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Abstract. In this paper, we investigate the dynamics of a broader class of functions
which are meromorphic outside a compact totally disconnected set. We shall establish the
connections between the Fatou components and the singularities of the inverse function and,
accordingly, give sufficient conditions for thm@n-existence of wandering domains or Baker
domains, and for the Julia set to be the Riemann sphere. Through the discussion of permutabil-
ity of such functions, we shall construct several transcendental meromorphic functions which
have Baker domains and wandering domains \sfibcial properties; for example, wandering
and Baker domains with a critical value on the boundary and a wandering domain with the
boundary being a Jordan curve (some such examples for entire functions were exhibited in
other papers) and those of non-finite type which have no wandering domains.

1. Introduction. Iteration of meromorphic functions & — C has developed over
the last decade and continues to attract much interest. The dynamics of meromorphic func-
tions have been revealed to have many similar results to those of rational or entire functions,
such as a meromorphic function of finite type, that is, its inverse has singularities over a finite
set of points, has no wandering domains (see [5]) and its Julia set is uniformly perfect (see [33]
and [34]). The result that a rational function with degree at least two has no wandering do-
mains was proved by Sullivan [29] and was extended in [18] and [15] to transcendental entire
functions of finite type. However, the dynamics of transcendental meromorphic functions
also possess special properties which a rational or entire function does not have; for example
a transcendental meromorphic function may have the Julia setin a straight line, while the Julia
set of a transcendental entire function cannot contain an isolated Jordan arc. It is obvious that
the family of rational functions or entire functions is a closed system under iteration or func-
tional composition; however, the family of meromorphic functions is not, since iteration of a
transcendental meromorphic function is not in general meromorphic and may have infinitely
many essential singularities. From this, it is natural to consider a broader class of functions
which is closed under functional composition. We introduce the dfas$function f, which
is meromorphic outside some compact totally disconnectefl setk( f), and the cluster set
of f atanya € E(f) with respecttoE¢ =C\ E, that is, the set

C(f,E° a)={w eC:w= Ii_)moo f(z,) for some sequencg, € E€ with z,, — a}
n
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is equal toC. Note that a point irE may not be isolated ik, so the final condition which a
member inM satisfies shows tht(z) at every pointint keeps the property which an isolated
essential singular point possesses in the sense of the Weierstrass theorem. Tkevetass
first investigated in [4] and the basic concepts, such as the Fatou set and the Julia set, and the
basic properties of dynamics of functiondihwere established there. It was proved tklais
closed under functional composition and, for afty € M, E(f o g) = E(g9) U g~ X (E(f)).
The composition of a finite number of meromorphic functions is a membdramd has only
at most countably many essential singularities. Following the discussion of [4], we investigate
the dynamics of functions iM in this paper.

Let f € M and f",n € N, denote thesth iterate of f. Then f"(z) is defined in
E°(f"1). Define the Fatou set gf by

F(f) = {z € C; {f"} is defined and normal in some neighborhood jof

and the Julia set of by J(f) = C\ F(f).

SetJoo(f) = Uneo E(f™. If Joo(f) has at least three points, thelif) = Joo(f),
so F(f) is the large open set in which afl”’, n € N, are meromorphic; i/ (f) consists
of two points, thenf is a holomorphic function o€* = C\ {0} onto itself up to a Mdbius
transformation; if/, (f) consists of one point, thefi is a transcendental entire function; if
Joo (f) is empty, thenf is a rational function.

It is easy to see that, fof € M, F(f) is open and completely invariant undgyi.e.,

z € F(f)ifand only if f(z) € F(f). LetU be a connected component Bf /), called a
stable domain off, then " (U) is contained in a component &f( /), denoted byU,. If, for
somen > 1,U, = U, thatis, f"(U) C U, thenU is called periodic; if, for some pair of
n # m, U, = Uy, butU is not periodic, thet/ is called preperiodic; if fon # m, U,, # U,
thenU is called a wandering domain gf.

For a periodic component of the Fatou set we have the classification theoref. Heet
a periodic component af (f) of periodp. Then only five possible cases occur (see [4]):

(1) $2 is a (super) attracting domain of a (super) attracting periodic powit f of
periodp such thatf"? |, — a asn — oo anda € £2;

(2) $2is a parabolic domain of a rational neutral periodic péiof f of periodp such
that f"P|y — b asn — oo andb € 982;

(3) £2 is a Siegel disk of periogh such that there exists an analytic homeomorphism
¢ : 2 — A, whereA = {z: |z] < 1}, satisfyingg (f? (¢ 1(z)) = ¢Z" 7 for some irrational
numbera and¢—1(0) € £2 is an irrational neutral periodic point ¢f of period p;

(4) $2is aHerman ring of periogh such that there exists an analytic homeomorphism
¢ 2 — A whereA = {z: 1 < |z] < r}, satisfyinge(f? (¢ 1(z)) = ¥ 7 for some
irrational numbetry;

(5) £2is a Baker domain of period such thatf"?|y — ¢ € J(f) asn — oo but f?
is not meromorphic at. If p = 1, thenc € E(f).

In this paper, we mainly discuss two aspects: one is the connections between the Fatou
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components and the singularities of the ineefisnction; the other is the dynamical connec-
tion between meromorphic functionsand g satisfying the equatioh o f = g o h. As an
application of our results, we shall construct several types of Baker domains and wandering
domains with special properties of transcendental meromorphic functions; a few such exam-
ples for transcendental entire functions have been exhibited in other papers [15, 9, 16, 19] and
we give a transcendental meromorphic function whose Julia set coincides with the Riemann
sphere.

By Sing(f 1) we denote the set of singularities of the inverse funciion, that is, the
set of critical and asymptotic values and limit points of these values.

We use the following notation about singularities of the inverse function fFeM, set

S,(f) = {a € C; a'is afinite singularity off ~"},

and
P =S
p=1

We establish the following, which are the main results of Section 2 of this paper.

THEOREM 2.1. If f € M and if U is a wandering domain of f, then every limit
function of the convergent subsequence of { |y} liesin the derived set of P(f).

Theorem 2.1 was proved in [11] for entiyfgand in [31] and [33] for meromorphig.
The same argument as in [33] deduces the following result. For completeness, the proof of
the result will be given.

