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Abstract. In this paper, we investigate the dynamics of a broader class of functions
which are meromorphic outside a compact totally disconnected set. We shall establish the
connections between the Fatou components and the singularities of the inverse function and,
accordingly, give sufficient conditions for thenon-existence of wandering domains or Baker
domains, and for the Julia set to be the Riemann sphere. Through the discussion of permutabil-
ity of such functions, we shall construct several transcendental meromorphic functions which
have Baker domains and wandering domains withspecial properties; for example, wandering
and Baker domains with a critical value on the boundary and a wandering domain with the
boundary being a Jordan curve (some such examples for entire functions were exhibited in
other papers) and those of non-finite type which have no wandering domains.

1. Introduction. Iteration of meromorphic functions ofC �→ Ĉ has developed over
the last decade and continues to attract much interest. The dynamics of meromorphic func-
tions have been revealed to have many similar results to those of rational or entire functions,
such as a meromorphic function of finite type, that is, its inverse has singularities over a finite
set of points, has no wandering domains (see [5]) and its Julia set is uniformly perfect (see [33]
and [34]). The result that a rational function with degree at least two has no wandering do-
mains was proved by Sullivan [29] and was extended in [18] and [15] to transcendental entire
functions of finite type. However, the dynamics of transcendental meromorphic functions
also possess special properties which a rational or entire function does not have; for example
a transcendental meromorphic function may have the Julia set in a straight line, while the Julia
set of a transcendental entire function cannot contain an isolated Jordan arc. It is obvious that
the family of rational functions or entire functions is a closed system under iteration or func-
tional composition; however, the family of meromorphic functions is not, since iteration of a
transcendental meromorphic function is not in general meromorphic and may have infinitely
many essential singularities. From this, it is natural to consider a broader class of functions
which is closed under functional composition. We introduce the classM of functionf , which
is meromorphic outside some compact totally disconnected setE = E(f ), and the cluster set
of f at anya ∈ E(f ) with respect toEc =Ĉ \E, that is, the set

C(f,Ec, a) = {w ∈Ĉ ;w = lim
n→∞ f (zn) for some sequencezn ∈ Ec with zn → a}
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is equal toĈ. Note that a point inE may not be isolated inE, so the final condition which a
member inM satisfies shows thatf (z) at every point inE keeps the property which an isolated
essential singular point possesses in the sense of the Weierstrass theorem. The classM was
first investigated in [4] and the basic concepts, such as the Fatou set and the Julia set, and the
basic properties of dynamics of functions inM were established there. It was proved thatM is
closed under functional composition and, for anyf, g ∈ M, E(f ◦ g) = E(g) ∪ g−1(E(f )).
The composition of a finite number of meromorphic functions is a member inM and has only
at most countably many essential singularities. Following the discussion of [4], we investigate
the dynamics of functions inM in this paper.

Let f ∈ M and f n, n ∈ N, denote thenth iterate off . Thenf n(z) is defined in
Ec(f n−1). Define the Fatou set off by

F(f ) = {z ∈ Ĉ ; {f n} is defined and normal in some neighborhood ofz}
and the Julia set off by J (f ) = Ĉ \ F(f ).

SetJ∞(f ) = ⋃∞
n=0E(f

n). If J∞(f ) has at least three points, thenJ (f ) = J∞(f ),
soF(f ) is the large open set in which allf n, n ∈ N, are meromorphic; ifJ∞(f ) consists
of two points, thenf is a holomorphic function ofC∗ = C \ {0} onto itself up to a Möbius
transformation; ifJ∞(f ) consists of one point, thenf is a transcendental entire function; if
J∞(f ) is empty, thenf is a rational function.

It is easy to see that, forf ∈ M, F(f ) is open and completely invariant underf , i.e.,
z ∈ F(f ) if and only if f (z) ∈ F(f ). Let U be a connected component ofF(f ), called a
stable domain off , thenf n(U) is contained in a component ofF(f ), denoted byUn. If, for
somen ≥ 1, Un = U , that is,f n(U) ⊆ U , thenU is called periodic; if, for some pair of
n 
= m,Un = Um, butU is not periodic, thenU is called preperiodic; if forn 
= m,Un 
= Um,
thenU is called a wandering domain off .

For a periodic component of the Fatou set we have the classification theorem. LetΩ be
a periodic component ofF(f ) of periodp. Then only five possible cases occur (see [4]):

(1) Ω is a (super) attracting domain of a (super) attracting periodic pointa of f of
periodp such thatf np |Ω → a asn → ∞ anda ∈ Ω ;

(2) Ω is a parabolic domain of a rational neutral periodic pointb of f of periodp such
thatf np|U → b asn → ∞ andb ∈ ∂Ω ;

(3) Ω is a Siegel disk of periodp such that there exists an analytic homeomorphism
φ : Ω → ∆, where∆ = {z; |z| < 1}, satisfyingφ(f p(φ−1(z)) = e2παiz for some irrational
numberα andφ−1(0) ∈ Ω is an irrational neutral periodic point off of periodp;

(4) Ω is a Herman ring of periodp such that there exists an analytic homeomorphism
φ : Ω → A, whereA = {z : 1 < |z| < r}, satisfyingφ(f p(φ−1(z)) = e2παiz for some
irrational numberα;

(5) Ω is a Baker domain of periodp such thatf np|U → c ∈ J (f ) asn → ∞ butf p

is not meromorphic atc. If p = 1, thenc ∈ E(f ).
In this paper, we mainly discuss two aspects: one is the connections between the Fatou
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components and the singularities of the inverse function; the other is the dynamical connec-
tion between meromorphic functionsf andg satisfying the equationh ◦ f = g ◦ h. As an
application of our results, we shall construct several types of Baker domains and wandering
domains with special properties of transcendental meromorphic functions; a few such exam-
ples for transcendental entire functions have been exhibited in other papers [15, 9, 16, 19] and
we give a transcendental meromorphic function whose Julia set coincides with the Riemann
sphere.

By Sing(f−1) we denote the set of singularities of the inverse functionf−1, that is, the
set of critical and asymptotic values and limit points of these values.

We use the following notation about singularities of the inverse function. Forf ∈ M, set

Sp(f ) = {a ∈ C; a is a finite singularity off−p} ,
and

P(f ) =
∞⋃
p=1

Sp(f ) .

We establish the following, which are the main results of Section 2 of this paper.

THEOREM 2.1. If f ∈ M and if U is a wandering domain of f , then every limit
function of the convergent subsequence of {f n|U } lies in the derived set of P(f ).

Theorem 2.1 was proved in [11] for entiref and in [31] and [33] for meromorphicf .
The same argument as in [33] deduces the following result. For completeness, the proof of
the result will be given.

THEOREM 2.2. Let f ∈ M and let U be a component of F(f ). If f np |U → q (n →
∞), then either q lies in the derived set of Sp(f ) or q is a periodic point of f of period k ≤ p

and f p(q) = q .

