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ON THE DARBOUX PROPERTY OF THE
SUM OF CLIQUISH FUNCTIONS

Let R be the set of reals. A function f : R — R is said to be cliquish at a point
z € R ([1]) if for every € > 0 and for every open neighborhood U of z there exists
a nonempty open set V C U such that oscy f < €. Observe that f : R — R is
cliquish at each point z € R iff the set of its continuity points is dense.

In 1987 , H. W. Pu and H. H. Pu established the following theorem (See [2].):

Theorem P.P. Let A be a finite family of Baire 1 functions. Then there exists
a Baire 1 function f such that f + g is a Darboux function for every g € A.

In this paper I prove that this theorem is true for finite families A of cliquish
functions.

Let R = RU {—o00,00}. For a given function f : R — R such that the set
{z € R: f(z) = +00 or — oo} is nowhere dense, let C(f) be the set of continuity
points of f and let D,(f) = {z € R:o0sc f(z) > 27"} (n=1,2,...).

We start with the following lemma:

Lemma 1. Let f : R — R be an upper semicontinuous function (a lower
semicontinuous function) such that f > —oo (f < o0) and {z € R : f(z) =
oo} ({z € R: f(z) = —oo}) is nowhere dense. Then for every ¢ € R there is
an upper semicontinuous (a lower semicontinuous) function g : R — R such that

Dn(f) = Dalg) forn =1,2,..., fIC(f) = g|C(9), and c & g(R\ C(g)).

Proof. Suppose that f is upper semicontinuous. If f is lower semicontinuous,
it suffices to consider the function —f. Since f and the oscillation of f are upper
semicontinuous, all sets D,(f) (n = 1,2,...) are closed and nowhere dense. For
every n = 2,3,... there are disjoint finite open intervals I, with ends belonging

to C(f) such that

Do — Dn_y = (Dn N Lk).
k

Since every set D, N I, is compact,

2°" < dpp = max{osc f(t):t € D, NI} < 2™
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Denote by cf the closure operation and let D = {z € R\ C : f(z) = ¢}. Let
+o00 for z € C1 D N Dy(f)
c+ min((2'™" — dn)/2,27 %) forz€ecd DNI,ND,
(n=23,...,k=12..)
f(z) otherwise.

9(z) =

Since f is upper semicontinuous, it follows from the definition of g that g is ugper

semicontinuous, g|C(g) = f|C(f), D1(f) = D1(g), and Dp(f)\ Du-1(f) = Da(g)\
D,_1(g) for n =2,3,.... Evidently c € g(R \ C(g)).

Theorem 1. Suppose that the functions g;,...,gx : R — R are Baire 1 and
the sets {z : gi(x) = 400 or — oo} are nowhere dense. Then there is a Baire 1
function f : R — R such that f + g; is a Darboux function fori =1, ..., k.

Proof. The proof is the same as the proof of Theorem in [2]. Since every
g; (1 =1,2,...,k) is a Baire 1 function, each D; = U;?:l D;(g;) is a closed nowhere
dense set and D = X, D; is of first category.

The construction involves a sequence of open residual sets (G¢)x. Each G has
components ((akj, bk;)); (j runs from 1 to oo or to a certain integer depending on k).
Let ry = +oo and ry = 2=(=2) if k > 2. We take D as above, (a,b) = (axj, by;), | =
rk. By Lemma in [2], there exist a Darboux Baire 1 function hy; : (akj, bx;) — R
and a first category set Pi; C (axj, bx;) such that

(i) P;nD =0,
(ii) cl ij = P; U {akj,bkj},
(iii) |hrj(z)| < r for every x € (ax;, bx;),
(iv) {z: hyj(z) # 0} C Py,
(v) lim Sup,_,,, 4 hej(z) = lim Sup,_,,— hkj(z) = 1, and
liminfz_a,,+ hk;j(z) = liminf, .y, . hyj(z) = —ry.
For the case k = 1, we require more of each h;;. This will be made clear later.
For each k, we define A on R by
hej(z) if z € (aj, bij) for some j,
hi(z) = :
0 if z ¢ Gk,
and set P, = :-‘:1 U; Px;. Clearly hy is a Baire 1 function and P is a first category

set disjoint from D. Moreover, by (ii),
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(ii-{-) cZ(UJ ij) C (R \ Gk) Uy ij for each k.