THEOREM 2.2. Let f € M andlet U be a component of F(f). If f"’|y — q (n —
00), then either ¢ liesin the derived set of S, (f) or g isa periodic point of f of periodk < p
and f7(q) = gq.

Theorem 2.1 and Theorem 2.2 were announced at the conference ‘New Direction in Dy-
namical Systems 2002’ which was held in August 2002, at Kyoto University, Japan (see [36]).
As an application of Theorems 2.1 and 2.2, we shall establish some sufficient criteria for the
non-existence of wandering domains or Baker domains and for the Julia set of a transcendental
meromorphic function to be the Riemann sphere.

THEOREM 2.4. Let f(z) = u+ z+ e* + 1/(e* — 1). Then there exist 1 and A such
that J(f) =C.

Note thatf (z) in Theorem 2.4 is not of bounded type, that is, $ifg) is unbounded.
In Section 3, we discuss two permutable meromorphic function inTwo meromorphic
functionsf(z) andg(z) in M are said to be permutable if

fogm)=gof(z) in C\(E(f)UE(9)Ug NE))U S HE(9))).

Julia [20] and Fatou [17] proved that two permutable rational functions with degree at least
two have the same Julia sets. However, it is still open as to whether or not two transcendental
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entire functions have the same Julia sets, although some important progress has been made to-
wards a solution of this problem; see [12, 22, 25] for further detail. We establish the following
result in Section 3.

THEOREM 3.2. Let f(z) and g(z) both be transcendental meromorphic functions in
M and permutable. If J(f) = Joo(f), then J(f) = J(g).

Here we give an example of two transcendental meromorphic functions which are per-
mutable. Given a periodic meromorphic functiéh(z) with periodz, it is easy to see that
z+ H(z) andmzt + z + H(z) are permutable. If, in additior{ (z) is odd, that isH (—z) =
—H(z),thenmt — z — H(z) is also permutable with + H (z).

For an application of the construction of special Baker domains, we shall consider a
generalization of the subject and establish the following.

THEOREM 3.1. Let f(z) and g(z) be meromorphic functions in M such that, for a
meromor phic function 4(z) in C, we have h(f(z)) = g(h(z)). If J(f) = Joo(f), and either
oo € E(f)or f(oo) # oo, thenh(J(f)) = J(g) and h(F(f)) = F(g).

From the special version of Theorem 3.1 foiz) = ¢* and by using a logarithmic
change of variables, we can construct several types of Baker domains; for example, we can
construct a transcendental meromorphic functio@ imhich has a Baker domaiti such that
dist(U, P(f)) > 0 andf(z) is univalent inU.

Herman [19] proved that, for & 271 = ¢?** and a suitable real number

f(@) =z+Arsin(2rz) +1

has a wandering domairi in which all iteratesf” (z) are univalent. We can also construct a
non-entire meromorphic function with such properties; for example, for a suitable real number
,

f(2) =z + (%" — 1 tanz + 27i,
has a wandering domain which has such properties. Eremenko and Ljubich [16] constructed,
by the theory of complex approximation, a transcendental entire fungtighwhich has a
wandering domain in which all iteratg®' (z) are univalent.

For Herman’s example and ours and in the construction of [16], we cannot know whether
there exists any relationship between the boundaries of the wandering domains arfd Sing
and/or P(f). Question 8 raised in [8] asks whether there is some relation betwéeand
Sing(f~1) if U is a wandering domain such thid; N Sing(f~1) = ¢. However, here we can
prove the following by a result of Rippon [26].

THEOREM 3.4. For almost all A on {|A| = 1}, thefunction
fie)=z+e +1—Ar+2mi

has a wandering domain U inwhich all iterates f;* (z) are univalent and such that every dU,
containsacritical valueand aU,, C P(f.). Wealso have P(f5.) € J(f5.).

We naturally raise the following question.
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QUESTION. Isthere a transcendental meromorphic functf@n) which has a wander-
ing domainU such that,, N Sing( 1) = @?

However, it is easy to construct an example which has a wandering démsuich that
dist(dU,, P(f)) > O, for instancez + ¢* + 2xi is such an example. We shall prove that a
non-entire meromorphic functian— 4[e*/(e* — 1)1+ 2(1+ 1) + 2i has the same properties
as in Theorem 3.4.

Finally, we mention that we can construct a transcendental meromorphic function which
has a wandering domaliii such that albU,, are Jordan curves.

2. Fatou components and singularities of theinverse function. In this section, we
first prove the following theorem and, as an application of this result, we give a sufficient
condition for the non-existence of wandering domains.

THEOREM 2.1. If f € M and if U is a wandering domain of f, then every limit
function of the convergent subsequence of { /|y } liesin the derived set of P(f).

We shall prove Theorem 2.1 by using the hygmic metric and, to this end, recall some
basic knowledge about the hyperbolic metric.

Let £2 be a hyperbolic domain in the complex plaBgthat is,C \ §2 contains at least
two points. There exists the hyperbolic metig (z)|dz| on £2 with Gaussian curvature4.
Throughout, we use the notatida, §) = {z; |z — a| < 8}, B*(a,§) = B(a,$) \ {a} and
Dy = {z; |z| > R}. Then it is well-known that

1
|z| log(é/1z) |zl log(lzI/R) -

For any hyperbolic simply connected domai by the Koebe 14 theorem we can easily
prove that

1) AB+(0,8)(2) = and Apx(z) =

1
(2 12(2)80(z) > 20 <€ 2,

whered (z) is the Euclidean distance offrom the boundary of?2.
The following version of the Schwarz-Pick lemma (see [1]) will play a key role in the
proof of our theorems.

LEMMA 2.1. Let U and £2 both be hyperbolic domains and let i be an analytic func-
tionin U suchthat 7(U) C £2. Then

(3) roh@)IW ()| < (), zeU,
with egquality if and only if /2 is an unbranched covering map of 2 fromU.

Now we can proceed to prove Theorem 2.1.

