On the co-ordinated g-convex dominated functions

M. Emin Özdemir", Alper Ekinci and Ahmet Ocak Akdemir ${ }^{\star}$

■ Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Erzurum, Turkey

* Ağrı Ibrahim Çeçen University, Faculty of Science and Letters, Department of Mathematics, 04100 Ağri, Turkey

E-mail: emos@atauni.edu.tr, alperekinci@hotmail.com, ahmetakdemir@agri.edu.tr

Abstract

In this study, we define g-convex dominated functions on the co-ordinates and prove some Hadamard-type, Fejer-type inequalities for this new class of functions. We also give some results related to the functional H.

2010 Mathematics Subject Classification. 26 D15.
Keywords. g-convex dominated functions, co-ordinates, Hadamard Inequality..

1 Introduction

A function $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex function on I if the inequality

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

holds for all $x, y \in I$ and $t \in[0,1]$. The classical Hermite-Hadamard inequality gives us an estimate of the mean value of a convex function $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ which is well-known in the literature as following;

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

In [8], Dragomir defined convex functions on the co-ordinates as following;
Definition 1.1. Let us consider the bidimensional interval $\Delta=[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$, $c<d$. A function $f: \Delta \rightarrow \mathbb{R}$ will be called convex on the co-ordinates if the partial mappings $f_{y}:[a, b] \rightarrow \mathbb{R}, f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathbb{R}, f_{x}(v)=f(x, v)$ are convex where defined for all $y \in[c, d]$ and $x \in[a, b]$. Recall that the mapping $f: \Delta \rightarrow \mathbb{R}$ is convex on Δ if the following inequality holds,

$$
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \lambda f(x, y)+(1-\lambda) f(z, w)
$$

for all $(x, y),(z, w) \in \Delta$ and $\lambda \in[0,1]$.
Every convex function is co-ordinated convex but the converse is not generally true.
In [8], Dragomir established the following inequalities of Hadamard's type for co-ordinated convex functions on a rectangle from the plane \mathbb{R}^{2}.

Theorem 1.2. Suppose that $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is convex on the co-ordinates on Δ. Then one has the inequalities;

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right] \\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y \\
\leq & \frac{1}{4}\left[\frac{1}{(b-a)} \int_{a}^{b} f(x, c) d x+\frac{1}{(b-a)} \int_{a}^{b} f(x, d) d x\right. \\
& \left.+\frac{1}{(d-c)} \int_{c}^{d} f(a, y) d y+\frac{1}{(d-c)} \int_{c}^{d} f(b, y) d y\right] \\
\leq & \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}
\end{aligned}
$$

The above inequalities are sharp.
In [11], Alomari and Darus proved following inequalities of Fejer-type for co-ordinated convex functions.

Theorem 1.3. Let $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$ be a co-ordinated convex function. Then the following double inequality holds:

$$
\begin{align*}
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) & \leq \frac{\int_{a}^{b} \int_{c}^{d} f(x, y) p(x, y) d y d x}{\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x} \tag{1.1}\\
& \leq \frac{f(a, c)+f(c, d)+f(b, c)+f(b, d)}{4}
\end{align*}
$$

where $p:[a, b] \times[c, d] \rightarrow \mathbb{R}$ is positive, integrable and symmetric about $x=\frac{a+b}{2}$ and $y=\frac{c+d}{2}$. The above inequalities are sharp.

In [2], Dragomir et al. defined g-convex dominated functions and gave some results related to this functions as following;

Definition 1.4. Let $g: I \rightarrow \mathbb{R}$ be a given convex function on the interval I from \mathbb{R}. The real function $f: I \rightarrow \mathbb{R}$ is called g-convex dominated on I if the following condition is satisfied:

$$
\begin{aligned}
& |\lambda f(x)+(1-\lambda) f(y)-f(\lambda x+(1-\lambda) y)| \\
\leq & \lambda g(x)+(1-\lambda) g(y)-g(\lambda x+(1-\lambda) y)
\end{aligned}
$$

for all $x, y \in I$ and $\lambda \in[0,1]$. For related Theorems and classes see: [5]-[6]-[7].