Theorem 2.1 and Theorem 2.2 were announced at the conference ‘New Direction in Dy-
namical Systems 2002’ which was held in August 2002, at Kyoto University, Japan (see [36]).
As an application of Theorems 2.1 and 2.2, we shall establish some sufficient criteria for the
non-existence of wandering domains or Baker domains and for the Julia set of a transcendental
meromorphic function to be the Riemann sphere.

THEOREM 2.4. Let f (z) = µ + z + ez + λ/(ez − 1). Then there exist µ and λ such
that J (f ) =Ĉ.

Note thatf (z) in Theorem 2.4 is not of bounded type, that is, Sing(f−1) is unbounded.
In Section 3, we discuss two permutable meromorphic functions inM. Two meromorphic
functionsf (z) andg(z) in M are said to be permutable if

f ◦ g(z) = g ◦ f (z) in Ĉ \ (E(f ) ∪ E(g) ∪ g−1(E(f )) ∪ f−1(E(g))) .

Julia [20] and Fatou [17] proved that two permutable rational functions with degree at least
two have the same Julia sets. However, it is still open as to whether or not two transcendental
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entire functions have the same Julia sets, although some important progress has been made to-
wards a solution of this problem; see [12, 22, 25] for further detail. We establish the following
result in Section 3.

THEOREM 3.2. Let f (z) and g(z) both be transcendental meromorphic functions in
M and permutable. If J (f ) = J∞(f ), then J (f ) = J (g).

Here we give an example of two transcendental meromorphic functions which are per-
mutable. Given a periodic meromorphic functionH(z) with periodτ , it is easy to see that
z +H(z) andmτ + z +H(z) are permutable. If, in addition,H(z) is odd, that is,H(−z) =
−H(z), thenmτ − z −H(z) is also permutable withz+H(z).

For an application of the construction of special Baker domains, we shall consider a
generalization of the subject and establish the following.

THEOREM 3.1. Let f (z) and g(z) be meromorphic functions in M such that, for a
meromorphic function h(z) in C, we have h(f (z)) = g(h(z)). If J (f ) = J∞(f ), and either
∞ ∈ E(f ) or f (∞) 
= ∞, then h(J (f )) = J (g) and h(F (f )) = F(g).

From the special version of Theorem 3.1 forh(z) = ez and by using a logarithmic
change of variables, we can construct several types of Baker domains; for example, we can
construct a transcendental meromorphic function inC which has a Baker domainU such that
dist(U, P (f )) > 0 andf (z) is univalent inU .

Herman [19] proved that, for 1+ 2πλ = e2πiα and a suitable real numberα,

f (z) = z+ λ sin(2πz)+ 1

has a wandering domainU in which all iteratesf n(z) are univalent. We can also construct a
non-entire meromorphic function with such properties; for example, for a suitable real number
α,

f (z) = z + (e2πiα − 1) tanz+ 2πi ,

has a wandering domain which has such properties. Eremenko and Ljubich [16] constructed,
by the theory of complex approximation, a transcendental entire functionf (z) which has a
wandering domain in which all iteratesf n(z) are univalent.

For Herman’s example and ours and in the construction of [16], we cannot know whether
there exists any relationship between the boundaries of the wandering domains and Sing(f−1)

and/orP(f ). Question 8 raised in [8] asks whether there is some relation between∂Un and
Sing(f−1) if U is a wandering domain such thatUn∩Sing(f−1) = ∅. However, here we can
prove the following by a result of Rippon [26].

THEOREM 3.4. For almost all λ on {|λ| = 1}, the function

fλ(z) = z+ ez + 1 − λ+ 2πi

has a wandering domain U in which all iterates f nλ (z) are univalent and such that every ∂Un
contains a critical value and ∂Un ⊂ P(fλ). We also have P(fλ) ⊆ J (fλ).

We naturally raise the following question.
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QUESTION. Is there a transcendental meromorphic functionf (z) which has a wander-
ing domainU such thatUn ∩ Sing(f−1) = ∅?

However, it is easy to construct an example which has a wandering domainU such that
dist(∂Un, P (f )) > 0, for instance,z + ez + 2πi is such an example. We shall prove that a
non-entire meromorphic functionz−4[ez/(ez−1)]+2(1+λ)+2πi has the same properties
as in Theorem 3.4.

Finally, we mention that we can construct a transcendental meromorphic function which
has a wandering domainU such that all∂Un are Jordan curves.

2. Fatou components and singularities of the inverse function. In this section, we
first prove the following theorem and, as an application of this result, we give a sufficient
condition for the non-existence of wandering domains.

THEOREM 2.1. If f ∈ M and if U is a wandering domain of f , then every limit
function of the convergent subsequence of {f n|U } lies in the derived set of P(f ).

We shall prove Theorem 2.1 by using the hyperbolic metric and, to this end, recall some
basic knowledge about the hyperbolic metric.

LetΩ be a hyperbolic domain in the complex planeC, that is,C \ Ω contains at least
two points. There exists the hyperbolic metricλΩ(z)|dz| onΩ with Gaussian curvature−4.
Throughout, we use the notationB(a, δ) = {z; |z − a| < δ}, B∗(a, δ) = B(a, δ) \ {a} and
D∗
R = {z; |z| > R}. Then it is well-known that

λB∗(0,δ)(z) = 1

|z| log(δ/|z|) and λD∗
R
(z) = 1

|z| log(|z|/R) .(1)

For any hyperbolic simply connected domainΩ , by the Koebe 1/4 theorem we can easily
prove that

λΩ(z)δΩ(z) ≥ 1

4
, z ∈ Ω ,(2)

whereδΩ(z) is the Euclidean distance ofz from the boundary ofΩ .
The following version of the Schwarz-Pick lemma (see [1]) will play a key role in the

proof of our theorems.

LEMMA 2.1. Let U and Ω both be hyperbolic domains and let h be an analytic func-
tion in U such that h(U) ⊆ Ω . Then

λΩ(h(z))|h′(z)| ≤ λU(z) , z ∈ U ,(3)

with equality if and only if h is an unbranched covering map of Ω from U .

Now we can proceed to prove Theorem 2.1.

PROOF OFTHEOREM 2.1. Suppose conversely that there exists a limit functiona of
some subsequence of{f n|U } which is not in the derived set ofP(f ). Then we can take a
positive numberδ such thatB∗(a,2δ) ∩ P(f ) = ∅, whereB∗(a, r) = {z; 0< |z− a| < r}.
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Now we want to prove thatU is simply connected. Suppose the contrary, then we can
draw a Jordan curveγ in U which is not null-homotopic inU .

