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 Almost Continuity

 1 Preliminaries.

 1.1 Notations.

 Let us establish some of terminology to be used in whole paper. Symbols
 X, Y will denote topological spaces. denotes the real line (or the one
 dimensional Euclidean space), I denotes the unit interval [0, 1]. The symbols
 N and Q denote the sets of all positive integers and all rationals, respectively.

 We use standard topological denotations (see e.g. [19]). If A is a subset
 of a topological space X then int(A) (or intx(A)) and fr(A) (or frx(A))
 denote the interior of A and the boundary of A, respectively. The closure of
 A is denoted by cl(A ), clx(A) or A. If X is a metric space, x G X and e > 0,
 then Bx(x,e ) (or simply, B(x,e)) denotes the open ball centered at x and
 with the radius e.

 For a subset A of X x Y we denote by dom(A) and rng(A) the x-projection
 and ^/-projection of A; dom(A) = {x : 3y G Y ( x,y ) G A }, rng(A) = {y :
 3a; G X ( x,y ) G A}. If B is a subset of X then A'B denotes the set
 An(ßx Y). Moreover, if x G X and y € Y are fixed, then Ax and Ay denote
 sections of A' Ax = {t € Y ś. (x, t ) G A }, Ay = {t G X : ( t , y) G A}.

 We consider a function / : X - * Y and its graph (i.e. a subset of A' x Y)
 to be coincident. Symbols Const(X, Y), C(X, Y) and Yx denote the families
 of all constant functions, all continuous functions and all functions from X
 into Y , respectively. We will write Const and C instead of Const(X, Y)
 and C(X, Y) when X and Y are fixed. Symbol C(f) denotes the set of all
 continuity points of /. If we consider a function / defined on 3Č then the
 symbols C~(fix) and C+(f,x ) denote the left and the right cluster sets of /
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 at the point x. If / is a real function defined on X then the notation [/ > 0]
 means the set {x £ X : f(x) > 0}. Likewise for [/ = 0], [/ ^ 0], etc.

 If A is a set then by card(A) we shall denote the cardinality of A. Car-
 dinals will be identified with initial ordinals.

 We shall use the following set theoretical assumptions:

 A(c) : the union of less than 2W many first category subsets of 3fř is again of
 the first category.

 A(m) : the union of less than 2W many subsets of measure zero of 3? is again
 of measure zero.

 It is well-known that these conditions follow from Martin's Axiom and there-

 fore also from the Continuum Hypothesis (see e.g. [56]). If not explicitly
 stated otherwise, we shall work in ( ZFC ) without further assumptions.

 1.2 Basic definitions.

 A function / : X - ► Y is almost continuous in the sense of Stallings iff for
 any open set U C X X Y containing /, U contains a continuous function
 g : X - ► Y [60]. The class of all almost continuous functions from X into
 Y is denoted by A(X, K), or A when X and Y are fixed.

 Clearly any continuous function is almost continuous. There are, how-
 ever, many almost continuous real functions which are not continuous. The
 following two examples of non-continuous, almost continuous functions are
 "classical" .

 Example 1.1 Let fo : [-1, 1] - ► [-1, 1] be defined by fo(x) = sin(l/x) for
 x / 0 and /o(0) = 0 .It is easy to observe that fo is almost continuous.

 Example 1.2 Let f : I - ► I be defined by f(x) = limn

 where a,- are given by the unique nonterminating binary expansion of the
 number x = (0.aiû2 . . .). Then f is almost continuous [6J.

 Note that the last function is dense in I2. Other examples of almost continu-
 ous, dense in I2 functions are constructed in [40], [21], [3]. One can construct
 such examples using the following notion of blocking sets. This notion was
 introduced by Kellum and Garret [40], and was used later in many papers,
 e.g. in [33], [34], [38], [39], [26] and [47], [48], [49] and [50].
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 Observe that if a function / : X - ► Y is not almost continuous then
 there exists a closed set F C X x Y such that F D / = 0 and F D g ^ 0 for
 each continuous function g : X - ► Y. Every such set is called a blocking
 set for / in X x Y . If no proper subset of F is a blocking set of / in X x Y,
 F is said to be a minimal blocking set for / in X x Y . If set F is a (minimal)
 blocking set of some function / : X - ► Y, then F is said to be a (minimal)
 blocking set in X x Y .

 Remark 1.1 A function f : X - ► Y is almost continuous iff it intersects
 every blocking set in X x Y .