Theorem 1.5. Let $g: I \rightarrow \mathbb{R}$ be a convex function on I and $f: I \rightarrow \mathbb{R}$. The following statements are equivalent:
(i) f is g-convex dominated on I;
(ii) The mappings $g-f$ and $g+f$ are convex on I;
(iii) There exist two convex mappings h, k defined on I such that

$$
f=\frac{1}{2}(h-k) \text { and } g=\frac{1}{2}(h+k) .
$$

In [8], Dragomir considered a mapping which closely connected with above inequalities and established main properties of this mapping as following:

Now, for a mapping $f: \Delta:=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is convex on the co-ordinates on Δ, we can define the mapping $H:[0,1]^{2} \rightarrow \mathbb{R}$,

$$
H(t, s):=\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(t x+(1-t) \frac{a+b}{2}, s y+(1-s) \frac{c+d}{2}\right) d x d y
$$

Theorem 1.6. [See [8]] Suppose that $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is convex on the co-ordinates on $\Delta=$ $[a, b] \times[c, d]$. Then:
(i) The mapping H is convex on the co-ordinates on $[0,1]^{2}$.
(ii) We have the bounds

$$
\begin{gathered}
\sup _{(t, s) \in[0,1]^{2}} H(t, s)=\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y=H(1,1) \\
\inf _{(t, s) \in[0,1]^{2}} H(t, s)=f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)=H(0,0)
\end{gathered}
$$

(iii) The mapping H is monotonic nondecreasing on the co-ordinates.

In this study, we define g - convex dominated functions on Δ on the co-ordinates and establish some inequalities of Hadamard-type and Fejer-type for this class of functions. We also give some results for the functional H.

2 Main results

We will start with the following definition.
Definition 2.1. Let $\Delta=[a, b] \times[c, d]$ and $g: \Delta \rightarrow \mathbb{R}$ be a convex function. The real function $f: \Delta \rightarrow \mathbb{R}$ is called a $g-$ convex dominated function on Δ if

$$
\begin{aligned}
& |\lambda f(x, y)+(1-\lambda) f(z, w)-f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w)| \\
\leq & \lambda g(x, y)+(1-\lambda) g(z, w)-g(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w)
\end{aligned}
$$

for all $\lambda \in[0,1]$ and $(x, y),(z, w) \in \Delta$.

Definition 2.2. Suppose that $g: \Delta \rightarrow \mathbb{R}$ be a convex function. A function $f: \Delta \rightarrow \mathbb{R}$ is called g-convex dominated on co-ordinates if the partial mappings $f_{x}:[c, d] \rightarrow \mathbb{R}, f_{x}(u):=f(x, v)$ is $g_{x}-$ convex dominated on $[c, d]$ and $f_{y}:[a, b] \rightarrow \mathbb{R}, f_{y}(w):=f(w, y)$ is g_{y} - convex dominated on $[a, b]$ where $g_{x}:[c, d] \rightarrow \mathbb{R}, g_{x}(u):=g(x, u)$ and $g_{y}:[a, b] \rightarrow \mathbb{R}, g_{y}(w):=g(w, y)$.
Lemma 2.3. Let $g: \Delta \rightarrow \mathbb{R}$ be a convex function. Every g-convex dominated mapping on Δ is g-convex dominated on the co-ordinates but the converse may not be necessarily true.
Proof. Suppose that $f: \Delta \rightarrow \mathbb{R}$ is g-convex dominated on Δ. Consider $f_{x}:[c, d] \rightarrow \mathbb{R}, f_{x}(u):=$ $f(x, u)$ and $g_{x}:[c, d] \rightarrow \mathbb{R}, g_{x}(u):=g(x, u)$. Then for all $\lambda \in[0,1]$ and $u, w \in[c, d]$, we have

$$
\begin{aligned}
& |\lambda f(x, u)+(1-\lambda) f(y, w)-f(\lambda x+(1-\lambda) x, \lambda u+(1-\lambda) w)| \\
\leq \quad & \lambda g(x, u)+(1-\lambda) g(y, w)-g(\lambda x+(1-\lambda) x, \lambda u+(1-\lambda) w)
\end{aligned}
$$

then we can write

$$
\begin{align*}
& =|\lambda f(x, u)+(1-\lambda) f(y, w)-f(x, \lambda u+(1-\lambda) w)| \tag{2.1}\\
& \leq \lambda g(x, u)+(1-\lambda) g(y, w)-g(x, \lambda u+(1-\lambda) w)
\end{align*}
$$

it follows that

$$
\begin{align*}
& \left|\lambda f_{x}(u)+(1-\lambda) f_{x}(w)-f_{x}(\lambda u+(1-\lambda) w)\right| \tag{2.2}\\
\leq & \lambda g_{x}(u)+(1-\lambda) g_{x}(w)-g_{x}(\lambda u+(1-\lambda) w) .
\end{align*}
$$

We can show that this results also hold for f_{y}. This completes the proof. Now consider the mappings $g_{0}(x, y)=x+y$ and $f_{0}(x, y)=x y$ where $\Delta:=[0,1] \times[0,1] . g_{0}$ is convex on Δ and f_{0} is $g_{0}-$ convex dominated on the co-ordinates but it can be easily seen that the mapping f_{0} is not g_{0} - convex dominated on Δ.

