > 0 somewhere in any minimal (+)-fcd and f (y) < 0
somewhere in any minimal (−)-fcd. In case F contains no (+)-fcd’s, any smooth function f
with f (x) > 0 and f (y) < 0 for some x, y ∈ M or f ≡ 0 is admissible.

For a smooth functionh onM with a volume elementdV , define a function�dV (h) :
V (D) → R by

�dV (h)(v) =
∫
Dv

hdV for v ∈ V (D) .
Then we have

THEOREM O4 ([9]). For a smooth function f on M, the following two conditions are
equivalent.

(1) f is admissible on (M,F).
(2) There is a volume element dV on M so that �dV (f ) is admissible on �(M,F).
3. Proof and Remark. Let D = (V (D),A(D)) be a finite digraph and(M,F) be

a codimension-one foliation with�(M,F) = D obtained in Theorem O2. To prove the
theorem, we need the following.

LEMMA 2. For any admissible function f : V (D) → R there is a Riemannian metric
g ofM such that �dV (M,g)(h) = f, where dV (M, g) is the volume element of the Riemannian
manifold (M, g) and −h is the mean curvature function of F with respect to the Riemannian
metric g .

PROOF. Fix an arbitrary volume formdV onM. For eachv ∈ V (D), choose a smooth
functionkv onDv with supp(kv) ⊂ Int(Dv) and

∫
Dv
kvdV = f (v). Definek : M → R by

k(x) = kv(x) for x ∈ Dv , v ∈ V (D). As kv is smooth onDv and supp(kv) ⊂ Int(Dv), k is
a smooth function onM such that�dV (k) = f . Furthermore, asf is admissible onD, k is
also admissible onM by Theorem O4. Thus, there is a Riemannian metricḡ ofM so that−k
is the mean curvature function ofF with respect tōg. We deformk andḡ into h andg so that
�dV (M,g)(h) = f . To do this, recall the following fact (see [4], Lemma 3 (ii), where the term
H ′ = e−2ψH should be corrected byH ′ = e−ψH ):

If g|TF ⊗ TM = ḡ|TF ⊗ TM andg(X, Y ) = e2ρḡ(X, Y ) for X andY orthogonal to
F , thenh = e−ρk, where−h (resp.−k) is the mean curvature function ofF with respect to
the metricg (resp.ḡ).
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By this change of the metric, asdV (M, g) = e−ρdV (M,ḡ), it follows that∫
D hdV (M, g) = ∫

D e
−2ρkdV (M,ḡ). For eachv ∈ V (D), choose a suitable functionρv on

Dv with supp(ρv) ⊂ Int(Dv) and deform the metric̄g onDv so that
∫
Dv
hdV (M, g) = f (v).

By settingρ(x) = ρv(x) for x ∈ Dv , v ∈ V (D), we have the desired Riemannian metric of
M. �

PROOF OF THEOREM. Assume thatf is admissible. We shall show that there is a
labellinggD of D so thatf = δgD1. By Lemma 2, there is a Riemannian metricg ofM such
that�dV (h) = f , wheredV is the volume element of the Riemannian manifold(M, g) and
−h is the mean curvature function ofF with respect to the Riemannian metricg. LetN be the
unit vector field onM orthogonal toF such that the orientation coincides with the transverse
orientation ofF . Then it is well-known that divg(N) = h.

Now, define a labellinggD = (gV , gA) of D by

gV (v) = 1 and gA(e) = Area(Le, g|Le) ,
whereLe, e = (u, v) ∈ A(D), is the unique leaf inDu ∩ Dv intersecting withψ(e) (cf.
Theorem O1), and Area(Le, g|Le) is the volume of the Riemannian manifold(Le, g|Le). Set
∂+Dv = {compact leavesL ⊂ ∂Dv with N pointing outwards onL} and∂−Dv = {compact
leavesL ⊂ ∂Dv with N pointing inwards onL}. Then, for eachv ∈ V (D), we have

∫
Dv

h =
∫
Dv

divg (N) =
∑

L∈∂+Dv

Area(L)−
∑

L′∈∂−Dv

Area(L′) .