 We say that a topological space X has the fixed point property iff for any
 continuous function / from X into X there exists a point x € X such that
 f(x) = x. S tailings introduced the notion of almost continuity in order to
 prove a generalization of the Brower fixed point theorem. Note that for a
 non-degenerate Hausdorff space X with the fixed point property the diagonal
 {(a:, x) : x € X } is a blocking set in X x X. Therefore we obtain the following
 property of almost continuous functions.

 Theorem 1.1 If X is a Hausdorff space with the fixed point property then
 each almost continuous function f : X - ► X has a fixed point [60].

 Theorem 1.2 Suppose that X is a compact space and f : X - ► Y is not
 almost continuous. Then

 (1) there exists a minimal blocking set K of / ¡'nix Y , and

 (2) dom(K) is contained in a component of X,

 (3) if one of the following conditions holds:

 (i) X is perfectly normal and Y is an interval in 3řfc, (k 6 N),

 (ii) X is an interval in 9Č and Y is a convex subspace o/3řfe; (k Ç. N),

 (iii) Y is an e-absolute retract (see [37] for definitions),

 then dom(K) is a non-degenerate connected set,

 (4) rng(K) = Y.
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 Proof. (1) is proved in [36].
 (2) Suppose that K is a blocking set for / in X x Y and S',S2 are different
 components of X with dom(K)r'Si ^ 0 ý dom(K) fl 52. Since X is compact,
 there exists a clopen set Ai C X such that Si C Aļ and Sļ C Aļ = X ' A'
 (see e.g. [19], Theorem 8, p. 431). Since K'Ai (¿ = 1,2) are not blocking for
 /, there exist continuous functions : X - > Y such that D (K'Ai) = 0.
 Thus (¿fļ|y4i) U (^2^2) is continuous and disjoint from K, a contradiction.

 (3.¿) Suppose that dom(K) is not connected. Let (Ai,Aļ) be a partition
 of dom(K) into disjoint, non-empty sets which are clopen in dom(K). Let
 9ii92 '• X - > Y be continuous and such that <7¿f) (/f|At) = 0 for i = 1,2. Let
 C = frx(A'). Since X is perfectly normal, there exists a decreasing sequence
 of open sets ( Un)n such that C = fļ^Li Un. Since gi,g2 are bounded, there
 exists a cube Jo C Y such that rng(gi) C Jo for i = 1,2. For each n 6 N
 let hn : X - > Jo be a continuous extension of the function (<71 |(j4i ' Un)) U
 (02 KAa ' Un)). Since K is blocking, there exists xn G Unndom(K ) such that
 (a:n, hn(xn )) G K. Let (x, y ) be a limit point of the sequence (x„, hn(xn))n.
 Then x Ç.C fl dom(K) = frdom(K)U ^1), which is impossible.

 Proofs of the statements (3 .ii) and (4) are the same as in [34] (when
 X = Y = 3fř). (3.n'¿) is proved in [37], Theorem 5.2.

 Q.E.D.

 Corollary 1.1 // / : is not almost continuous then there exists a
 blocking set K C 3fčx 3fř* for f such that dom(K) is a non-degenerate interval
 (cf. [34]).

 Now we try to shed some light on the problem suggested in Remark 3 of
 [36].

 Theorem 1.3 (on homogeneity of minimal blocking sets.) Assume that K C
 I X is a minimal blocking set, U' = (01,02) C I, U 2 is an open interval
 in and U' x f/2 H K ^ 0. Then:

 (1) int(dom(K fl (Uļ X U2))) ^ 0 or K intersects every f G C(U 1, U2),

 (2) dom(K fl (Uļ x U 2)) is dense in itself or U2 C Kx for some x G Ui.

 Proof. (1) Suppose that / : U' - > U2 is continuous and / D K = 0. It
 follows from minimality of K that hC](K'(Ui x U2)) = 0 for some continuous
 function h : I - > 3?fc. Since K is blocking, h D K f! (Uļ x U2 ) / 0. Since
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 h D K is compact and dom(h H K) C Ux, we can choose reals 61, 62 such that
 ai < 61 < mi = min(dom(h fl K )) < m 2 = max(dom(h fl K )) < 62 < a2.
 Since A = rng(f |[&i, 62]) U rng(h D K) is a compact subset of U2, there
 exists a closed interval J C U2 such that A C int(J). Note that h H K C
 (61, 62) X int(J).