PROOF OFTHEOREM 2.1. Suppose conversely that there exists a limit funciiaf
some subsequence of"|y} which is not in the derived set a?(f). Then we can take a
positive numbes such thatB*(a, 25) N P(f) = ¥, whereB*(a,r) = {z; 0 < |z —a| < r}.
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Now we want to prove that/ is simply connected. Suppose the contrary, then we can
draw a Jordan curvg in U which is not null-homotopic i

Sincey is a compact subset @f, we always have sufficient largesuch thatf” (y) C
B*(a, 8). Take a poinb € y. Let g, be an analytic branch of =" in some neighborhood of
f"(b) such thaty, (f" (b)) = b. Then there exist three possibilities:

(i) ais an analytic point ofy,, thatis,g, can be analytically continued ®(a, 25);

(i) ais an algebraic branch point of;

(i) ais atranscendental branch pointgf

In Case (i),g,(B(a, 28)) is simply connected and it) C g, (B(a, 28)), and then/™ (z)
is meromorphic innt(y).

In Case (ii),g, can be analytically continued througha®it(a, 25). We can produce a
Jordan curvd” such thaty C int(I") in the way thaty, is continued along B(a, §) finitely
many times. Thug”(I") covers the circlé B(a, §),

(4) frint(0) \ {a} - B*(a, d)

is proper andf” (o) = a. Application of Picard’s theorem to (4) yields thAt is meromor-
phic in int(I"), so " is meromorphic innt(y).

In Case (iii),g, can also be analytically continued through®it(a, 25). There exists a
componen® of f~"(B(a, §)) such thaty ¢ W and

) f": W — B*(a,d)

is a covering. Itis easy to see tt#a¥ is a Jordan curve ariW tends toE (/") along both di-
rections from a fixed point idW. SinceE (") is totally disconnected, along both directions
oW tends to two pointg ande’ in E(f"). If e # ¢/, then there exists am € E(f") \ {e, ¢}

in W and, by noting thatC (f", E(f™)¢, a) = C, this hence derives a contradiction to (5).
Thus we have proved that= ¢’, andW is simply connected. It follows that ifgt) ¢ W and,
by applying Picard’s theorem to (5§ is also meromorphic imt(y).

In one word, we have proved th@t is meromorphic irint(y). Sincen can be assumed
to be arbitrary sufficiently large, for each positive integerf” is meromorphic in inty).
This implies that inty) c F(f), and theny is contractible inU. This is a contradiction,
from which it follows thatU is simply connected.

Set f"*|y — a (k — o0). By the argument as abové&y, the component of ()
containing "+ (U), is also simply connected. Assume there exists a goiatU such that
S (b) € B*(a, §). Applying Lemma 2.1 tof"* : U — Uy implies that

|(f™) ()] /
6 — <A "k (b "y (b ru(b).
(6) 4|f”k(b)—a|§ U (SHEONIS) (D)) < Au (D)
On the other hand, leV* and W be respectively the components gf, "+ (B*(a, §))
and f "+ (B(a, 8)) containingb. ThenW* c W and f" : W* — B*(a, §) is an unbranched
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covering. It follows from Lemma 2.1 that

Aw (B) < A= (D) = Apr(a,8) (f"™ O)IS™) (D)
(7) _ (™) ®)]
| fm(b) — allog(8/| f" (b) — al) -
Combining (6) with (7) implies that

Ay (b)
log(s/| f™ (b)) — a]) < ———.
9o/ 1™ () —al) < 5=
This is impossible, sincg” (b) — a (k — oc0). Hence Theorem 2.1 follows. O

By the method from [32], we can extend Theorem 2 in [32] for a meromorphic function
to a function inM.

THEOREM 2.2. Let f € M andlet U be a component of F(f). If f"’|y — q (n —
00), then either ¢ liesin the derived set of S, (f) or g isa periodic point of f of periodk < p
and f*(q) = gq.

In order to prove Theorem 2.2, we need the following lemmas, which are of independent
significance.

LEMMA 2.2, Let f € M. If S,(f) N B*(0,8) = #, then each component of
f7P(B(0, §)) issimply connected in C.

Lemma 2.2 can be proved by the method from Zheng [32]. The following is an immedi-
ate product of the combination of Lemmas 2.2 and 2.1.

LEMMA 2.3. Let f € M. If S,(f) N B*(0,8) = ¥, f? isanalytic at b such that
fP(b) € B*(0, ) and Ois not in the component of f~7(B(0, §)) containing b, then we have

| /7 (b)llog(é/].f”(b)])
4lb| '

IfS,(f) C B(O,R) and | f¥(c)| < R, then, for any analytic point z of f#, we have

o P @Iog( £7@)I/R)
(9) 7 @) > Az o] -

Equation (9) was also established in [27] for a meromorphic functi@ iNow we are
in a position to prove Theorem 2.2.

(8) I(fP) (b)] >

PROOF OFTHEOREM 2.2. We prove Theorem 2.2 for the case whda a finite num-
ber; the same argument can show Theorem 2.2 ferco.

Suppose thaf”(q) # g andgq is not in the derived set aof,(f). Then, from the
classification theorem of periodic comments of a Fatou set, it is easy to see that F(f).
Assume that; = 0 without any loss of generality. Sing&” |y — 0 asn — oo, we can take
ab e f"P(U) (ng > 0) and two positive numbesandr such thatS, (f) N B*(0, §) = ¥,
f"(B(b,r)) C B*(0,8),n=0,1,2,... and 0¢ f~7(B(0,d)). Thus, forn > 0, applying
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Lemma2.3tof? at f¢~DP(b) € B*(0,8) (s = 1,2,...,n) gives

. O LFSP(b)[log(8/] £5F (b
el =TI g 2oy = 12 (45}29(1)9(,;)'( L
s=1

4o i;tw(bmo G/1f" b)) T 1
= j . ]:[l 7 1096/1 17 B))
On the other hand, sincg™ : B(b, r) — B*(0, 8), from Lemma 2.1 it follows that
(11) |(f"P) (b)| - 1

|fP (b)[log(8/| fP (b)) ~ r
Equation (11) contradicts (10), qu[’j;i(l/4) log(s/| f*P(b)]) — oo asmn — oo. Thus
Theorem 2.2 follows. m]

As we did in [32], from Theorems 2.1 and 2.2 we can obtain several consequences,
whose proofs are omitted.

COROLLARY 2.1. Fore € Joo(f),if e & (S,(f))', then there exist no components of
F(f)inwhich f"’(z) — easn — oc.

This is a generalization of Theorem F in [4].

