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Abstract

In this paper some new inequalities are proved related to left hand side of Hermite-Hadamard
inequality for the classes of functions whose derivatives of absolute values are («, m)—convex.
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1 Intruduction

The classical Hermite-Hadamard inequality gives us an estimate of the mean value of a convex
function f : I C R — R which is well-known in the literature as following;

(5Y) < 5t f s < 20510

The concept of m—convexity has been introduced by Toader in [5], as following:

Definition 1.1. The function f : [0,b] — R, b > 0, is said to be m—convex, where m € [0,1], if
we have

flz+m 1 =t)y) <tf(z)+m1—1)f(y)
for all 2,y € [0,b] and t € [0, 1]. We say that f is m—concave if —f is m—convex.

For recent results based on m—convexity see the papers [2], [3], [4], [5], [6], [7], [8], [9], [10] and
[11].
In [12], Mihesan gave definition of (a, m)—convexity as following;

Definition 1.2. The function f : [0,b] — R, b > 0 is said to be (a, m)—convex, where (a,m) €
[0,1])2, if we have

flte +m(1—t)y) < t*f(x) +m(l —t%) f(y)
for all z,y € [0,b] and ¢t € [0,1].

Denote by K2 (b) the class of all (a, m)—convex functions on [0, b] for which f(0) < 0. If we
choose (a,m) = (1,m), it can be easily seen that («, m)—convexity reduces to m—convexity and
for (a,m) = (1,1), we have ordinary convex functions on [0, b]. For the recent results based on the
above definition see the papers [2], [3], [10], [13], [14], and [15].

Recently, in [15], Ozdemir et al. proved the following inequalities for («, m)—convex functions;
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Theorem 1.3. Let f : I C [0,b*] — R be a differentiable mapping on I° such that f” € L[a,b],
where a,b € I with a < b, b* > 0. If | f”|? is (a, m)—convex on [a, b] for (o, m) € [0, 1}2, q > 1, then
the following inequality holds;

mb
f(a) + f (mb) 1
2 C mb—a /f(x)dx

< )

<[ g i 0 (5~ )]

Theorem 1.4. Let f : I C [0,b*] — R be a differentiable mapping on I° such that f” € Lla, b],
where a,b € I with a < b, b* > 0. If |f”|? is (o, m)—convex on [a, b] for (a,m) € [0, 1}2, q > 1, then
the following inequality holds;

mb
f@+fmb) 1
2  mb—a /f(z)dx
(mb—a® (TA+D)\" [, 0 1 Lol o \TH
< (mo <r(;+p)> @ i or (;25)]

Theorem 1.5. Let f : I C [0,b*] — R be a differentiable mapping on I° such that f” € Lla, b],
where a,b € I with a < b, b* > 0. If | f”'|* is (v, m)—convex on [a, b] for (a,m) € [0,1]%, ¢ > 1 with
% + % =1, then the following inequality holds;

f<a>+2f<mb>_mbl_jbf(x)dxg<mb;a>2{f~<a)|q[< L)Lt i)

atq+l) latqg+1)
wmiron [ () Y )

The main aim of this paper is to prove some new Hadamard-type inequalities for functions
whose derivatives of absolute values are (a, m)—convex functions.

2 Main results

To prove our main results, we use following Lemma which was used by Alomari et al. (see [1]).

Lemma 2.1. Let f: I C R — R, be a differentiable mapping on I where a,b € I, with a < b. Let
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f" € Lla,b], then the following equality holds;

f<a+b>
_ b;“ [/ltf (a;b—i—(l—t) )dt+/1 t—1)f (tb—i—(l—t) ;b>dt].

0

Theorem 2.2. Let f : I C [0,b*] — R be a differentiable mapping on I° such that f’ € Lla, b],
where a,b € I with a < b, b* > 0. If |f'| is (a, m)—convex on [a, ] for (o, m) € [0, 1] x (0, 1], then
the following inequality holds;

() b_la/bf(x)dx < 2 i (1, 12) o)
where )
o=l ()l G
e O s (21
and
Wo = I+ gy '(azj)‘

1
Tt )@t

()i

()