Also, since each G is an open residual set, the sets {ak;}; and {bx;}; are dense in
R\ Gi. Using (v), we can easily show

(v+) limsup,_,,, hi(t) = limsup,_,,_ hi(t) = rr, and

liminf,,4 hk(t) = liminf,,,— hi(t) = —rx at each zx € R\ Gk.

Let G, = R\ D, and a component (a1j,b1;) be fixed. Let the intervals (ayj, by;),
Liny Jin (n = 1,2,...) correspond to (a,b), I, J, in Lemma in [2]. For each n,
(I;n U Jjx) N Dy = 0, and hence osc gi(z) < 1/2 for every x € I;, U J;n, and
i = 1,2,...,k. Since each I;, U Jj, is a compact set, there exists M;, > 0 such
that |gi(z)| < Mjn (¢ = 1,...,k) for every € I;,UJ;n,. With no loss of generality,
we assume that Mj; < Mj; <.... Let ry = 400, rj, = 2Mj, + n correspond to [

and [, in Lemma in [2]. Then h;; can be chosen to satisfy the conditions (i) - (v)
(for k =1) and

(vi) sup hy;j(Ijn) = sup hyj(Jjn) = rjn if n is even,
inf hy;(I;n) = inf hyj(Jjn) = —Tjn if n is odd .

We now proceed with the induction step. Assume that for some k > 1, we have
constructed an open residual set G, the associated functions hi; (5 runs through
the enumeration of the components of Gi) and hj, the associated first category
set Pi; and Py such that Dy U Py is closed. Clearly Diyy U Py is a closed first
category set. We take G4 = R\ (Di41 U Py). The associated functions and sets
are described above. To complete the induction, we need to show that Dgyy U Peyq
is closed. By (ii+) and the choice of Gi41,

e (U Prt15) C (U Pe41,) U (D41 U Pi) = Diys U Prya.
J J

Since Dy41U Py is closed, Dy UP; = ¢l (Dgy1UP:) = Diy1Ucl Pe. Consequently,

Dyy1 U Peyy D Dgy U cd PLuct (U Pk+1,j) =Di1Ucl Pk+1.
J

This implies that Dyyq U Peyq is closed. Thus we have constructed the sequence
(hi)k by induction. Note that the series 33>, hx converges uniformly on R. There-
fore we can define a function f on R by letting f = Y32, hx and comclude that f
is a Baire 1 function.

As in the proof of Theorem P.P. in [2] we may show that f is a Darboux function
onRand f+ g (: = 1,...,k) have the Darboux property on each interval [a, b]
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such that (f + g:)([a,b]) C R. Suppose that [a,d] is a closed interval such that
(f +9)((a, ) & R and £(a) + gi(a) # £(5) + g:(b) for some i < k. Let

¢ € (min(f(a) + gi(a), f(b) + gi(b)), max(f(a) + gi(a), £(b) + gi(b)))-

Since (f + gi)([a, b)) Z R, it follows from the construction of f that there exists an
interval [a;, b1] C (a,b) such that (f + g:;)([a1,8:1]) C R, and

min(f(a1) + gi(a1), f(b1) + gi(b1)) < ¢ < max(f(a1) + gi(a1), f(b1) + gi(b1)).

Since f + g; has the Darboux property on the interval [a;, b;], there is a point
d € (a1, b;) with f(d) + gi(d) = c.
This completes the proof.

Remark 1. In the above construction, the sets Py; can be chosen to have
Lebesgue measure zero. Then the function f equals zero except on a first category
set of Lebesgue measure zero.

Remark 2. Preserve all hypothesis and notations of Theorem 1 and its proof.
If fi,...,fx : R = R are Baire 1 functions such that

fil(R\ D) =g|(R\ D) fori=1,...,k, and

k
Dj = UD](f,) fOI‘j = 1,2,... ,
i=1
then every function f + f; (i =1,...,k) has the Darboux property. Of course, it
suffices to observe that in the proof of Theorem 1 the construction of the function
f for the system (fi,..., fi) can be the same as for the system (g1,..., gx).

Remark 3. Preserve all assumptions and notation of Theorem 1 and its proof.
Moreover, suppose that the functions g;, ¢ = 1,...,k, are upper semicontinuous
everywhere or lower semicontinuous everywhere. If z € R\ C(g;) for some i <
k, gi(z) = c € R, and [u,v] is a closed interval containing z, then there exists a
point w € (u,v) NN, C(g;) such that f(w) + g:(w) = c.