COROLLARY 2.2. Let f € M. If (Sing /1)) NE(f) =@, J(f) N (P(f)) isfinite
and (P(f)) NJxo(f)\ E(f) =@, then f has no wandering domains.

If oo € E(f), then the condition(Sing f~1)) N E(f) = ¢ implies that Sing 1)
is bounded. In what follows, we discuss the connection between singularities and Baker do-
mains. Given a cycle of the Baker domaifBo, Bz, ..., B,—1}, with periodp of f(z) inM,
we have
f"g; = aj, n—+4oo, 0<j<p-1.
We draw a curvey in Bg to connect a pointg and f”(zo), and set

o]

ro=J 7). Ia=fay. 0<j<p-1.
n=0

Itis easy to see thdf, C Ipand

(12) f@ —ajy1, ze€lj—aj, O<j=<p-1,

wherea, = ag. Therefore, we callfao, a1, ...,a,-1} a cycle of periodic points for
{Bo, B1, ..., Bp_1} with periodp. According to the definition of the Baker domains, at least
one of{ag, a1, ...,ap—1} isin E(f). If a; € E(f), then from (12)a;1 is an asymptotic

value of f (z), and so the inversg—1 has a singularity overj 1, thatis,ajy1 € Sing(f ).
So from Theorem 2.2, we have

{ao, a1, ...,ap-1} C(Sp(fN'NI(f).
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COROLLARY 2.3. Let f € M. Then f has no Baker domains of period k < p if one
of the following statements holds:

(1) f(z) hasno asymptotic valueswhich liein Joo(f, p) = Uf;é FTEC(S));

) Sp(HNHNES)=0.

As an application of Corollaries 2.2 and 2.3, we give a sufficient condition to determine
the Julia set of a transcendental meromorphic function equal to the Riemann sphere.

THEOREM 2.3. Let f(z) € M with (Sing(f™1)) N E(f) = @. Assumethat J(f) N
(P(f)) isfinite, (P(f)) N Joo(f) \ E(f) = ¢ and, for every b € Sing(f~ 1Y), b is pre-
periodic, b € Joo(f) OF () — E(f) asn — oo. Then J(f) =C.

When £ (z) is a transcendental meromorphic function, then the condit®imgy £ ~1))'N
E(f) = ¢ is equivalent to the fact that Sing—1) is bounded, that isf (z) is of bounded
type. From Theorem 2.3, it is easy to deduce thg&ti tanz) = C andJ(e?) = C, which
was conjectured by Fatou [17] and proved by Misiurewicz [24]. Howewertanz ande® are
both of finite type. From Theorem 2.3, we construct a transcendental meromorphic function
which is not of bounded type and whose Julia set is the Riemann sphere.

THEOREM 2.4. Let f(z) = u+ z+ e+ A/(e* — 1). Then there exist 1 and A such
that J(f) =C.

PROOFE. We consider the function

A
g(2) =zexp<u+z+—) ,
z—1

whereu andx are chosen to be two non-negative real numbers. 0 is a unique asymptotic value
of g(z) and the critical points of(z) are solutions of the equation

(13) B-2-O+1z+1=0.

By calculation, we can deduce that Equation (13) has only three real roots which lie respec-
tively in the intervalg —oo, —1), (0, 1) and(1, +00), denoted in turn by, x2 andxs. Since,

forh = 0,x1 = —1 andxy = x3 = 1, we havexy; - —17,x» — 1~ andxz — 11 as
A — Ot
Obviously, the roots oft + z + A/(z — 1) = 0 are fixed points of(z), and so
~( =1 =V (=D + 4 — 1) 2(u =)
20 = = — >
2 V=D + 4 =1 — (= 1)

is a fixed point ofg(z) andzo — —u asi — 0. Now we want to choosg andA such that
g%(x1) = z0, that is, the following equation holds:

2(n —A)

(14) go(x1) = — :
S V- D2 A b - (- D)

We rewrite (14) to give
(15) (e —D2+4 — 1) — (k= 1)g?(x1) +2(x — 1) = 0.
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We denote the function on the left-hand side of the above equatid® (). Since
A -1
g(x1) = x1 exp(u +x1+ m) — —et
asi — 0T, we have
F(p) —> —2exp2u —1—e* Y +2u, 1— 0F.
Therefore, for sufficiently small > 0, Fj (1) — 400 asu — +o00. On the other hand,
p(w) = —2exp2u —1—e* Y +2u > —2exp—1—e b

asp — Ot. There exists ao > 0 such thap(ug) = —exp(—1 — e~ 1) < 0. Thus, given a
sufficiently small. > 0, we have av > o, which is a zero o) (1). Thus, we have founa
andu > po > 0 such thay?(x1) = zo. Sincex; is independent of:, we havex; # zg, and
thenxy is a preperiodic point ofi(z).
By noting that
1

=2 ——, j=123
)Cj—l J X /

(16) x;+

andx; — 1(j = 2,3) asx — 0%, we deduce that

A
) >x et 51 =23
x]'—l

fGj) = x; eXp(u +xj+
so that
f1(x)) > xje™ - 400, j=2,3.
By applying Theorem 2.4, we obtairi(g) =C.
Since expf (z) = g(¢%), it follows from Theorem 3.1 in the next section that expy) =
J(g) =C, and thenJ ( f) must have interior points. This implieg(f) =C. O

To the best of our knowledge, this seems to be the first example of a transcendental
meromorphic function which is not of bounded type and whose Julia set coincides with the
Riemann sphere.

3. Semiconjugation of functionsin M. In order to construct some special wandering
domains in this section, and Baker domains with special properties in the next section and
for application in the proof of Theorem 2.4, we are motivated to investigate the connection
between the dynamics of two functiofigz) andg(z) in M satisfying the functional equation

7) h(f(z)) = g(h(z)),

whereh is meromorphic inC. It is the discussion of this general family that leads us
to the possibility of constructing some meromorphic function€iwith special dynamical
properties. We first want to establish a relation betwgef) andJ (g).

THEOREM 3.1. Let f, g and & satisfy (17). If J(f) = Joo(f) and either oo € E(f)
or f(o0) # oo, thenh(J(f)) = J(g) and h(F (f)) = F(g).
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PROOF. ltis clear that we only need to prove the equality (1)) = J(g).