Lemma 2.4. Let g be a convex function on Δ and $f: \Delta \rightarrow \mathbb{R}$. If f is g-convex dominated on the co-ordinates, the mappings $g-f$ and $g+f$ are convex on the co-ordinates.
Proof. From the fact that f_{x} is g_{x}-convex dominated we have

$$
\begin{aligned}
& \left|\lambda g_{x}(u)+(1-\lambda) g_{x}(w)-g_{x}(\lambda u+(1-\lambda) w)\right| \\
\leq \quad & \lambda f_{x}(u)+(1-\lambda) f_{x}(w)-f_{x}(\lambda u+(1-\lambda) w) .
\end{aligned}
$$

From Lemma 1, we have $(g-f)_{x}$ and $(g+f)_{x}$ are convex on the co-ordinates for all $\lambda \in[0,1]$ and $u, w \in[c, d]$. Similarly we can show that $(g-f)_{y}$ and $(g+f)_{y}$ are also convex on the co-ordinates. This completes proof.

Theorem 2.5. Let $g: \Delta=[a, b] \times[c, d] \rightarrow R$ be a co-ordinated convex mapping on Δ and $f: \Delta=[a, b] \times[c, d] \rightarrow R$ is a co-ordinated g-convex-dominated mapping, where $a<b$ and $c<d$. Then, one has the inequalities:

$$
\begin{aligned}
& \left|\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right| \\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} g(x, y) d y d x-g\left(\frac{a+b}{2}, \frac{c+d}{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x\right| \\
\leq & \frac{g(a, c)+g(a, d)+g(b, c)+g(b, d)}{4}-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} g(x, y) d y d x .
\end{aligned}
$$

Proof. From Lemma 2, we can write

$$
\begin{aligned}
& \left|\frac{f(x, y)+f(z, w)}{2}-f\left(\frac{x+z}{2}, \frac{y+w}{2}\right)\right| \\
\leq & \frac{g(x, y)+g(z, w)}{2}-g\left(\frac{x+z}{2}, \frac{y+w}{2}\right)
\end{aligned}
$$

for all $(x, y),(z, w) \in \Delta$. Set $x=t a+(1-t) b, z=(1-t) a+t b, y=t c+(1-t) d$ and $w=(1-t) c+t d$ for all $t, s \in[0,1]$. Then we get

$$
\begin{aligned}
& \left|\frac{f(t a+(1-t) b, t c+(1-t) d)+f((1-t) a+t b,(1-t) c+t d)}{2}-f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right| \\
\leq & \frac{g(t a+(1-t) b, t c+(1-t) d)+g((1-t) a+t b,(1-t) c+t d)}{2}-g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) .
\end{aligned}
$$

By integrating with respect to t over $[0,1]^{2}$, we obtain the desired result.

$$
\begin{aligned}
& \left\lvert\, \frac{\int_{0}^{1} \int_{0}^{1} f(t a+(1-t) b, t c+(1-t) d) d t d s}{2}\right. \\
& \left.+\frac{\int_{0}^{1} \int_{0}^{1} f((1-t) a+t b,(1-s) c+s d) d t d s}{2}-f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \right\rvert\, \\
& \leq \quad \frac{\int_{0}^{1} \int_{0}^{1} g(t a+(1-t) b, s c+(1-s) d) d t d s}{2} \\
& \quad+\frac{\int_{0}^{1} \int_{0}^{1} g((1-t) a+t b,(1-s) c+s d) d t d s}{2} .-g\left(\frac{a+b}{2}, \frac{c+d}{2}\right)
\end{aligned}
$$

Which completes the proof of the first inequality. From the definition of g-convex-dominated
functions, we can write

$$
\begin{aligned}
& \mid t s f(a, c)+t(1-s) f(a, d)+s(1-t) f(b, c) \\
\quad & +(1-t)(1-s) f(b, d)-f(t a+(1-t) b, s c+(1-s) d) \mid \\
\leq \quad & t s g(a, c)+t(1-s) g(a, d)+s(1-t) g(b, c) \\
& +(1-t)(1-s) g(b, d)-g(t a+(1-t) b, s c+(1-s) d) .
\end{aligned}
$$