Proof. By Lemma 1 there exists a function ¢ : R — R such that ¢ ¢
9(R\ C(9)), gIC(g) = 4ilC(g:), Di(9) = Dj(g:) for j = 1,2,..., and g is upper
(lower) semicontinuous everywhere whenever g; is the same. For everyn = 1,2,...
there are disjoint finite open intervals K,», m =1,2,..., with ends belonging to

k_, C(g;) such that

D] \ Dl(g,) = U (.Dl N I(lm)a and
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D\ D;_1\ D,(g:) = U (DnN Kpy) forn =2,3,... .

m

Let E = {z € D: gi(z) = c}. Set

i c+2™ forr€ecd ENKynND, (n,m=1,2,...)
) =
g g(z) otherwise
whenever g; is upper semicontinuous, or
3(z) c—2" forr€ecd ENK,nND, (n,m=12,...)
) =
g g9(z) otherwise,

whenever g; is lower semicontinuous.

k
Note that D, = U D,(g;)U D,(g9), n=1,2,...,and c &€ g(D). Moreover g is

1=1

i#i
upper (lower) semicontinuous everywhere. Since z € D, it follows from (v+) and
from the construction of f that there are points ug,vo € (u,v) N (R\ D) such that

f(uo) + gi(uo) < c and f(vo) + gi(vo) > c.
With no loss of generality, we may assume that uo < vo. If
{z € (uo,v0) : f(z) + gi(z) =c} N(R\ D) =0 then
{z € (uo,v0) : f(z) +7(z) =c} =0,
contrary to Remark 2.

Theorem 2. Let fi,..., fr : R = R be cliquish functions. There is a Baire 1
function f : R — R such that {x € R: f(z) # 0} is of Lebesgue measure zero and
all sums f + f;, : = 1,...,k, are Darboux functions.

Proof: Fori=1,...,k let
gi(z) = rkrgx+ inf{fi(t): |t —z| <r}, and
hi(e) = Jigy sup{i(0) : 11— 2] <}
for z € R.
Evidently, g; (h:), ¢ = 1,...,k, are lower (upper) semicontinuous, ¢g; < f; <

ki, gi(z) = fi(z) = hi(z) for £ € C(f;), and the sets {z : gi(r) = —oo} and
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{z : hi(z) = oo} are nowhere dense. By Theorem 1, there exists a Darboux Baire
1 function f : R — R such that {z : f(z) # 0} is of measure zero and all sums
f+g, f+hi ¢t =1,...,k, are Darboux functions. Fix ¢ < k. Let [a,b] be a
closed interval such that f(a) + fi(a) # f(b) + fi(b), for example f(a) + fi(a) <
f(b) + fi(b). Let ¢ be a number such that f(a) + fi(a) < ¢ < f(b) + fi(b). If
min(f(a) + hi(a), f(b) + hi(b)) < ¢ < max(f(a) + hi(a), f(b) + hi(b)), then there
is a point u € (a,b) such that f(u) + hi(u) = c. If u € C(f), then h;(u) = fi(u)
and ¢ = f(u) + fi(u). If u € (a,b) \ C(f:) then, by Remark 3, there is a point
v € (a,0) 1 C(g:) N C(hi) = (a, b) N C(1:) such that f(v) + fi(v) = f(v) + hi(v) =
f(u) + hi(u) = c. In the case where ¢ < min(f(a)+ hi(a), f(b) + k(b)) we remark
that f(a) + gi(a) < c. If b € C(f:), then f(b) + gi(b) = f(b) + fi(b) > ¢ and
there is a point u € (a,b) such that f(u) + g;(u) = c. If u € C(f;), then f(u) +
fi(u) = f(u) + gi(u) = c. If u € (a,b) \ C(f;), then by Remark 3, there is a point
v € (a,b) N C(fi) such that f(v) + fi(v) = f(v) + gi(v) = c. In the case where
¢ < min(f(a) + hi(a), f(b) + hi(b)) and b &€ C(f;), Remark 3 implies that there is
a point w € (a,b) N C(f) with f(w) + fi(w) = f(w) + g:(w) > c. Consequently, as
above, there is a point u € (a,w) such that f(u) + fi(u) = c.

Remark 4. Theorem 2 is false for an infinite family A of cliquish functions.
(See [2], Example in 3.)
References

[1] W. W. Bledsoe, Neighbourly functions, Proc. Amer. Math. Soc. 3 (1972), 114-
115.

[2] H. W. Pu and H. H. Pu, On representations of Baire functions in a given
Jamily as sums of Baire Darbouz functions with a common summand, Cas.
Pest. Matem. 112 (1987), 320-326.