(1) We provethat(J(f)) C J(g). Take an arbitrary poirdg € h(J(f)). There exists
awp € J(f) such thath(wg) = zo. SinceJ(f) = Joo(f), we have a sequenday} in
Joo(f) such thatwy — wo (kK — 400), and /™ (wg) € E(f). From (17), we have

(18) R z) = g (h(2)) .

Sincewy € E((f™t1(z))) = E(¢**tL(h(z))) andh is meromorphic atwy, h(wy) €
E(g™t1y ¢ J(g), and hencé(wo) € (J(g))’ = J(g). Thus we prové:(J(f)) C J(g).

(2) Now we prove that/ (g) € h(J(f)). Fromh(J(f)) C J(g) andJ(f) = Joo(f)
and by noting thak(z) is non-constant, it follows that(g) = Jo(g). Therefore, we need
only to prove that/oo(9) C A(J(f)). Take an arbitrary point € J-(g) which is not the
Picard exceptional value @f(z), and assume is at a pointb underhi(z), that is,h(b) = a.
There exists a positive integersuch thaty” (a) € E(g), and hencé is not a meromorphic
point of ¢"t1(h(2)) = h(f"*1(z)). This implies thatf"*1(b) = co orb € E(f"1).

Assume thatf"*1(b) = oco. If co ¢ E(f) andoo is not a fixed point off (z), then
¢ = f"2(b) # oo is a meromorphic point of(z) and hence ofi(f"2(z)) = ¢"2(h(z)).
This is a contradiction; ibo € E(f), we haveb € J(f) C J(f).

Therefore, we always have e Jo(f) C J(f) anda = h(b) € h(J(f)). This com-
pletes the proof of Theorem 3.1. O

From Theorem 3.1 and the result in Bergweiler [10] for entire functif andg(z),
we have the following

COROLLARY 3.1. Let f(z) and g(z) both bein M with either co € E(f) or f(o0) #
oo. Ifexp f(z) = g(e®), then we have
(19) expJ(f) =J(g9) and expF(f)=F(g).

As an immediate application of Theorem 3.1, we have the following.

THEOREM 3.2. Let f(z) and ¢g(z) both be transcendental meromor phic functionsin C
and permutable. If J(f) = Joo(f), then J(f) = J (g).

PROOF. From Theorem 3.1 it follows that 1(J (f)) = J(f), thatis,J(f) is a com-
pletely invariant closed set of, and therefore/(¢g) € J(f). FromJ(f) = Jso(f) and
fog=go f,itis easy to see that(g) = Jx(g), and so we also havg(f) € J(g). Thus
J(g) = J(). O

Since E(f) = E(g) = {oo}, another immediate approach to prove Theorem 3.2 is
available by noting the fact that

=g (0.
j=1 j=1

Next we discuss a dynamical connection between Fatou componefitarad g which
satisfy (17).
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THEOREM 3.3. Let f(z), g(z) and h(z) bein M such that (17) holds. If i(z) maps
any component of F(f) onto a hyperbolic domain, then the following hold.
(i) If £ hasnowandering domains, then ¢ has no wandering domains.
(i) 1fU isaperiodic component of F(f) for f(z),thenh(U) iscontainedinaperiodic
component V of F(g) for ¢(z), and they are of the same type, unless U is a Baker domain or
Hermanring. If U isaHerman ring, then V must be a Segel disk or Herman ring.

PROOF. Suppose thaj has a wandering domairi. Let U be a component df~1(V).
Sinceh o f"(U) = ¢"(V), form # n we haveh o f"(U) Nh o f™(U) = @, so that
f™U) N f™(U) = ¢ and, from the Montel theorend] < F(f). LetU be a component of
F(f) containingU.

Since f (z) has no wandering domaing, is periodic for f (z). We assume without any
loss of generality thall/ is invariant, thatisf(U) < U. This implies that

goh(U)=ho f(U) Ch(),

and soi(U) is invariant under(z). SinceV = h(U) € h(U), V = h(U) and soV is
invariant undel. We derive a contradiction.

From the above discussion, if is a periodic component af (1) for f(z), thenh(U)
is contained in a periodic component Bfg) for ¢(z). If a is a periodic point off (z) with
periodp, thenk(a) is also a periodic point of(z) and((f”) (a))™ = (g?) (h(a)), wherem
is the multiplicity of1(z) overa. Therefore, it is not difficult to prove (ii). a

The statement (i) in Theorem 3.3 was proved in [12] fak) and g(z) being entire.
From Theorem 3.3 and Theorem E in [4] (that if it is of finite type, then the composition
of two transcendental meromorphic functions has no wandering domains), we immediately
deduce that iff (z) and g(z) are both meromorphic functions @ and f(z) is of finite type
such thatf (¢g(z)) is of finite type, theng(f(z)) has no wandering domains, fgtz) must
map any component df( f(g)) onto a hyperbolic domain. The important significance of this
result is thatg(f(z)) may not be of finite type, not even of bounded type. Thus, from this
point of view, we easily obtain some families of meromorphic functiorS which are not of
finite type without any wandering domains. Here are two examples to describe this situation.
Let f(z) = exp(R(eP®) + kP(z)), whereR(z) is a rational function with at least one non-
zero pole,P(z) is a polynomial and is an integer. Since (z) = wkeR™ 0 ¢P@ | £(z) is of
finite type and, therefore, fronfi(z) = ¢ o (R(e”@) + kP(z)) and by using Theorem 3.3,
the non-entire meromorphic functiagt(exp P (¢*)) + k P(e*) has no wandering domains. By
a simple calculationR (exp P (e%)) + k P(e*) is not of bounded type. We can easily check that
e" o (tanz —iz) is of finite type, therefore tagt —ie® has no wandering domains. This method
was first used in Baker and Singh [6] to construct a class of transcendental entire functions
which have no wandering domains and has been developed in many other papers.