 Suppose that int(dom(K fl (Ux x U2))) = 0. Since Kq = KC' ([61, b2] x J)
 is compact, dom(Ko) is nowhere dense and we can choose intervals [¿1, ¿2] C
 ( bi,mi)'dom(K0 ) and [t>i,u2] C (m2,a2)'dom(Ko) suchthat rng(h'[ti, Í2])U
 rng(h |[vi,u2]) C J. Then ax < tļ < t2 < mi < m<i < Vļ < v2 < a2. Let gi,g2
 be segments in I x J with end-points (ťi,Zi(ťi)), (t2ìf(t2)) and (vi,/(wi)),
 (v2,h(v 2)), respectively. Then the function g = h'(I ' (ťi,u2)) U gì U g2 U
 f'(t2,Vi) is continuous and disjoint with K, a contradiction.

 (2) Suppose that x is isolated in dom(K D (Ui x U2)). Let V C Ui
 be an interval such that {x} = V fi dom(K fi (Ux x U2)). Then, by (1),
 rng(K fi (V x U2)) = U2 and therefore U2 C Kx.

 Q.E.D.

 Theorem 1.4 Let f : - y 9ř be a function such that /Dc/(«) ^ 0 for any
 upper semi-continuous function u, defined on non-degenerate interval. Then
 f is almost continuous [38].

 A pair of topological spaces X , Y will be called a ( K , G) pair (Kellum-
 Garret pair) iff there exists a family T of blocking sets in X x Y such that

 (1) if / £ A(X,Y) then in T there exists a blocking set for /,

 (2) card(dom(F)) > card(^F) for any F G T.

 A family which satisfies the conditions (1) and (2) will be called a blocking
 family for the pair {X, y).

 Proposition 1.1 The following pairs (X, Y ) are of(K,G) type.

 (1) X is compact , perfectly normal and Y is a non- degenerate interval
 in

 (2) X is a compact interval in 3ř and Y is a convex subspace of$łk,

 (3) X is an interval in and Y is a convex subspace of$tk.
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 Proof. In the cases (1) and (2) we can take the families of minimal
 blocking sets in X x Y as the blocking families for (X, Y) (cf. Theorem 1.2).
 In the case (3), X can be decomposed into a countable sequence ( 7n)n of
 closed intervals such that /„ fl 7„+i ^ 0 for n G N. One can prove that if
 / ^ A(X, Y) then f'In $ A(In,Y) for some n G iV (see Lemma 2.3 below).
 Let Tn be a blocking family for (7n, K). Then the union of all Tn, n G N, is
 a blocking family for the pair (X, y).

 Q.E.D.

 Proposition 1.2 (3řfc,3řm) is a ( K,G ) pair for all k,m G N .

 Proof. Obviously card(lC) < 2 w for every blocking family AC in 8ř* x 9řm
 (in fact it is easy to see that card(K ) = 2"). Thus it is sufficient to prove
 that card(dom(K )) = 2" for every blocking set K in x 3řm. Suppose
 that card(dom(K)) < 2W. Then there exists an increasing sequence (rn)n
 of positive reals such that limn

 Sn denotes the (k - l)-dimensional sphere in centered at 0 and with
 radius rn. Fix n E N and put An = 5(0, rn) ' 5(0,rn_ļ). Then for each
 i G N , Knii = dom(K ft ( An H [- M]"1)) is compact and card(Knii) < 2W.
 Hence K fl ( An D [- ¿,i]m) is not blocking in An D [- so either there
 exists a continuous function / : An - ► [- i,i]m such that / D K = 0 or
 {x} x [- i, ¿]m C K for some x G An. Note that there exist in and a continuous
 function fn : An - ► [- ¿n, ¿n]m such that /„ fl K = 0. Indeed, suppose that
 for each i G N there exists Xi G An such that {#,•} x [- 1', i]m C K. Let a:o be
 a limit point of the sequence (a:,-),-. Since K is closed {xo} x C K, which
 contradicts the assumption that K is blocking.

 Since Kn<i„ is compact, disi ( Kn,i„ , Sn- 1 U Sn ) > 0, so we can assume that
 fn'(Sn~ i U Sn) = 0. Then / = UÏ£Li fn is continuous and disjoint with A', a
 contradiction.

 Q.E.D.

 1.3 Collation with other classes of functions.

 1.3.1 Almost continuity and continuity.

 T. Husain [28] has introduced another notion of almost continuity. A func-
 tion / : X - ► Y is almost continuous in the sense of Husain (77-almost
 continuous) iff for each x G X, if V C Y is a neighbourhood of f(x) then
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 /-1(F) is dense in a some neighbourhood of x. Relationships between conti-
 nuity, almost continuity (in the sense of Stallings) and //-almost continuity
 are studied in [20], [44], [58], [59]. A function / : X - ► Y is of Cesaro type
 iff there exist non-empty open sets U C X and V C Y, such that /_1(j/) is
 dense in U for each y Ç.V (cf. [59]). The class of all functions of Cesaro type
 for which U = X and V = Y will be denoted by ~D*(X, Y) (or T>* when X
 and Y are fixed). Now let (y, p ) be a metric space. A function / : X - ► Y
 is called cliquish iff for each e > 0, every non-empty open set U C X contains
 a non-empty open set V such that p(f(x),f(y)) < e whenever x,y €V.