Sinceγ is a compact subset ofU , we always have sufficient largen such thatf n(γ ) ⊂
B∗(a, δ). Take a pointb ∈ γ . Let gn be an analytic branch off−n in some neighborhood of
f n(b) such thatgn(f n(b)) = b. Then there exist three possibilities:

(i) a is an analytic point ofgn, that is,gn can be analytically continued toB(a,2δ);
(ii) a is an algebraic branch point ofgn;
(iii) a is a transcendental branch point ofgn.
In Case (i),gn(B(a,2δ)) is simply connected and int(γ ) ⊂ gn(B(a,2δ)), and thenf n(z)

is meromorphic inint(γ ).
In Case (ii),gn can be analytically continued throughoutB∗(a,2δ). We can produce a

Jordan curveΓ such thatγ ⊂ int(Γ ) in the way thatgn is continued along∂B(a, δ) finitely
many times. Thusf n(Γ ) covers the circle∂B(a, δ),

f n : int(Γ ) \ {α} → B∗(a, δ)(4)

is proper andf n(α) = a. Application of Picard’s theorem to (4) yields thatf n is meromor-
phic in int(Γ ), sof n is meromorphic inint(γ ).

In Case (iii),gn can also be analytically continued throughoutB∗(a,2δ). There exists a
componentW of f−n(B(a, δ)) such thatγ ⊂ W and

f n : W → B∗(a, δ)(5)

is a covering. It is easy to see that∂W is a Jordan curve and∂W tends toE(f n) along both di-
rections from a fixed point in∂W . SinceE(f n) is totally disconnected, along both directions
∂W tends to two pointse ande′ in E(f n). If e 
= e′, then there exists anα ∈ E(f n) \ {e, e′}
in W and, by noting thatC(f n,E(f n)c, α) = Ĉ, this hence derives a contradiction to (5).
Thus we have proved thate = e′, andW is simply connected. It follows that int(γ ) ⊂ W and,
by applying Picard’s theorem to (5),f n is also meromorphic inint(γ ).

In one word, we have proved thatf n is meromorphic inint(γ ). Sincen can be assumed
to be arbitrary sufficiently large, for each positive integern, f n is meromorphic in int(γ ).
This implies that int(γ ) ⊂ F(f ), and thenγ is contractible inU . This is a contradiction,
from which it follows thatU is simply connected.

Setf nk |U → a (k → ∞). By the argument as above,Uk, the component ofF(f )
containingf nk (U), is also simply connected. Assume there exists a pointb ∈ U such that
f nk (b) ∈ B∗(a, δ). Applying Lemma 2.1 tof nk : U → Uk implies that

|(f nk )′(b)|
4|f nk (b)− a| ≤ λUk (f

nk (b))|(f nk )′(b)| ≤ λU(b) .(6)

On the other hand, letW∗ andW be respectively the components of,f−nk (B∗(a, δ))
andf−nk (B(a, δ)) containingb. ThenW∗ ⊂ W andf nk : W∗ → B∗(a, δ) is an unbranched
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covering. It follows from Lemma 2.1 that

λW (b) < λW∗(b) = λB∗(a,δ)(f
nk (b))|(f nk )′(b)|

= |(f nk )′(b)|
|f nk (b)− a|log(δ/|f nk (b)− a|) .

(7)

Combining (6) with (7) implies that

log(δ/|f nk (b)− a|) < 4λU(b)

λW(b)
.

This is impossible, sincef nk (b) → a (k → ∞). Hence Theorem 2.1 follows. �

By the method from [32], we can extend Theorem 2 in [32] for a meromorphic function
to a function inM.

THEOREM 2.2. Let f ∈ M and let U be a component of F(f ). If f np |U → q (n →
∞), then either q lies in the derived set of Sp(f ) or q is a periodic point of f of period k ≤ p

and f p(q) = q .

In order to prove Theorem 2.2, we need the following lemmas, which are of independent
significance.

LEMMA 2.2. Let f ∈ M. If Sp(f ) ∩ B∗(0, δ) = ∅, then each component of
f−p(B(0, δ)) is simply connected in C.

Lemma 2.2 can be proved by the method from Zheng [32]. The following is an immedi-
ate product of the combination of Lemmas 2.2 and 2.1.

LEMMA 2.3. Let f ∈ M. If Sp(f ) ∩ B∗(0, δ) = ∅, f p is analytic at b such that
f p(b) ∈ B∗(0, δ) and 0 is not in the component of f−p(B(0, δ)) containing b, then we have

|(f p)′(b)| > |f p(b)|log(δ/|f p(b)|)
4|b| .(8)

If Sp(f ) ⊂ B(0, R) and |f p(c)| < R, then, for any analytic point z of f p, we have

|(f p)′(z)| > |f p(z)|log(|f p(z)|/R)
4|z− c| .(9)

Equation (9) was also established in [27] for a meromorphic function inC. Now we are
in a position to prove Theorem 2.2.

PROOF OFTHEOREM 2.2. We prove Theorem 2.2 for the case whenq is a finite num-
ber; the same argument can show Theorem 2.2 forq = ∞.

Suppose thatf p(q) 
= q and q is not in the derived set ofSp(f ). Then, from the
classification theorem of periodic components of a Fatou set, it is easy to see thatq 
∈ F(f ).
Assume thatq = 0 without any loss of generality. Sincef np |U → 0 asn → ∞, we can take
a b ∈ f n0p(U) (n0 > 0) and two positive numbersδ andr such thatSp(f ) ∩ B∗(0, δ) = ∅,
f np(B(b, r)) ⊂ B∗(0, δ), n = 0,1,2, . . . and 0 
∈ f−p(B(0, δ)). Thus, forn > 0, applying
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Lemma 2.3 tof p atf (s−1)p(b) ∈ B∗(0, δ) (s = 1,2, . . . , n) gives

|(f np)′(b)| =
n∏
s=1

|(f p)′(f (s−1)p(b))| ≥
n∏
s=1

|f sp(b)|log(δ/|f sp(b)|)
4|f (s−1)p(b)|

= |f np(b)|log(δ/|f np(b)|)
4|b|

n−1∏
s=1

1

4
log(δ/|f sp(b)|) .

(10)

On the other hand, sincef np : B(b, r) → B∗(0, δ), from Lemma 2.1 it follows that

|(f np)′(b)|
|f np(b)|log(δ/|f np(b)|) ≤ 1

r
.(11)

Equation (11) contradicts (10), for
∏n−1
s=1(1/4) log(δ/|f sp(b)|) → ∞ asn → ∞. Thus

Theorem 2.2 follows. �

As we did in [32], from Theorems 2.1 and 2.2 we can obtain several consequences,
whose proofs are omitted.

COROLLARY 2.1. For e ∈ J∞(f ), if e 
∈ (Sp(f ))′, then there exist no components of
F(f ) in which f np(z) → e as n → ∞.

This is a generalization of Theorem F in [4].

COROLLARY 2.2. Let f ∈ M. If (Sing(f−1))′ ∩ E(f ) = ∅, J (f ) ∩ (P (f ))′ is finite
and (P (f ))′ ∩ J∞(f ) \ E(f ) = ∅, then f has no wandering domains.