The above method applies to the construction of transcendental meromorphic functions
which have unbounded Siegel disk with a singular value on its boundary. Rippon [26] dis-
cussed the Siegel disk with singular value on its boundary and as an application of his result
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showed thatf; (z) = ¢** — 1 has a Siegel disk containing Siegel point 0 with unique as-
ymptotic value—1 on its boundary for almost all on {|A| = 1}, so that the Siegel disk is
unbounded. We take into account the functigiz) = A(e* — 1). Note that—A is a unique
asymptotic value ofj, (z). Let f(z) = ¢ — 1 andg(z) = Az. Thenfi(z) = f o g and
g9,(z) = go f. We denote the Siegel disk ¢f (z) containing 0 byU. From f o g(U) = U, it
follows thatg, (¢(U)) = ¢g(U), and sog(U) < F(g;). Let V be the component af (g, (z))
containingg(U). ThenU = fog(U) C f(V). On the other hand, singg(V) = V, we have
L) = f£(V), whichimpliesf (V) C F(f,). Since Oe f(V), we havef (V) € U and
sof(V)=U,V = gU). Thusg(U) is the Siegel disk ofj, (z) and— € d¢g(U) andg(U)

is unbounded. The result in [26] does not seem to be available for deducing the existence of
the Siegel disk ofy, (z) with —X on its boundary.

Let T'(z) be a Mobius transformation. The result in [26] also applies to the function
H.(T(2)), and sofy (T (z)) has a Siegel disk with unique asymptotic value on its boundary
for almost allx on {|»| = 1}. The same argument as in the above implies That (z)) and
AT (e* — 1) have an unbounded Siegel disk with unique asymptotic value on its boundary for
almost allx on{|A| = 1}.

By using the quasi-conformal surgery of Shishikura [28] (cf. [35]), we can construct an
unbounded Herman ring from an unbounded Siegel disk, that is, we have a transcendental
meromorphic function which has an unbounded Herman ring. However, we do not know
whether such a Herman ring has a singular value on its boundary.

Next, by the result of Rippon [26], we consider wandering domains as mentioned in the
introduction and prove the following.

THEOREM 3.4. For almost all A on {|A| = 1}, thefunction
fi)=z+e +1—r+2mi

has a wandering domain U in which all iterates f"(z) are univalent and such that every aU,
contains a critical valueand dU,, € P(f;.). Wealso have P(f:) € J(f2).

PROOF. Let g, (z) = ze*t1™* and Fy(z) = z + ¢ + 1 — A. g1(z) has a fixed point
A — 1 with multiplier A and Singgx‘l) = {0, —e*}. By the theorem of Rippon [26};.(z)
has a Siegel dis&/; containinghr — 1 with —e~* on aU, for almost allx on {|A] = 1}.
Taking a pointzp such that* + 1 — 1 = 0, we then have) (z,) = z, andF; (z,) = A,
wherez, = zo + 2nmwi, n € Z. Therefore, for almost all. on {|Ax|] = 1}, Fi(z) has a
Siegel dichA(”) containingz, andavf") C P(F,.(z)). Since expFy(z) = g,.(e%), we have
expF(F;) = F(g,) and so exp"” = U,. Noting that SingF, %) = {(2n + Lymi — A n €
Z} and exp SingFA‘l) = —e*, it follows that the critical valug2n + 1)7i — A stands
onavj”). Sincefy (z) = F,.(z) + 2xi and f5.(F;) = F,.(f»), we haveJ (f,) = J(F,) so that
AR ER AR

Since f}'(z) = F}'(z) + 2nmi and
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FI(Sing(F; ) = F(Sing(F b)) + 2ni
= f(SingF; ) = A1Sing f7Y).

we haved V" € P(Fi(z)) = P(fi(z)). Thus Theorem 3.4 follows. O

In order to construct a non-entire meromorphic function with the properties of Theo-
rem 3.4, we consider the function

h(z) =z eXp<—4Z%1 +2(1+ )\)) .

Then Singjh;l) = {0, —e?}, where 0 is an asymptotic value ahgl(z) has a fixed point

(A + 1)/ (» — 1) with multiplier 22. Since 0 is a fixed point df, (z), the immediate basin of
attraction ofh, (z) for (A + 1)/(A — 1), when O< |A| < 1, contains only one critical value

—e? and therefore is simply connected (see [36, Theorem 3]). Thus we can use the method
as in [26] for almost alk on {|1| = 1} to prove that:, (z) has a Siegel dist/;, with critical
value—e?* on its boundary. By the same argument as in the proof of Theorem 3.4, we can
deduce that, for almost allon {|1| = 1},

Z

¢ C 2L+ + 21

el —

H@=z—-4

has a wandering domaivi such that everyV, contains a critical value ang, is univalent
inv,.

In the following, we construct a meromorphic function which has a Baker domain with
a critical value on its boundary.

THEOREM 3.5. For almost all A on {|A| = 1}, the function
fa(Z) =27ia +27 — ez+l+27'”.0‘ , A= eZm’a i

has a Baker domain U in which f,(z) is univalent with critical value on dU. We also have

U = P(f1).

PROOF. Let g,(z) = Azexp(—iez), A = e2"®. A simple calculation implies that
92(0) = 0 andg,,(0) = A, and Singg; 1) = {0, e~2}, where 0 is an asymptotic value;?
is a critical value andie)~1 is a critical point ofg, (z) such thatg, ((xe) 1) = ¢~2. When
0 < |A] < 1, 0is an attracting fixed point and hence we have an immediate basin of attraction
U, of O for g4 (z). ThenU, must contain a singular value which is not (pre)periodic and hence
U,. containse™2. Thus we can use the theorem of Rippon [26] to deduce that, for almost all
1 on{|A| = 1}, g (z) has a Siegel dis¥ at 0 withe—2 on its boundary. Since exfy(z) =
9« (€%), there exists a unique componéhbf F(f,) suchthatex® = V and explU = aV.
It follows that £, (z) is univalent inU and Singf,; ) c U, thereforeP(f,) € aU. On the
other hand, fromdV C P(gy) we havedU € P(fy) and sodU = P(fy).

It is easy to see thdf does not contain any periodic points and any singular values, so
U is a Baker domain foy,. a
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In the following we consider the boundary of a wandering domain of an entire function by
constructing examples. The complexity of the boundary of an unbounded periodic component
of an entire function was revealed in [7] and [3].

THEOREM 3.6. There exists a polynomial P(z) such that f(z) = z + P(e*) hasa
wandering domain with the boundary being a quasicircle.

PrROOF We consider the dislD = B(a, 2), wherea is a sufficiently large positive
number. By Runge’s theorem in complex approximation theory, we have a polynBiaial

2(a )

Set

9(z) = ze".