By integrating with respect to t over $[0,1]^{2}$, we obtain

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x\right| \\
\leq & \frac{g(a, c)+g(a, d)+g(b, c)+g(b, d)}{4}-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} g(x, y) d y d x
\end{aligned}
$$

Which completes the proof.
We will prove some properties of the mapping H in the following theorem.
Theorem 2.6. Let $g: \Delta=[a, b] \times[c, d] \rightarrow R$ be a co-ordinated convex mapping on Δ and $f: \Delta=[a, b] \times[c, d] \rightarrow R$ is a co-ordinated g-convex-dominated mapping, where $a<b$ and $c<d$. Then:
(i) H_{f} is H_{g}-convex dominated on $[0,1]$.
(ii) One has the inequalities

$$
\begin{equation*}
0 \leq\left|H_{f}\left(t_{2}, s_{2}\right)-H_{f}\left(t_{1}, s_{1}\right)\right| \leq H_{g}\left(t_{2}, s_{2}\right)-H_{g}\left(t_{1}, s_{1}\right) \tag{2.3}
\end{equation*}
$$

for all $0 \leq t_{2}<t_{1} \leq 1$ and $0 \leq s_{2}<s_{1} \leq 1$.
(iii) One has the inequalities

$$
\left|f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)-H_{f}(t, s)\right| \leq H_{g}(t, s)-g\left(\frac{a+b}{2}, \frac{c+d}{2}\right)
$$

and

$$
\begin{aligned}
& \left|\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-H_{f}(t, s)\right| \\
\leq & H_{g}(t, s)-\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} g(x, y) d y d x
\end{aligned}
$$

for all $t, s \in[0,1]$.

Proof. (i) Since f is co-ordinated g-convex-dominated mapping on Δ, we know that from Lemma $2, g-f$ and $g+f$ are also convex on Δ. By using the linearity of the mapping $f \rightarrow H_{f}$, we can write $H_{g-f}=H_{g}-H_{f}$ and $H_{g+f}=H_{g}+H_{f}$. Then, it is easy to see that H_{f} is H_{g}-convex dominated on $[0,1]$.
(ii) By Theorem 4, the mappings H_{g-f} and H_{g+f} are monotonic nondecreasing on the coordinates. So, we have

$$
H_{g}\left(t_{1}, s_{1}\right)-H_{f}\left(t_{1}, s_{1}\right)=H_{g-f}\left(t_{1}, s_{1}\right) \leq H_{g-f}\left(t_{2}, s_{2}\right)=H_{g}\left(t_{2}, s_{2}\right)-H_{f}\left(t_{2}, s_{2}\right)
$$

and

$$
H_{g}\left(t_{1}, s_{1}\right)+H_{f}\left(t_{1}, s_{1}\right)=H_{g+f}\left(t_{1}, s_{1}\right) \leq H_{g+f}\left(t_{2}, s_{2}\right)=H_{g}\left(t_{2}, s_{2}\right)+H_{f}\left(t_{2}, s_{2}\right)
$$

Then, we obtain

$$
H_{f}\left(t_{2}, s_{2}\right)-H_{f}\left(t_{1}, s_{1}\right) \leq H_{g}\left(t_{2}, s_{2}\right)-H_{g}\left(t_{1}, s_{1}\right)
$$

and

$$
H_{f}\left(t_{1}, s_{1}\right)-H_{f}\left(t_{2}, s_{2}\right) \leq H_{g}\left(t_{2}, s_{2}\right)-H_{g}\left(t_{1}, s_{1}\right)
$$

Which is the desired result.
(iii) If we choose $t=s=0$ in (2.3), we have the first inequality and by a similar argument if we choose $t=s=1$, we obtain the second inequality.

We will establish inequalities of Fejer-type for g-convex dominated function on the co-ordinates in the following theorem.

Theorem 2.7. Let $g: \Delta \rightarrow \mathbb{R}$ be a convex function on the co-ordinates and $f: \Delta \rightarrow \mathbb{R}$ be a g-convex dominated function on the co-ordinates where $\Delta:=[a, b] \times[c, d]$. Then the following inequalities hold:

$$
\begin{aligned}
& \left|f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)-\frac{\int_{a}^{b} \int_{c}^{d} f(x, y) p(x, y) d y d x}{\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x}\right| \\
& \leq g\left(\frac{a+b}{2}, \frac{c+d}{2}\right)-\frac{\int_{a}^{b} \int_{c}^{d} g(x, y) p(x, y) d y d x}{\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(c, d)+f(b, c)+f(b, d)}{4}-\frac{\int_{a}^{b} \int_{c}^{d} f(x, y) p(x, y) d y d x}{\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x}\right| \\
& \leq \frac{g(a, c)+g(c, d)+g(b, c)+g(b, d)}{4}-\frac{\int_{a}^{b} \int_{c}^{d} g(x, y) p(x, y) d y d x}{\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x}
\end{aligned}
$$