 Theorem 1.5 Let X be a regular locally connected Baire space. Then for
 every real function f , f is continuous iff f is almost continuous, H-almost
 continuous, and not of Cesaro type [58] (and [60] for X = ^t).

 Example 1.3 There exists an almost continuous and H-almost continuous
 function f : I - ► 3ř2 which is not of Cesaro type and not continuous.

 Indeed, let fi = id¡ , /2 : / - ► 3Č be almost continuous, /2 G T>* and let
 / = {hi h)- Then / is almost continuous (see Theorem 4.4 below), //-almost
 continuous injection (so it is not of Cesaro type) and it is not continuous.

 Theorem 1.6 Let X be a regular locally connected Baire space. If a real
 function defined on X is almost continuous and not of the Cesaro type then
 it is cliquish [58].

 Note that there exist almost continuous real functions defined on / which are

 of Cesaro type (see e.g. Example 1.2). Clearly such functions have no points
 of continuity. Moreover, J. Ceder gave an example (under CH) of an almost
 continuous function / : I - > such that f'A is discontinuous whenever A
 is uncountable ([15], see also [38]).

 1.3.2 Almost continuity, connectivity and other Darboux-like
 properties.

 Theorem 1.7 If X is a connected T' space, Y is a hereditarily normal Haus-
 dorff space and f : X - > Y is almost continuous, then rng(f) is connected.

 Proof. Suppose that rng(f) is not connected. Since Y is hereditarily
 normal, there exist disjoint open sets U, V C Y such that rng(f) C U U V
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 and rng(f) fi U ^ 0 ^ rng(f) D V (see e.g. [19], Theorem 6, p. 96). Fix
 Xi,Xļ G X such that /(®i) G U and f(x 2) 6 V. Then G = X x (U U
 V) ' (({xi} x(Y' U)) U ({^2} x(F' V))) is an open neighbourhood of /
 and it includes a continuous function g : X - > Y. Since g(x 1) G U and
 g(x 2) G V, rng(g) n U ^ 0 ^ rng(g) D V. Hence rng(g) is not connected,
 which contradicts the continuity of g. Q.E.D.

 Theorem 1.8 If X xY is a hereditarily normal Hausdorff space, X is con-
 nected and f : X - y Y is almost continuous, then f is a connected subset
 of X x Y [60].

 Corollary 1.2 If X is a connected hereditarily normal Hausdorff space and
 Y is a discrete space then A(X,Y) = Const(X,Y).

 Example 1.4 There exists a connected space X and an almost continuous
 bijection f : X - y X such that f = f~l and f is not connected in X x X
 (thus f is not continuous).

 Indeed, let X be the unit interval with the topology t = {U C I : 0 E
 U } U {0} and let f : X - y X be the function given by f(x) = x for
 x G (0, 1) and f(x) = 1 - x for x G {0, 1}. Then / is almost continuous. In
 fact, if G is a neighbourhood of / in X x X then (x,0) G G for each x G I
 and consequently, G includes a constant function g = 0. Since {(0,1)} is
 clopen in /, / is not connected.

 Theorem 1.9 Assume that f : X - y Y. Then

 (1) if Yo is a subspace of Y , rng(f) C lo and f G A(X,Yņ), then f G
 A(X,Y),

 (2) for any function f : X - y Y there exists an extension Y' of Y for
 which f G A(X, Y') [36].

 (3) if J is an interval in / G A(X, 3ř) and rng(f) C J, then f G
 A(X,J). (Hence f G A{X, 3č) iff f G A(X, rng(f)) for each real-
 valued function f defined on X.)
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 Proof. (1) is obvious. To prove (3) assume that / G A(X, ft), rng(f) C J
 and J is an interval in 3?, e.g. of the form (a, 61. Let G C X x J be an open
 neighbourhood of f in Xx J. Then G i = GU(X x (6, oo)) is a neighbourhood
 of / in X x ft. Let g' : X - ► ft be a continuous function contained in
 X X ft. Then g = min(gļ,b) is continuous and contained in G. Finally note
 that rng(f) is an interval (see Theorem 1.7) and therefore / G A(X, ft) iff
 / e A(X,rng(!)).

 Q.E.D.