Then onD, we have

19() —{a+ @ —a)?}| = 2" —{a+ (2 — a)?)|
= la + (z — a)?|lzexpl P () — logla + (z — a)?}] — 1]
< (a+H2|P(z) — logla + (z — @)%} — logz|
< 0.01,

(20)

where we have used the inequaligy — 1| < |z|/(1— |z]), |z] < 1. From (20), it is easy to
see thay(B(a, 1/2)) C B(a, 1/2) and then there exists a componé&hbdf F(g) containing
B(a, 1/2) which is an immediate attracting basin @f;) for an attracting fixed poing in
B(a, 1/2). A simple calculation deduces thatz) maps the circlg|z — a| = 3/2} into {|z —
a| > 2} and hencd/ C B(a, 3/2). We have a componeft of ¢~1(B(a, 3/2)) containing
a and certainlyV C B(a, 3/2). Sinceg(z) is analytic onB(a, 3/2), V is simply connected.
This implies thaty : V — B(a, 3/2) is a polynomial-like mapping (see [13, p. 99]). Then
there exist a polynomial(z) and a quasi-conformal mappirgsuch thaty(z) = ¢ Lo h o
¢ onV (see [13, Theorem 3.1]} (U) is an immediate attracting basin bfz) for ¢ («).
From Rouché’s theorent,(z) is of degree two and hendgp(U) is a quasicircle (see [13,
Theorem 2.1]). Thus we have thalt/ = ¢~1(d¢(U)) is also a quasicircle. Since @ U,
by the logarithmic change of variables ekfy) = g(e®), for suitablek we have a sequence
{zn} With 2,41 = z, 4+ 27i such thatfi1(z,) = zu, f{(zn) = ¢'(@) and exp, = «, where
fi(z) = 7+ P(e¥) — 2kmi. U, is the immediate attracting basin ¢f(z) for z, and hence
Uy+1 = U, +2ri and expgl/, = U and ex@U, = dU. SincedU does not go around 0/,
is a quasicircle.

Let f(2) = fi(z) + 2xi. Certainly, f(U,) = U,+1, that is,U,, is a wandering domain
of f(2). ]
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Finally, we mention that the functiatH- e* 4 27ri possesses a wandering domain which
has a complicated boundary. In fagt? has a parabolic domaivi for O containing the nega-
tive real axis(—oo, 0). From [3, Theorem 1.1], the sét is dense ir0V, where

o) = {e'; Iirrfi Y (re'?) = oo}

andyr is a Riemann map from the unit digkonto V. Thenz + e* 4+ 2ri has a wandering
domainU such that exy = V. Since Log can be separated into analytic branche® jn
we denote by logz the branch such that Ipg/ = U. Thus log o v is a Riemann map from
AontoU and so® (U) is dense irbU .

4. Conformal conjugaciesin Baker domains. We consider the holomorphic map-
ping f(z) of a hyperbolic domairV onto itself. A domainD C U is called an attracting
disk of U (under f (z)), provided thatD is simply connectedf (D) C D and it satisfies the
attracting property: given an arbitrary compact KetC U, there existsV = N(K) such that
fN(K) c D. Then(D, ¢, T, 2) is called a conformal conjugacy (¢f(z) in U) if

(A1) Disan attracting disk of/;

(A2) ¢ : U — £ is holomorphic and univalent i and 2 is the right half-plane
H ={z € C;Rez > 0} orC;

(A3) T is aMdobius transformation mappig onto itself andp (D) is an attracting disk
of £2 underT;

(A4) foranyz € U, we have

(21) ¢(f(2) =T (@) .

The function¢(z) may not be univalent ir/, but the functional equation (21) does
hold in U. The dynamics off (z) in D are equivalent to those of a Mobius transformation
T in ¢ (D). After a suitable further conjugacy with a Mébius transformation, we formulate
the conformal conjugacyD, ¢, T, §2) (if it exists) into the occurrence of the following three
cases:

(Bl) T(x)=z+1,¢:U = C,

B2) T(x)=zxi,¢:U — H;

(B3) T(z)=rz,A>1,¢:U — H.

Then the hyperbolic domaity is said to be of type I, Il or lll forf(z), if, in turn,
Cases B1, B2 or B3 take place. The holomorphic self-mappingl — U may not have
any conformal conjugacy; for example, a meromorphic functfgn) in its Herman ring
and super-attracting stable domain has no conformal conjugacy, while in the attracting stable
domain, parabolic domain or the Siegel disk, conformal conjugacy exists. We give a criterion
for the existence of conformal conjugacy by using the results of Marden and Pommerenke [23]
and Cowen [14].

THEOREM 4.1. Let f(z) beaholomorphic self-mapping of U and assume that U does
not contain any super-attracting fixed points of f(z). Then f(z) in U possesses conformal
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conjugacy if and only if, for an arbitrary closed curve y in U, there exists a positive integer
m = m(y) suchthat f/™(y) ~0inU.

Therefore, the existence of an attracting diskofor f(z) suffices to deduce the ex-
istence of conformal conjugacy. It was proved by Kdénig [21] that the Baker domain of a
transcendental meromorphic function with only finitely many poles possesses conformal con-
jugacy and an example of a Baker domain which has no conformal conjugacy was constructed.

We consider the connection between the Baker domain which has conformal conjugacy
and the singular value. The Baker domain of type | contains at least one singular value; the
Baker domains of types Il and Ill may not contain any singular values. We shall describe these
situations through examples.

By using the logarithmic change of variables, that is,d6g), we construct Baker do-

mains of types I, Il and lll which have special properties. This method was used in Her-
man [19]. To this end, we take into account the connection betyié¢enandg(z) such that
(22) expf(z) = g(e*).

By a simple calculation, we deduce thdtis a critical value ofg(z), if a is a critical value
of f(z); also, ifb is a non-zero critical point of(z), thenz, = logb + 2nxi, wheren is an
integer, is a critical point ofi(e¢*) and hence of (z), and f (z,) is a critical value off (z).

It follows from Corollary 3.1 that exg (f) = J(g) and expF(f) = F(g). Given a
componentV of F(g), we have a componeiif of F(f) such thatV = expU andoV =
expalU. From the discussion in the above paragraph, it is easy to see tliagaohtains a
critical valuea, thenV = expU contains a critical value® of ¢(z).