where $p:[a, b] \times[c, d] \rightarrow \mathbb{R}$ is positive, integrable and symmetric about $x=\frac{a+b}{2}$ and $y=\frac{c+d}{2}$.
Proof. Since f is g-convex dominated on the co-ordinates, from Lemma 2, the mappings $f+g$ and $g-f$ are convex on the coordinates. By using Theorem 2, we have:

$$
(f+g)\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{\int_{a}^{b} \int_{c}^{d}(f+g)(x, y) p(x, y) d y d x}{\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x}
$$

and

$$
\begin{aligned}
& \frac{\int_{a}^{b} \int_{c}^{d}(f+g)(x, y) p(x, y) d y d x}{\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x} \\
\leq & \frac{(f+g)(a, c)+(f+g)(c, d)+(f+g)(b, c)+(f+g)(b, d)}{4}
\end{aligned}
$$

If we re-arrange these inequalities, we obtain:

$$
\begin{aligned}
& \int_{a}^{b} \int_{c}^{d} g(x, y) p(x, y) d y d x-g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)-\frac{\int_{a}^{b} \int_{c}^{d} f(x, y) p(x, y) d y d x}{\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x} \\
\leq & g\left(\frac{a+b}{2}, \frac{c+d}{2}\right)-\frac{\int_{a}^{b} \int_{c}^{d} g(x, y) p(x, y) d y d x}{\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\int_{a}^{b} \int_{c}^{d} g(x, y) p(x, y) d y d x}{\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x}-\frac{g(a, c)+g(c, d)+g(b, c)+g(b, d)}{4} \\
\leq & \frac{f(a, c)+f(c, d)+f(b, c)+f(b, d)}{4}-\frac{\int_{a}^{b} \int_{c}^{d} f(x, y) p(x, y) d y d x}{\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x} \\
\leq & \frac{g(a, c)+g(c, d)+g(b, c)+g(b, d)}{4}-\frac{\int_{a}^{b} \int_{c}^{d} g(x, y) p(x, y) d y d x}{\int_{a}^{b} \int_{c}^{d} p(x, y) d y d x} .
\end{aligned}
$$

Which completes the proof.

References

[1] S.S. Dragomir and N.M. Ionescu, On some inequalities for convex-dominated functions, Anal. Num. Thĕor. Approx., 19, (1990), 21-28.
[2] S.S. Dragomir, C.E.M. Pearce and J. Pečarić, Means, g-convex dominated functions \mathcal{E} Hadamard-type inequalities, Tamsui Oxford Journal of Mathematical Sciences, 18 (2), (2002), 161-173.
[3] M.Z. Sarıkaya, E. Set, M.E. Özdemir and S.S. Dragomir, New Some Hadamard's type inequalities for co-ordinated convex functions, Tamsui Oxford Journal of Information and Mathematical Sciences, 28(2) (2012).
[4] M.E. Özdemir, E. Set, M.Z. Sarıkaya, Some new Hadamard's type inequalities for co-ordinated m-convex and (α, m) - convex functions, Hacattepe Journal Of Mathematics And Statistics, 40(2), 219-229.
[5] M.E. Ozdemir, M. Gürbüz and H. Kavurmacı, Hermite-Hadamard type inequalities for (g, ϕ_{h}) convex dominated functions, Journal of Inequalities and Applications, 2013-184.
[6] M.E. Ozdemir, M. Tunç and H. Kavurmacı, Two new different kinds of convex dominated functions and inequalities via Hermite-Hadamard type, arXiv:1202.2054v1 [math.CA] 9 Feb 2012.
[7] M.E. Ozdemir, H. Kavurmacı and M. Tunç, Hermite-Hadamard-type inequalities for new different kinds of convex functions, arXiv:1202.2054 (2012)
[8] S.S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics, 5 (2001), no. 4, 775-788.
[9] S.S. Dragomir, A mapping in connection to Hadamard's inequality, An Ostro. Akad. Wiss. Math. -Natur (Wien) 128 (1991), 17-20. MR 93h: 26032.
[10] S.S. Dragomir, Two mappings in connection to Hadamard's inequality, J. Math. Anal, Appl. 167 (1992), 49-56.
[11] M. Alomari and M. Darus, Fejer inequality for double integrals, Facta Universitatis, Ser. Math. Inform., 24 (2009), 15-28.