If ∞ ∈ E(f ), then the condition ‘(Sing(f−1))′ ∩ E(f ) = ∅’ implies that Sing(f−1)

is bounded. In what follows, we discuss the connection between singularities and Baker do-
mains. Given a cycle of the Baker domains,{B0, B1, . . . , Bp−1}, with periodp of f (z) in M,
we have

f np |Bj → aj , n → +∞ , 0 ≤ j ≤ p − 1 .

We draw a curveγ0 in B0 to connect a pointz0 andf p(z0), and set

Γ0 =
∞⋃
n=0

f np(γ0) , Γj+1 = f (Γj ) , 0 ≤ j ≤ p − 1 .

It is easy to see thatΓp ⊂ Γ0 and

f (z) → aj+1 , z ∈ Γj → aj , 0 ≤ j ≤ p − 1 ,(12)

where ap = a0. Therefore, we call{a0, a1, . . . , ap−1} a cycle of periodic points for
{B0, B1, . . . , Bp−1} with periodp. According to the definition of the Baker domains, at least
one of{a0, a1, . . . , ap−1} is in E(f ). If aj ∈ E(f ), then from (12)aj+1 is an asymptotic
value off (z), and so the inversef−1 has a singularity overaj+1, that is,aj+1 ∈ Sing(f−1).

So from Theorem 2.2, we have

{a0, a1, . . . , ap−1} ⊂ (Sp(f ))
′ ∩ J (f ) .
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COROLLARY 2.3. Let f ∈ M. Then f has no Baker domains of period k ≤ p if one
of the following statements holds:

(1) f (z) has no asymptotic values which lie in J∞(f, p) = ⋃p−1
n=0 f

−n(E(f ));
(2) (Sp(f ))

′ ∩ E(f ) = ∅.

As an application of Corollaries 2.2 and 2.3, we give a sufficient condition to determine
the Julia set of a transcendental meromorphic function equal to the Riemann sphere.

THEOREM 2.3. Let f (z) ∈ M with (Sing(f−1))′ ∩ E(f ) = ∅. Assume that J (f ) ∩
(P (f ))′ is finite, (P (f ))′ ∩ J∞(f ) \ E(f ) = ∅ and, for every b ∈ Sing(f−1), b is pre-
periodic, b ∈ J∞(f ) or f n(b) → E(f ) as n → ∞. Then J (f ) =Ĉ.

Whenf (z) is a transcendental meromorphic function, then the condition ‘(Sing(f−1))′∩
E(f ) = ∅’ is equivalent to the fact that Sing(f−1) is bounded, that is,f (z) is of bounded
type. From Theorem 2.3, it is easy to deduce thatJ (nπi tanz) = Ĉ andJ (ez) = Ĉ, which
was conjectured by Fatou [17] and proved by Misiurewicz [24]. However,nπi tanz andez are
both of finite type. From Theorem 2.3, we construct a transcendental meromorphic function
which is not of bounded type and whose Julia set is the Riemann sphere.

THEOREM 2.4. Let f (z) = µ + z + ez + λ/(ez − 1). Then there exist µ and λ such
that J (f ) =Ĉ.

PROOF. We consider the function

g(z) = z exp

(
µ+ z+ λ

z− 1

)
,

whereµ andλ are chosen to be two non-negative real numbers. 0 is a unique asymptotic value
of g(z) and the critical points ofg(z) are solutions of the equation

z3 − z2 − (λ+ 1)z+ 1 = 0 .(13)

By calculation, we can deduce that Equation (13) has only three real roots which lie respec-
tively in the intervals(−∞,−1), (0,1) and(1,+∞), denoted in turn byx1, x2 andx3. Since,
for λ = 0, x1 = −1 andx2 = x3 = 1, we havex1 → −1−, x2 → 1− andx3 → 1+ as
λ → 0+.

Obviously, the roots ofµ+ z+ λ/(z − 1) = 0 are fixed points ofg(z), and so

z0 = −(µ− 1)− √
(µ− 1)2 + 4(µ− λ)

2
= − 2(µ− λ)√

(µ− 1)2 + 4(µ− λ)− (µ− 1)

is a fixed point ofg(z) andz0 → −µ asλ → 0+. Now we want to chooseµ andλ such that
g2(x1) = z0, that is, the following equation holds:

g2(x1) = − 2(µ− λ)√
(µ− 1)2 + 4(µ− λ)− (µ− 1)

.(14)

We rewrite (14) to give

(
√
(µ− 1)2 + 4(µ− λ)− (µ− 1))g2(x1)+ 2(µ− λ) = 0 .(15)
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We denote the function on the left-hand side of the above equation byFλ(µ). Since

g(x1) = x1 exp

(
µ+ x1 + λ

x1 − 1

)
→ −eµ−1

asλ → 0+, we have

Fλ(µ) → −2 exp(2µ− 1 − eµ−1)+ 2µ, λ → 0+ .

Therefore, for sufficiently smallλ > 0,Fλ(µ) → +∞ asµ → +∞. On the other hand,

p(µ) = −2 exp(2µ− 1 − eµ−1)+ 2µ → −2 exp(−1 − e−1)

asµ → 0+. There exists aµ0 > 0 such thatp(µ0) = − exp(−1 − e−1) < 0. Thus, given a
sufficiently smallλ > 0, we have aµ > µ0, which is a zero ofFλ(µ). Thus, we have foundλ
andµ > µ0 > 0 such thatg2(x1) = z0. Sincex1 is independent ofµ, we havex1 
= z0, and
thenx1 is a preperiodic point ofg(z).

By noting that

xj + λ

xj − 1
= 2xj − 1

xj
, j = 1,2,3(16)

andxj → 1 (j = 2,3) asλ → 0+, we deduce that

f (xj ) = xj exp

(
µ+ xj + λ

xj − 1

)
> xje

µ+(1/2) > 1 , j = 2,3

so that

f n(xj ) > xje
nµ → +∞ , j = 2,3 .

By applying Theorem 2.4, we obtainJ (g) =Ĉ.
Since expf (z) = g(ez), it follows from Theorem 3.1 in the next section that expJ (f ) =

J (g) =Ĉ, and thenJ (f )must have interior points. This impliesJ (f ) =Ĉ. �

To the best of our knowledge, this seems to be the first example of a transcendental
meromorphic function which is not of bounded type and whose Julia set coincides with the
Riemann sphere.

3. Semiconjugation of functions in M. In order to construct some special wandering
domains in this section, and Baker domains with special properties in the next section and
for application in the proof of Theorem 2.4, we are motivated to investigate the connection
between the dynamics of two functionsf (z) andg(z) in M satisfying the functional equation

h(f (z)) = g(h(z)) ,(17)

whereh is meromorphic inC. It is the discussion of this general familyM that leads us
to the possibility of constructing some meromorphic functions inC with special dynamical
properties. We first want to establish a relation betweenJ (f ) andJ (g).