Proof. From Lemma 1 and by using the properties of modulus, we can write

(2.2)
f <a+b>
1
< b;a[/ ff@a;b as )\m (tbﬂl_w@b)\ﬁ].
0
Since |f'| is (a,m)—convex on [a,b], we know that for any ¢ € [0,1] and (o, m) € [0,1]%;
f’(ta;_b—k(l—t)a) <o f’(a;—b)‘—km(l—ta) (&) (2.3)
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s (a;?;b) ’ : (2.4)

By the inequalities (2.3) and (2.4), rewriting the inequality (2.2), we obtain;

f<a+b>
< b4a[j}<ﬁ_f<a;b>%7nat%,ﬂ(%)Ddt
/(5

By calculating the above integrals, we get the following inequality;

and

f(tb+(1—t) ;b)\smf%b)umu—ta)

+0/ (-1 (ta|f'(b)|+m<1t“>

(2.5)
f<a+b>
= b;a{a—lm /(a;b)‘+2(giz) 7 (0]
ermern O e (el
Analogously, we obtain
(2.6)

)
b;a{a+2|f<>| st 1 ()
(04+1)1(a+2) f/<a;b> +m(02[(21+)(16;(+a?+)2)2

_|_

b
! J—
r ()}
Corollary 2.3. If we choose « =m =1 in (2.1), we obtain the inequality;

(%)

Which completes the proof. i

K}
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,(a+b
2
,(a+0b
(7))

Theorem 2.4. Let f : I C [0,b*] — R be a differentiable mapping on I° such that f’ € L[a,b],

where a,b € I with a < b, b* > 0. If \f’\l’%l is (a, m)—convex on [a, b] for (or,m) € [0,1] x (0,1] and
p > 1, then the following inequality holds;

)+

1,1
where5+5_land

+2

i, - (@)l ; /" ()]

and
Ko = |f" (@)l +[f" ()] +

/f — 27 wmin{Z, Zo} (2.7)
Ap+1)»

2 = (il () +n G- m) P )
(e (5) q*’”(;‘(wll)(aw)) 7 (w) )
2 = (i@ en(3- ) ()
1 1

H(ama O (- emers)

Proof. By a similar argument to the proof of Theorem 4, we have

f<a+b> _a/f
f’<ta;rb (1-1) )‘dH—/I

(2.8)

IN
>
|
IS
| — |
O\H

<tb+(1—t) ;b)‘dt].
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By using the well-known Holder integral inequality to the inequality (2.8), we get

b
f<a—21-b) _bia/f(x)dx

7 (ta;b—&—(l—t)a)

) 1 1

—a

< tPdt

< ) S
0 0

Q=

Since |f’|# is (e, m)—convex on [a,b] , we know that for any ¢ € [0,1] and (a,m) € [0, 1]

f’(ta+b+(1—t)a> f’<a;b>‘+m(1—ta) f’(%)‘

2
,(a+Dd
()l

<t°

and

f (tb+(1—t)6l;b>‘ <t|f (b)) +m (1 —t%)

Therefore, we obtain the inequality;

b
f<a—2|—b> _bia/f(x)dx
1
(a+2

+((o¢—|—l)(a—|—2)

b—a
A(p+1)r

2 .
)
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By a similar argument, we obtain the following inequality;

)+

b—a
4(p+1)»

(2.10)

<

1

,(a+Db\|"\ "

2m
L (a+Db\|? v

2m '
Corollary 2.5. Under the assumptions of Theorem 5, if we choose a = m = 1, we obtain the
inequality;

a+b
(%) -+

1,1 _
Whereg—&—g—land

1., 11
(a+2v(®|+m<2_a+2)

H(amers O (3 ermers)

From the inequalities (2.9)-(2.10), we obtain the inequality (2.7). 1I

1
—a (é) ' min{Ll,Lg}

p+D%

,(a+b\|* 1, /a a\ 7
L1< <2>+2f(m))

Gl () G
no= (sl (50)])

1
1., .4 ,(a+b\|"\ ¢
= b
(zlrorr (5
Corollary 2.6. Let f : I C [0,b*] — R be a differentiable mapping on I° such that f’ € Lla,b],

where a,b € I with a < b, b* > 0. If \f’\l’pf1 is (a, m)—convex on [a, b] for (or,m) € [0,1] x (0,1] and
p > 1, then the following inequality holds;

2+

b—
min {7}, Z}} < 7601 min {7, Zs} .