Received February 27, 1991

576



	Contents
	p. 571
	p. 572
	p. 573
	p. 574
	p. 575
	p. 576

	Issue Table of Contents
	Real Analysis Exchange, Vol. 17, No. 2 (1991-92) pp. 452-826
	Front Matter
	EDITORIAL MESSAGE [pp. 454-454]
	CONFERENCE ANNOUNCEMENTS [pp. 455-456]
	Corrections to the Report on the Summer Symposium in Real Analysis XV, Smolenice 1991 [pp. 457-457]
	On local characterization of almost continuous functions [pp. 458-459]
	Some properties of subclasses of Darboux functions [pp. 460-461]
	TOPICAL SURVEY
	Almost Continuity [pp. 462-520]

	RESEARCH ARTICLES
	BOREL MEASURABILITY OF EXTREME LOCAL DERIVATIVES [pp. 521-534]
	ON TWO GENERALIZATIONS OF THE DARBOUX PROPERTY [pp. 535-544]
	Heredity of Density Points [pp. 545-549]
	ON m-RINGS OF FUNCTIONS AND SOME GENERALIZATIONS OF THE NOTION OF DENSITY POINT [pp. 550-570]
	ON THE DARBOUX PROPERTY OF THE SUM OF CLIQUISH FUNCTIONS [pp. 571-576]
	ON THE GROUP GENERATED BY QUASI CONTINUOUS FUNCTIONS [pp. 577-589]
	ON d-MEASURE AND d-DIMENSION [pp. 590-596]
	SOME REMARKS ON SUP-MEASURABILITY [pp. 597-607]
	THE PEANO CURVE AND I-APPROMIMATE DIFFERENTIABILITY [pp. 608-621]
	Riemann Integral vs. Lebesgue Integral [pp. 622-632]
	RESTRICTION THEOREMS ON WEIGHTED SOBOLEV SPACES OF MIXED NORM [pp. 633-651]
	APPROXIMATE SYMMETRIC DERIVATIVES ARE UNIFORMLY CLOSED [pp. 652-656]
	Mean Value Properties for Symmetrically Differentiable Functions [pp. 657-667]
	PARAMETRIC SEMICONTINUITY IMPLIES CONTINUITY [pp. 668-680]
	ON THE STRUCTURE OF MEASURABLE FILTERS ON A COUNTABLE SET [pp. 681-701]
	Cantor Type Sets of Positive Measure and Lipschitz Mappings [pp. 702-705]
	A∞ TYPE CONDITIONS FOR GENERAL MEASURES IN R¹ [pp. 706-727]
	SEQUENCE CONDITIONS WHICH IMPLY APPROXIMATE CONTINUITY [pp. 728-736]
	THE INTEGRAL OVER PRODUCT SPACES AND WIENER'S FORMULA [pp. 737-744]
	DERIVATIVES AND CONVEXITY [pp. 745-747]

	INROADS
	ON A PROBLEM OF SKVORTSOV INVOLVING THE PERRON INTEGRAL [pp. 748-750]
	LIMITS WITHOUT EPSILONS [pp. 751-758]
	THE FRÉCHET BOUNDS REVISITED [pp. 759-764]
	SOME PARAMETERS OF DISTRIBUTION OF MASS IN SELFSIMILAR FRACTALS [pp. 765-770]
	CERTAIN MEASURE ZERO, FIRST CATEGORY SETS [pp. 771-774]
	ON JOINT SUMMABILITY OF FOURIER SERIES AND CONJUGATE SERIES [pp. 775-780]
	ANOTHER NONMEASURABLE SET WITH PROPERTY (s⁰) [pp. 781-784]
	THE PACKING MEASURE AND FUBINI'S THEOREM [pp. 785-788]
	RIEMANN TAILS AND THE LEBESGUE AND HENSTOCK INTEGRALS [pp. 789-795]
	ON SAKS-HENSTOCK LEMMA FOR THE RIEMANN-TYPE INTEGRALS [pp. 796-801]
	ON THE THEOREM OF RADEMACHER [pp. 802-808]
	Some theorems whose σ–porous exceptional sets are not σ–symmetrically porous [pp. 809-814]
	A NOTE ON CONDITIONALLY CONVERGENT INTEGRALS [pp. 815-819]
	A NOTE ON SYMMETRIC AND ORDINARY DIFFERENTIATION [pp. 820-826]

	Back Matter