THEOREM 3.1. Let f , g and h satisfy (17). If J (f ) = J∞(f ) and either ∞ ∈ E(f )

or f (∞) 
= ∞, then h(J (f )) = J (g) and h(F (f )) = F(g).
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PROOF. It is clear that we only need to prove the equalityh(J (f )) = J (g).
(1) We prove thath(J (f )) ⊆ J (g). Take an arbitrary pointz0 ∈ h(J (f )). There exists

a w0 ∈ J (f ) such thath(w0) = z0. SinceJ (f ) = J∞(f ), we have a sequence{wk} in
J∞(f ) such thatwk → w0 (k → +∞), andf nk (wk) ∈ E(f ). From (17), we have

h(f nk+1(z)) = gnk+1(h(z)) .(18)

Sincewk ∈ E(h(f nk+1(z))) = E(gnk+1(h(z))) and h is meromorphic atwk, h(wk) ∈
E(gnk+1) ⊂ J (g), and henceh(w0) ∈ (J (g))′ = J (g). Thus we proveh(J (f )) ⊂ J (g).

(2) Now we prove thatJ (g) ⊆ h(J (f )). Fromh(J (f )) ⊆ J (g) andJ (f ) = J∞(f )
and by noting thath(z) is non-constant, it follows thatJ (g) = J∞(g). Therefore, we need
only to prove thatJ∞(g) ⊂ h(J (f )). Take an arbitrary pointa ∈ J∞(g) which is not the
Picard exceptional value ofh(z), and assumea is at a pointb underh(z), that is,h(b) = a.
There exists a positive integern such thatgn(a) ∈ E(g), and henceb is not a meromorphic
point ofgn+1(h(z)) = h(f n+1(z)). This implies thatf n+1(b) = ∞ or b ∈ E(f n+1).

Assume thatf n+1(b) = ∞. If ∞ 
∈ E(f ) and∞ is not a fixed point off (z), then
c = f n+2(b) 
= ∞ is a meromorphic point ofh(z) and hence ofh(f n+2(z)) = gn+2(h(z)).
This is a contradiction; if∞ ∈ E(f ), we haveb ∈ J∞(f ) ⊂ J (f ).

Therefore, we always haveb ∈ J∞(f ) ⊂ J (f ) anda = h(b) ∈ h(J (f )). This com-
pletes the proof of Theorem 3.1. �

From Theorem 3.1 and the result in Bergweiler [10] for entire functionsf (z) andg(z),
we have the following

COROLLARY 3.1. Let f (z) and g(z) both be in M with either ∞ ∈ E(f ) or f (∞) 
=
∞. If expf (z) = g(ez), then we have

expJ (f ) = J (g) and expF(f ) = F(g) .(19)

As an immediate application of Theorem 3.1, we have the following.

THEOREM 3.2. Let f (z) and g(z) both be transcendental meromorphic functions in C
and permutable. If J (f ) = J∞(f ), then J (f ) = J (g).

PROOF. From Theorem 3.1 it follows thatg−1(J (f )) = J (f ), that is,J (f ) is a com-
pletely invariant closed set ofg, and thereforeJ (g) ⊆ J (f ). From J (f ) = J∞(f ) and
f ◦ g = g ◦ f , it is easy to see thatJ (g) = J∞(g), and so we also haveJ (f ) ⊆ J (g). Thus
J (g) = J (f ). �

SinceE(f ) = E(g) = {∞}, another immediate approach to prove Theorem 3.2 is
available by noting the fact that

n⋃
j=1

f−j (∞) =
n⋃
j=1

g−j (∞) .

Next we discuss a dynamical connection between Fatou components off andg which
satisfy (17).
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THEOREM 3.3. Let f (z), g(z) and h(z) be in M such that (17) holds. If h(z) maps
any component of F(f ) onto a hyperbolic domain, then the following hold.

(i) If f has no wandering domains, then g has no wandering domains.
(ii) IfU is a periodic component of F(f ) for f (z), then h(U) is contained in a periodic

component V of F(g) for g(z), and they are of the same type, unless U is a Baker domain or
Herman ring. If U is a Herman ring, then V must be a Siegel disk or Herman ring.

PROOF. Suppose thatg has a wandering domainV . LetU be a component ofh−1(V ).
Sinceh ◦ f n(U) = gn(V ), for m 
= n we haveh ◦ f n(U) ∩ h ◦ f m(U) = ∅, so that
f n(U) ∩ fm(U) = ∅ and, from the Montel theorem,U ⊆ F(f ). Let Ũ be a component of
F(f ) containingU .

Sincef (z) has no wandering domains,Ũ is periodic forf (z). We assume without any
loss of generality that̃U is invariant, that is,f (Ũ) ⊆ Ũ . This implies that

g ◦ h(Ũ) = h ◦ f (Ũ) ⊆ h(Ũ) ,

and soh(Ũ ) is invariant underg(z). SinceV = h(U) ⊆ h(Ũ), V = h(Ũ) and soV is
invariant underg. We derive a contradiction.

From the above discussion, ifU is a periodic component ofF(f ) for f (z), thenh(U)
is contained in a periodic component ofF(g) for g(z). If a is a periodic point off (z) with
periodp, thenh(a) is also a periodic point ofg(z) and((f p)′(a))m = (gp)′(h(a)), wherem
is the multiplicity ofh(z) overa. Therefore, it is not difficult to prove (ii). �

The statement (i) in Theorem 3.3 was proved in [12] forf (z) andg(z) being entire.
From Theorem 3.3 and Theorem E in [4] (that if it is of finite type, then the composition
of two transcendental meromorphic functions has no wandering domains), we immediately
deduce that iff (z) andg(z) are both meromorphic functions inC andf (z) is of finite type
such thatf (g(z)) is of finite type, theng(f (z)) has no wandering domains, forg(z) must
map any component ofF(f (g)) onto a hyperbolic domain. The important significance of this
result is thatg(f (z)) may not be of finite type, not even of bounded type. Thus, from this
point of view, we easily obtain some families of meromorphic functions inC which are not of
finite type without any wandering domains. Here are two examples to describe this situation.
Let f (z) = exp(R(eP(z)) + kP (z)), whereR(z) is a rational function with at least one non-
zero pole,P(z) is a polynomial andk is an integer. Sincef (z) = wkeR(w) ◦ eP(z), f (z) is of
finite type and, therefore, fromf (z) = ew ◦ (R(eP(z)) + kP (z)) and by using Theorem 3.3,
the non-entire meromorphic functionR(expP(ez))+ kP (ez) has no wandering domains. By
a simple calculation,R(expP(ez))+kP (ez) is not of bounded type. We can easily check that
ew◦(tanz−iz) is of finite type, therefore tanez−iez has no wandering domains. This method
was first used in Baker and Singh [6] to construct a class of transcendental entire functions
which have no wandering domains and has been developed in many other papers.