EXAMPLE 1. Set

1
g1(z) = 3~ exp<E - - i 1>
and

7
<

1
f1(z) =kz+log3+ = — + 2mmi,

2 -1
wherek is an integer larger than 1 amd is an integer. Therfi(z) possesses two invariant
Baker domaing/; andU> of type Ill such that

(23) dist(U1, P(f1)) > 0,
U1 is a quasi-circlef1(z) is univalent in1 andUz contains infinitely many critical values.

PrROOF The point 0 is a super-attracting fixed point @f(z). Assume that/; is the
component ofF'(¢1) containing 0. We want to prove th&t does not contain any non-zero
critical points. From the equation

/ _ 2 k-1 1‘_ < <
91(z) =3z exp<2 - 1) [k+ - 1)2}

we solve the two critical points afi(z),

2k —1xiv4k -1
2k '

i12=
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We can check thgts 2| = 1. Sincew = 1/2 — z/(z — 1) conformally maps the unit circle
{|z] = 1} onto the imaginary axis = 0, g1(z) maps the unit circl¢|z| = 1} into the circle
{|z] = 3}, and itis clear that the unit circlgz| = 1} cannot intersect the boundary ¥f.

The Mobius transformatio (z) = 1/2 — z/(z — 1) keeps the real axis invariant. For
any positive numbeR > 3, M(z) maps the circlg|z| = R} onto one circle which goes
through the pointg = 1/2— R/(R — 1) andz = 1/2 — R/(R + 1) orthogonal to the real
axis. By notingthat 12— R/(R — 1) > —1, we have

lg1(z)| > 3R*e™t > R, on |z| =R,

and hencef1({|z|] > 3}) C {|z| > 3}. Itis easy to see thab is also a super-attracting fixed
point of g1(z) and{|z| > 3} is contained in an invariant attracting compon&ptof F(g1)
of co. Thus, ¢f(z1,2) — oo (n — 00), and distV1, P(g1)) > 0. We can prove that the
boundaryd V1 is a quasi-circle.

There exists a unique invariant componéntof F(f1) such that exy; = V1. Itis
obvious thatl/; is an invariant Baker domain ofy(z) of type Il such that (23) holds and
oUy = LogaVs. SincelU1 is simply connected and does not contain any singularities of the
inverseffl, it is easy to see that () is univalent inU;.

There exists a unique invariant componéhtof F(f1) such that exp/ = V». Cer-
tainly, Uz is an invariant Baker domain ofi (z) of type Ill containing infinitely many critical
values. a

An entire function was constructed in [9] to have a Baker domain such that (23) holds.
EXAMPLE 2. Set
2ria 1
g(2) =T zexplz+ —— +1
z—1
and

. 1
(o) =2nia+1+z+e+ ——,
et —1
whereqa is an irrational number satisfying the condition of Siegel type. THigia) has an
invariant Baker domai/ of type Il in which f>(z) is univalentandU C P(f2).

PROOF. By a simple calculation, 0 is a Siegel fixed pointgafz). Then there exists a
Siegel diskV of g2(z) containing 0. Note thaj»(z) is univalent invV and

(24) AV C P(g2).

There exists a unique invariant componéhbf F(f2) such that exy = V. It is obvious
thatU is an invariant Baker domain of2(z) of type Il. For any two pointg; andzz in U
such thatfa(z1) = f2(z2), from expf2(z) = go2(e*) we havee®l = e%2, S0z1 = 72 + 2mmi.
Therefore, using2(z1) = f2(z2) implieszy = zp, that is, f2(z) is univalent inU. From (24),
aU C P(f2). O
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EXAMPLE 3. Set

) 2 — -1
g3(z) = e eXp(Z ¢ % >

22-1 z2-2)

and

2—¢€* 28 —1

200 —1 (2—¢t)

By choosing an appropriate g3(z) has a Herman ring which contains the unit circumference
and f3(z) has an invariant Baker domaln of type Il containing the imaginary axis, whose
boundary consists of two componentsdrand in whichfz(z) is univalent andU C P(f3).

f3(z) = 2ia + 7 + €°

PROOF. By a simple calculationgs(z) maps the unit circumference onto itself and
argga(e’®) = 2mia + 6 + 2sinarg2 — ¢'%)) (mod 27). From the result of Yoccoz [30],
for an appropriate, ¢3(z) is analytically conjugate in a neighbourho®df the unit circum-
ference to a rotation — e?7#z, whereg is the rotation number ofs(z) depending on.
Thus, g3(z) has a Herman rindg which contains the unit circumference adid C P(g3).
From expf3(z) = g3(e®), we can deduce thagt(z) possesses the desired properties. O

In the Baker domairU in Examples 2 and 3, we take a poinand f;(a) (j = 2,3)
and draw a simple curve connecting: and f;(a) in U. We have an analytic branch gf 1
which mapsU onto itself, which we still denote by —1. Set

o0
r=J rw.
Jj=—00

ThenI" goes forward to infinity on two sides. In Examplel2does not separate the boundary
of U, while in Example 3 it does.

We do not give here an example of a Baker domain of type Il which contains singular
values or such that (23) holds.

EXAMPLE 4. Set
z—1
94(z) =z exp(z +—+ 1)

z+1
and
et —1
=1 < .
fa(2) +z+e +e2+1

Then f4(z) has an infinite number of invariant Baker domains of type | containing at least one
critical value.

PrROOF. Obviously, g4(0) = 0 andg,(0) = 1. There exists a parabolic domalihof
g4(z) for O containing at least one critical valueg@f(z). From (22), we can deduce thfi(z)
possesses an infinite number of invariant Baker doméjnef type | such that exp, = V
(n=0,+1,+2,...). O

Finally, we mention that by using the logarithmic change of variables, we can construct
some transcendental meromorphic functions which have wandering domains. We can prove
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that 2nwi + fa(z) and 2nwi + z + €* + 1/(e* — 1) + 1, m # 0, have wandering domains
which contain critical values. As Baker did in [2], we can prove thatr2 + z + K?2(¢%),

m # 0, has an infinity of different families of wandering domainskKifz) is a meromorphic
function with infinitely many zeros.
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