4p+1)7 4(p+1)r
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1,1
where;%—;—land
g 1 ,(a+b\]|
! a+1 2
1

+m<§‘<a+1>

(5-7+2)
ml=—- ——
2 a+2
Y
!
490
1 P ma

<a+2f<)| (a+1)(a+2)|f ®)] +oz7+1

Z1 and Z5 as in Theorem 5.

(a+2))

Zh =

1
Q>q

,(a+Db
(%)

Proof. Here 0 < % < 1, for ¢ > 1. By using the fact that;

Zn:aler <Za +ZbT
i=1

for 0 <r <1, ay,azs,....,a, >0 and by, ba,...,b, > 0, from the inequality (2.7), if we set
,(a+b\]| 11 , (g)
( 2 > Tl a2 1 G

() G- wrmers)

1
a—+2

q

()

ayr =

and
1

(a+1)(a+2)

we obtain the inequality;

by =

)

(2.11)
f<a+b)
b—a 1 ,(a+b\|? 1 1 Sl aN|e
= A(p+1)7 (a—|—1 ( 2 ) +m<2_a—|—2> f(m)‘
1 1 BN\
(3 ermes) | (+)])
analogously, we obtain
(2.12)




Hadamard-type inequalities 69

,(a+Db\|?
(%)
,(a+b\|?

(")

Theorem 2.7. Let f : I C [0,b*] — R be a differentiable mapping on I° such that f’ € La, b],
where a,b € I with a < b, b* > 0. If | f'|? is (a, m)—convex on [a, b] for (a,m) € [0,1] x (0,1] and
p > 1, then the following inequality holds;

1 (5) -5 e

by choosing

(L1
“ :a+2|f()| (2_a+2>

and
1

1 1
b= pm s <_)
Sl s ¥ o R A Bl oy sy
From the inequalities (2.11) and (2.12), we get the desired result. I

(;) T i (Ur, Us) (2.13)

where

0= (5
o+

+( a+2)

Vo = (a+2 |q+m<;ai2)
(e O (- emers)

Proof. From Lemma 1, we can write

b
f<a+> 7a/f
b / +b /
< 2-¢ f’(ta +(1—t)a)‘dt+
e /

f (tb+(1—t)a;rb)‘dt
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By applying the Power-mean inequality, we get

TEOEE /bfmdx

Q=

—
|
I

-

dt

(tb+(1—t) ;b)

1 P/
+ /(l—t)dt /1—t
0 0

By using (o, m)—convexity of |f’|? on [a,b] and by simple calculations, we obtain the following
inequality;

(2.14)

f<a+b> _a/f
< 50 (0) [l (O o G-l )
wrnl () G arvee)

ey () ”

Hence, by a similar argument to the proofs of Theorem 4-5, analogously, we obtain the following
inequalities;

(2.15)

f<a+b> _a/f

b—a (1\' 7 1 1
= 4 <2> <a+2f()q+m(2a+2>

1 - 1 1
+(m+1ﬂa+wuww|+m<2_&HJﬂa+%>

(i
/(i;f>q)ﬂ'

Corollary 2.8. Under the assumptions of Theorem 6, if we choose & = m = 1, we obtain the

By the inequalities (2.14)-(2.15), we obtain the inequality (2.13). I
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inequality;

where

()] 50 <a>‘J);
() o
e = (i@l (4]
s (S| (2

Corollary 2.9. Let f : I C [0,b*] — R be a differentiable mapping on I° such that f’ € Lla,b],
where a,b € I with a < b, b* > 0. If | f'|? is (o, m)—convex on [a, b] for (o, m) € [0,1] x (0, 1] and
p > 1, then the following inequality holds;

f(a—i—b)
b—a (1 -3 . P b—a (1 -3 .
< 1 (2> min {U;], U5} < 1 (2> min {Uy, Us}
, 1 ,(a+b\|? 1 1
v <a+1 ( 2 ) +m(2_a+2)
1 1 NaANE .
(3 wrvers) ()l

1 R mao
(s @1+ g M OF +

1
q

I o)

dx

where

I

H
|

Uy

,(a+Db @\ @
r(50))

Proof. By a similar argument to the proof of Corollary 3, the result is immediately follows. I

U, and Us; as in Theorem 6.
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