The above method applies to the construction of transcendental meromorphic functions
which have unbounded Siegel disk with a singular value on its boundary. Rippon [26] dis-
cussed the Siegel disk with singular value on its boundary and as an application of his result
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showed thatfλ(z) = eλz − 1 has a Siegel disk containing Siegel point 0 with unique as-
ymptotic value−1 on its boundary for almost allλ on {|λ| = 1}, so that the Siegel disk is
unbounded. We take into account the functiongλ(z) = λ(ez − 1). Note that−λ is a unique
asymptotic value ofgλ(z). Let f (z) = ez − 1 andg(z) = λz. Thenfλ(z) = f ◦ g and
gλ(z) = g ◦ f . We denote the Siegel disk offλ(z) containing 0 byU . Fromf ◦ g(U) = U , it
follows thatgλ(g(U)) = g(U), and sog(U) ⊆ F(gλ). LetV be the component ofF(gλ(z))
containingg(U). ThenU = f ◦g(U) ⊆ f (V ). On the other hand, sincegλ(V ) = V , we have
fλ(f (V )) = f (V ), which impliesf (V ) ⊆ F(fλ). Since 0∈ f (V ), we havef (V ) ⊆ U and
sof (V ) = U , V = g(U). Thusg(U) is the Siegel disk ofgλ(z) and−λ ∈ ∂g(U) andg(U)
is unbounded. The result in [26] does not seem to be available for deducing the existence of
the Siegel disk ofgλ(z) with −λ on its boundary.

Let T (z) be a Möbius transformation. The result in [26] also applies to the function
fλ(T (z)), and sofλ(T (z)) has a Siegel disk with unique asymptotic value on its boundary
for almost allλ on {|λ| = 1}. The same argument as in the above implies thatT (fλ(z)) and
λT (ez − 1) have an unbounded Siegel disk with unique asymptotic value on its boundary for
almost allλ on {|λ| = 1}.

By using the quasi-conformal surgery of Shishikura [28] (cf. [35]), we can construct an
unbounded Herman ring from an unbounded Siegel disk, that is, we have a transcendental
meromorphic function which has an unbounded Herman ring. However, we do not know
whether such a Herman ring has a singular value on its boundary.

Next, by the result of Rippon [26], we consider wandering domains as mentioned in the
introduction and prove the following.

THEOREM 3.4. For almost all λ on {|λ| = 1}, the function

fλ(z) = z + ez + 1 − λ+ 2πi

has a wandering domain U in which all iterates f n(z) are univalent and such that every ∂Un
contains a critical value and ∂Un ⊆ P(fλ). We also have P(fλ) ⊆ J (fλ).

PROOF. Let gλ(z) = zez+1−λ andFλ(z) = z + ez + 1 − λ. gλ(z) has a fixed point
λ − 1 with multiplier λ and Sing(g−1

λ ) = {0,−e−λ}. By the theorem of Rippon [26],gλ(z)
has a Siegel discUλ containingλ − 1 with −e−λ on ∂Uλ for almost allλ on {|λ| = 1}.
Taking a pointz0 such thatez0 + 1 − λ = 0, we then haveFλ(zn) = zn andF ′

λ(zn) = λ,
wherezn = z0 + 2nπi, n ∈ Z. Therefore, for almost allλ on {|λ| = 1}, Fλ(z) has a
Siegel discV (n)λ containingzn and∂V (n)λ ⊆ P(Fλ(z)). Since expFλ(z) = gλ(ez), we have

expF(Fλ) = F(gλ) and so expV (n)λ = Uλ. Noting that Sing(F−1
λ ) = {(2n+ 1)πi − λ; n ∈

Z} and exp Sing(F−1
λ ) = −e−λ, it follows that the critical value(2n + 1)πi − λ stands

on∂V (n)λ . Sincefλ(z) = Fλ(z)+ 2πi andfλ(Fλ) = Fλ(fλ), we haveJ (fλ) = J (Fλ) so that

fλ(V
(n)
λ ) = V

(n+1)
λ .

Sincef nλ (z) = Fnλ (z)+ 2nπi and
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Fnλ (Sing(F−1
λ )) = Fnλ (Sing(F−1

λ ))+ 2nπi

= f nλ (Sing(F−1
λ )) = f nλ (Sing(f−1

λ )) ,

we have∂V (n)λ ⊆ P(Fλ(z)) = P(fλ(z)). Thus Theorem 3.4 follows. �

In order to construct a non-entire meromorphic function with the properties of Theo-
rem 3.4, we consider the function

hλ(z) = z exp

(
−4

z

z− 1
+ 2(1 + λ)

)
.

Then Sing(h−1
λ ) = {0,−e2λ}, where 0 is an asymptotic value andhλ(z) has a fixed point

(λ + 1)/(λ − 1) with multiplier λ2. Since 0 is a fixed point ofhλ(z), the immediate basin of
attraction ofhλ(z) for (λ + 1)/(λ − 1), when 0< |λ| < 1, contains only one critical value
−e2λ and therefore is simply connected (see [36, Theorem 3]). Thus we can use the method
as in [26] for almost allλ on {|λ| = 1} to prove thathλ(z) has a Siegel discUλ with critical
value−e2λ on its boundary. By the same argument as in the proof of Theorem 3.4, we can
deduce that, for almost allλ on {|λ| = 1},

fλ(z) = z− 4
ez

ez − 1
+ 2(1 + λ)+ 2πi

has a wandering domainV such that every∂Vn contains a critical value andfλ is univalent
in Vn.

In the following, we construct a meromorphic function which has a Baker domain with
a critical value on its boundary.

THEOREM 3.5. For almost all λ on {|λ| = 1}, the function

fα(z) = 2πiα + z− ez+1+2πiα , λ = e2πiα ,

has a Baker domain U in which fα(z) is univalent with critical value on ∂U . We also have
∂U = P(fλ).

PROOF. Let gα(z) = λz exp(−λez), λ = e2πiα. A simple calculation implies that
gα(0) = 0 andg ′

α(0) = λ, and Sing(g−1
α ) = {0, e−2}, where 0 is an asymptotic value,e−2

is a critical value and(λe)−1 is a critical point ofgα(z) such thatgα((λe)−1) = e−2. When
0< |λ| < 1, 0 is an attracting fixed point and hence we have an immediate basin of attraction
Uλ of 0 for gα(z). ThenUλ must contain a singular value which is not (pre)periodic and hence
Uλ containse−2. Thus we can use the theorem of Rippon [26] to deduce that, for almost all
λ on {|λ| = 1}, gα(z) has a Siegel discV at 0 withe−2 on its boundary. Since expfα(z) =
gα(ez), there exists a unique componentU of F(fα) such that expU = V and exp∂U = ∂V .
It follows thatfα(z) is univalent inU and Sing(f−1

α ) ⊂ ∂U , thereforeP(fα) ⊆ ∂U . On the
other hand, from∂V ⊆ P(gα) we have∂U ⊆ P(fα) and so∂U = P(fα).