This implies, forv ∈ V (D), that

f (v) = �dV (h) =
∫
Dv

h

=
∑

L∈∂+Dv

Area(L)−
∑

L′∈∂−Dv

Area(L′)

=
∑

e∈�+(v)
gA(e)−

∑
e′∈�−(v)

gA(e′)

= δgD1 .

Thus,gD is the desired one.
Conversely, Assume thatf = δgD1 for some labellinggD. Then, by Proposition and

∂D = ∅, we have ∫
D

f =
∫
D

δgD1 =
∫
∂D

1 = 0 .

This implies thatf ≡ 0 or f (u) > 0 andf (v) < 0 for someu, v ∈ V (D). If D is strongly
connected, then, asD has no(±)-subdigraphs,f is, by definition, admissible. AssumeD is
not strongly connected andH is a minimal(+)-subdigraph. AsH is a (+)-subdigraph, we
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have�+(V (H)) 	= ∅ and�−(V (H)) = ∅. It follows that∫
H

f =
∫
H

δgD1 =
∫
∂H

1 =
∫
�+(V (H))

1> 0 ,

which means thatf (v) > 0 for somev ∈ V (H). For a minimal(−)-subdigraphK, by the
same argument, we have

∫
K f < 0, which means thatf (w) < 0 for somew ∈ V (K). Thus,

f is, by definition, admissible. This completes the proof. �

REMARK. From the construction of the labelling in the proof, we get the following
result corresponding to Theorem O2 for a labeled digraph(D, gD):

For any labeled digraph(D, gD), there are a foliated manifold(M,F) and a Riemannian
metricg of M such thatD = �(M,F) and the labellinggD is given as in the proof of the
theorem from the Riemannian metricg.

In [10], the author studied a relation of Cheeger constant and strong connectivity of finite
digraphs. As a corollary to the theorem, we give a labeled digraph version of this result. To
this end, define Cheeger constant ch(D, g) for a labeled finite digraph(D, g) by

ch(D, g)

= min

{ ∑
e∈∂H gA(e)∑
v∈V (H) gV (v)

∣∣∣∣H is a subdigraph ofD with
∑

v∈V (H)
gV (v) ≤ 1

2

∑
v∈V (D)

gV (v)
}
.

Recall that a digraph is weakly connectedif the underlying graph is connected.

COROLLARY. Let D be a weakly connected finite digraph. Then, D is strongly con-
nected if and only if there is a labelling gD ofD such that ch(D, gD) > maxv∈V (D) |δgD1(v)|.

PROOF. If D is strongly connected, then the functionf ≡ 0 is admissible, and, by the
theorem, there is a labellinggD of D such thatf = δgD1 ≡ 0. As ch(D, gD) > 0, it follows
that ch(D, gD) > maxv∈V (D) |δgD1(v)| = 0.

Conversely, assume that there is a labellinggD of D such that ch(D, gD) >

maxv∈V (D) | δgD1(v)|. If D is not strongly connected, then, by Lemma 1, there is a(+)-
subdigraphH . We may assume that

∑
v∈V (H) gV (v) ≤ 1/2 ·∑v∈V (D) gV (v) (if not, consider

the(−)-subdigraphD \H ). As ∂H = �+(H), by Proposition, it follows that
∑
e∈∂H

gA(e) =
∫
∂H

1 =
∫
H

δgD1< ch(D, gD) ·
∫
H

1 .

Thus, we have

ch(D, gD) ≤

∑
e∈∂H

gA(e)

∑
v∈V (H)

gV (v)
=

∫
H

δgD1
∫
H

1
<

ch(D, gD) ·
∫
H

1
∫
H

1
= ch(D, gD) ,

which is a contradiction, and this completes the proof. �
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