It is easy to see thatU does not contain any periodic points and any singular values, so
U is a Baker domain forfα . �
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In the following we consider the boundary of a wandering domain of an entire function by
constructing examples. The complexity of the boundary of an unbounded periodic component
of an entire function was revealed in [7] and [3].

THEOREM 3.6. There exists a polynomial P(z) such that f (z) = z + P(ez) has a
wandering domain with the boundary being a quasicircle.

PROOF. We consider the diskD = B(a,2), wherea is a sufficiently large positive
number. By Runge’s theorem in complex approximation theory, we have a polynomialP(z)

such that

|P(z)− log{a + (z − a)2} − logz| < 0.01

2(a + 4)
on D̄ .

Set

g(z) = zeP(z).

Then onD̄, we have

|g(z)− {a + (z − a)2}| = |zeP(z) − {a + (z− a)2}|
= |a + (z− a)2||z exp[P(z)− log{a + (z − a)2}] − 1|
< (a + 4)2|P(z)− log{a + (z− a)2} − logz|
< 0.01,

(20)

where we have used the inequality|ez − 1| < |z|/(1 − |z|), |z| < 1. From (20), it is easy to
see thatg(B(a,1/2)) ⊂ B(a,1/2) and then there exists a componentU of F(g) containing
B(a,1/2) which is an immediate attracting basin ofg(z) for an attracting fixed pointα in
B(a,1/2). A simple calculation deduces thatg(z) maps the circle{|z− a| = 3/2} into {|z−
a| > 2} and henceU ⊂ B(a,3/2). We have a componentV of g−1(B(a,3/2)) containing
a and certainlyV̄ ⊂ B(a,3/2). Sinceg(z) is analytic onB(a,3/2), V is simply connected.
This implies thatg : V → B(a,3/2) is a polynomial-like mapping (see [13, p. 99]). Then
there exist a polynomialh(z) and a quasi-conformal mappingφ such thatg(z) = φ−1 ◦ h ◦
φ on V (see [13, Theorem 3.1]).φ(U) is an immediate attracting basin ofh(z) for φ(α).
From Rouché’s theorem,h(z) is of degree two and hence∂φ(U) is a quasicircle (see [13,
Theorem 2.1]). Thus we have that∂U = φ−1(∂φ(U)) is also a quasicircle. Since 0
∈ U ,
by the logarithmic change of variables expf (z) = g(ez), for suitablek we have a sequence
{zn} with zn+1 = zn + 2πi such thatf1(zn) = zn, f ′

1(zn) = g ′(α) and expzn = α, where
f1(z) = z + P(ez) − 2kπi. Un is the immediate attracting basin off1(z) for zn and hence
Un+1 = Un+ 2πi and expUn = U and exp∂Un = ∂U . Since∂U does not go around 0,∂Un
is a quasicircle.

Let f (z) = f1(z) + 2πi. Certainly,f (Un) = Un+1, that is,Un is a wandering domain
of f (z). �
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Finally, we mention that the functionz+ ez+ 2πi possesses a wandering domain which
has a complicated boundary. In fact,zez has a parabolic domainV for 0 containing the nega-
tive real axis(−∞,0). From [3, Theorem 1.1], the setΘ is dense in∂V , where

Θ(V ) = {
eiθ ; lim

r→1−ψ(re
iθ ) = ∞}

andψ is a Riemann map from the unit disk∆ ontoV . Thenz + ez + 2πi has a wandering
domainU such that expU = V . Since Logz can be separated into analytic branches inV ,
we denote by logk z the branch such that logk V = U . Thus logk ◦ψ is a Riemann map from
∆ ontoU and soΘ(U) is dense in∂U .

4. Conformal conjugacies in Baker domains. We consider the holomorphic map-
ping f (z) of a hyperbolic domainU onto itself. A domainD ⊂ U is called an attracting
disk ofU (underf (z)), provided thatD is simply connected,f (D) ⊂ D and it satisfies the
attracting property: given an arbitrary compact setK ⊂ U , there existsN = N(K) such that
f N(K) ⊂ D. Then(D, φ, T ,Ω) is called a conformal conjugacy (off (z) in U ) if

(A1) D is an attracting disk ofU ;
(A2) φ : U → Ω is holomorphic and univalent inD andΩ is the right half-plane

H = {z ∈ C; Rez > 0} or C;
(A3) T is a Möbius transformation mappingΩ onto itself andφ(D) is an attracting disk

ofΩ underT ;
(A4) for anyz ∈ U , we have

φ(f (z)) = T (φ(z)) .(21)

The functionφ(z) may not be univalent inU , but the functional equation (21) does
hold in U . The dynamics off (z) in D are equivalent to those of a Möbius transformation
T in φ(D). After a suitable further conjugacy with a Möbius transformation, we formulate
the conformal conjugacy(D, φ, T ,Ω) (if it exists) into the occurrence of the following three
cases:

(B1) T (z) = z+ 1,φ : U → C;
(B2) T (z) = z± i, φ : U → H ;
(B3) T (z) = λz, λ > 1,φ : U → H .
Then the hyperbolic domainU is said to be of type I, II or III forf (z), if, in turn,

Cases B1, B2 or B3 take place. The holomorphic self-mappingf : U → U may not have
any conformal conjugacy; for example, a meromorphic functionf (z) in its Herman ring
and super-attracting stable domain has no conformal conjugacy, while in the attracting stable
domain, parabolic domain or the Siegel disk, conformal conjugacy exists. We give a criterion
for the existence of conformal conjugacy by using the results of Marden and Pommerenke [23]
and Cowen [14].

THEOREM 4.1. Let f (z) be a holomorphic self-mapping of U and assume thatU does
not contain any super-attracting fixed points of f (z). Then f (z) in U possesses conformal
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conjugacy if and only if, for an arbitrary closed curve γ in U , there exists a positive integer
m = m(γ ) such that fm(γ ) ∼ 0 in U .

Therefore, the existence of an attracting disk ofU for f (z) suffices to deduce the ex-
istence of conformal conjugacy. It was proved by König [21] that the Baker domain of a
transcendental meromorphic function with only finitely many poles possesses conformal con-
jugacy and an example of a Baker domain which has no conformal conjugacy was constructed.

We consider the connection between the Baker domain which has conformal conjugacy
and the singular value. The Baker domain of type I contains at least one singular value; the
Baker domains of types II and III may not contain any singular values. We shall describe these
situations through examples.

By using the logarithmic change of variables, that is, logg(ez), we construct Baker do-
mains of types I, II and III which have special properties. This method was used in Her-
man [19]. To this end, we take into account the connection betweenf (z) andg(z) such that

expf (z) = g(ez) .(22)

By a simple calculation, we deduce thatea is a critical value ofg(z), if a is a critical value
of f (z); also, ifb is a non-zero critical point ofg(z), thenzn = logb + 2nπi, wheren is an
integer, is a critical point ofg(ez) and hence off (z), andf (zn) is a critical value off (z).

It follows from Corollary 3.1 that expJ (f ) = J (g) and expF(f ) = F(g). Given a
componentV of F(g), we have a componentU of F(f ) such thatV = expU and∂V =
exp∂U . From the discussion in the above paragraph, it is easy to see that, ifU contains a
critical valuea, thenV = expU contains a critical valueea of g(z).

EXAMPLE 1. Set

g1(z) = 3zk exp

(
1

2
− z

z− 1

)

and

f1(z) = kz+ log 3+ 1

2
− ez

ez − 1
+ 2mπi ,

wherek is an integer larger than 1 andm is an integer. Thenf1(z) possesses two invariant
Baker domainsU1 andU2 of type III such that

dist(U1, P (f1)) > 0 ,(23)

∂U1 is a quasi-circle,f1(z) is univalent inU1 andU2 contains infinitely many critical values.

PROOF. The point 0 is a super-attracting fixed point ofg1(z). Assume thatV1 is the
component ofF(g1) containing 0. We want to prove thatV1 does not contain any non-zero
critical points. From the equation

g ′
1(z) = 3zk−1 exp

(
1

2
− z

z− 1

)[
k + z

(z− 1)2

]

we solve the two critical points ofg1(z),

z1,2 = 2k − 1 ± i
√

4k − 1

2k
.
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We can check that|z1,2| = 1. Sincew = 1/2 − z/(z − 1) conformally maps the unit circle
{|z| = 1} onto the imaginary axisx = 0, g1(z) maps the unit circle{|z| = 1} into the circle
{|z| = 3}, and it is clear that the unit circle{|z| = 1} cannot intersect the boundary ofV1.

The Möbius transformationM(z) = 1/2 − z/(z − 1) keeps the real axis invariant. For
any positive numberR ≥ 3, M(z) maps the circle{|z| = R} onto one circle which goes
through the pointsz = 1/2 − R/(R − 1) andz = 1/2 − R/(R + 1) orthogonal to the real
axis. By noting that 1/2 − R/(R − 1) ≥ −1, we have

|g1(z)| ≥ 3Rke−1 > R , on |z| = R ,

and hencef1({|z| ≥ 3}) ⊂ {|z| > 3}. It is easy to see that∞ is also a super-attracting fixed
point of g1(z) and{|z| ≥ 3} is contained in an invariant attracting componentV2 of F(g1)

of ∞. Thus,gn1 (z1,2) → ∞ (n → ∞), and dist(V1, P (g1)) > 0. We can prove that the
boundary∂V1 is a quasi-circle.

There exists a unique invariant componentU1 of F(f1) such that expU1 = V1. It is
obvious thatU1 is an invariant Baker domain off1(z) of type III such that (23) holds and
∂U1 = Log∂V1. SinceU1 is simply connected and does not contain any singularities of the
inversef−1

1 , it is easy to see thatf1(z) is univalent inU1.
There exists a unique invariant componentU2 of F(f1) such that expU2 = V2. Cer-

tainly,U2 is an invariant Baker domain off1(z) of type III containing infinitely many critical
values. �

An entire function was constructed in [9] to have a Baker domain such that (23) holds.

EXAMPLE 2. Set

g2(z) = e2πiαz exp

(
z+ 1

z− 1
+ 1

)

and

f2(z) = 2πiα + 1 + z+ ez + 1

ez − 1
,

whereα is an irrational number satisfying the condition of Siegel type. Thenf2(z) has an
invariant Baker domainU of type II in whichf2(z) is univalent and∂U ⊆ P(f2).

PROOF. By a simple calculation, 0 is a Siegel fixed point ofg2(z). Then there exists a
Siegel diskV of g2(z) containing 0. Note thatg2(z) is univalent inV and

∂V ⊆ P(g2).(24)

There exists a unique invariant componentU of F(f2) such that expU = V . It is obvious
thatU is an invariant Baker domain off2(z) of type II. For any two pointsz1 andz2 in U
such thatf2(z1) = f2(z2), from expf2(z) = g2(e

z) we haveez1 = ez2, soz1 = z2 + 2mπi.
Therefore, usingf2(z1) = f2(z2) impliesz1 = z2, that is,f2(z) is univalent inU . From (24),
∂U ⊆ P(f2). �
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EXAMPLE 3. Set

g3(z) = e2πiαz exp

(
z

2 − z

2z− 1
− 2z− 1

z(2 − z)

)

and

f3(z) = 2πiα + z+ ez
2 − ez

2ez − 1
− 2ez − 1

ez(2 − ez)
.

By choosing an appropriateα, g3(z) has a Herman ring which contains the unit circumference
andf3(z) has an invariant Baker domainU of type II containing the imaginary axis, whose
boundary consists of two components inC and in whichf3(z) is univalent and∂U ⊆ P(f3).

PROOF. By a simple calculation,g3(z) maps the unit circumference onto itself and
argg3(e

iθ ) = 2πiα + θ + 2 sin(arg(2 − eiθ )) (mod 2π). From the result of Yoccoz [30],
for an appropriateα, g3(z) is analytically conjugate in a neighbourhoodṼ of the unit circum-
ference to a rotationz → e2πiβz, whereβ is the rotation number ofg3(z) depending onα.
Thus,g3(z) has a Herman ringV which contains the unit circumference and∂V ⊆ P(g3).
From expf3(z) = g3(e

z), we can deduce thatf (z) possesses the desired properties. �

In the Baker domainU in Examples 2 and 3, we take a pointa andfj (a) (j = 2,3)
and draw a simple curveγ connectinga andfj (a) in U . We have an analytic branch off−1

which mapsU onto itself, which we still denote byf−1. Set

Γ =
∞⋃

j=−∞
f j (γ ) .

ThenΓ goes forward to infinity on two sides. In Example 2,Γ does not separate the boundary
of U , while in Example 3 it does.

We do not give here an example of a Baker domain of type II which contains singular
values or such that (23) holds.

EXAMPLE 4. Set

g4(z) = z exp

(
z+ z− 1

z+ 1
+ 1

)

and

f4(z) = 1 + z+ ez + ez − 1

ez + 1
.

Thenf4(z) has an infinite number of invariant Baker domains of type I containing at least one
critical value.

PROOF. Obviously,g4(0) = 0 andg ′
4(0) = 1. There exists a parabolic domainV of

g4(z) for 0 containing at least one critical value ofg4(z). From (22), we can deduce thatf4(z)

possesses an infinite number of invariant Baker domainsUn of type I such that expUn = V

(n = 0,±1,±2, . . . ). �

Finally, we mention that by using the logarithmic change of variables, we can construct
some transcendental meromorphic functions which have wandering domains. We can prove
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that 2mπi + f4(z) and 2mπi + z + ez + 1/(ez − 1) + 1,m 
= 0, have wandering domains
which contain critical values. As Baker did in [2], we can prove that 2mπi + z + K2(ez),
m 
= 0, has an infinity of different families of wandering domains, ifK(z) is a meromorphic
function with infinitely many zeros.
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