 Example 1.5 There exist Y and f G A(I,Y) ' A(I,rng(f)) [ 36 'J.

 Indeed, let Y be the space X defined in Example 1.4 and let / : 7 - > Y
 be given by f(x) = x for x ^ 0 and f(x) = 1 for x = 0. As in Example 1.4
 one can verify that / G A(I, K). Moreover, rng(f) is a discrete space (of
 cardinality 2^), and therefore only constant functions belong to the family
 A(I,rng(f)).

 Note that it follows from the above example that there are almost contin-
 uous functions defined on connected spaces whose images are not connected.

 Almost continuous retractions of cubes [-1, l]n are described in [35], [36].
 Now we shall consider the following classes of functions from X into Y:

 D(X, Y) - the family of all Darboux functions. / is a Darboux function iff
 /(C) is connected whenever C is connected in X.

 Conn(X, Y) - the family of all connectivity functions. / is a connectivity
 function iff f'C is a connected subset of X x Y whenever C is connected
 in X.

 £xt(X, Y) - the class of all extendable functions. / is extendable iff there
 exists g G Conn{ X x I,Y) such that f(x) = g(x,0) for each x G X.

 We shall write T>, Conn and £xt, respectively, when X and Y are fixed. Now
 let X f = 7, y = ft and

 C - the class of Lebesgue measurable functions from 7 into ft.

 B - the class of Borei measurable functions from 7 into ft.

 J' - the class of pointwise limits of sequences of functions from 7 into ft
 which have only discontinuities of the first kind.
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 7^i - the class of pointwise limits of sequences of functions from I into 3Č
 which are continuous from the right.

 B' - the first class of Baire of functions from I into 3ř.

 Note that Bx C C J' C B C C [52].

 Theorem 1.10 In the class of all real functions defined on I the following
 relations hold:

 (1) Sxt d AC Conn C T> [60].

 (2) A Conn (see [9] and [18], [32], [53] and [60] for examples ).

 (3) C n £xt ^ £ fi A and B' D Ext = Bi fi A [7].

 (4) B' fi A = B' D Conn and TZļ fi A ^ Hi fl Conn [5],

 Problem 1.1 For which X £ { B , 7?-i} is it true that X f! Sxt = X D A?
 [V

 Note that the inclusion Conn(X , Y ) C Y ) holds for each pair of
 topological spaces X, Y . However this is not true for all inclusions (1) from
 1.10, even for real functions defined on cubes.

 Theorem 1.11 If k > 1 then Conn(Ik,I) C A(Ik,I) [60].

 Example 1.6 There exists f 6 A(I2Ì I) ' T>(P, I).

 Indeed, let Ao be a closed segment with end-points (0, 1) and (1, 1), and for
 each n G N let An be a closed segment with end-points (l/n,0) and (1/n, 1).
 Let A = Un=o an(l B = A U {(0,0)}. Observe that B is connected
 and for each non-degenerate continuum C G I2 either C C A or card(C '
 B) = 2W. In fact, let us assume that C is a non-degenerate continuum and
 C ' A ^ 0. If dom{C ' A) D (0, 1| ^ 0 or C C {0} x I then the assertion
 is obvious. Otherwise, dom(C) is a non-degenerate interval and there exists
 6 > 0 such that (0, S) x {1} C C. Let y < 1 be such that x = (0,y) G C. If
 B{x, r) fl (0, 1 1 x I = 0 for some r > 0 then {0} x J C C for some closed non-
 degenerate interval J. Otherwise there exist an increasing sequence ( kn)n and
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 z G (y, 1) such that and {1 /kn} x [z, 1] C C for each n G N and therefore,
 {0} X [ z , 1] C C and card(C ' B) = 2" .

 Let (Ka)a<2u be a sequence of all minimal blocking sets K in P x I such
 that dom(K) ' A ^ 0. Let ( xa,ya)a<2 * be a sequence of points such that
 (^o, Va) G Ka, xa G dom(Ka)'B and xa ^ Xß for a ^ ß. Define / : P - ► I
 by f(x) = 1 for x = (0,0), f(xa) = ya for a < 2W and f(x) = 0 otherwise.
 Observe that / intersects each blocking set in 1 2 x I. In fact, let F be a
 blocking set and let K C F be a minimal blocking set. If K = Ka for some
 a < 2" then (xa, yQ) G / fi K. If K ^ Ka for each a <2W then f(x) = 0 for
 each x G dom(K). Since rng(K) = /, (x, 0) G / D K for some x G dom(K).
 Thus / G A{P, 7). Since f(B) = {0, 1}, / ¿ V(P, I).

 Let T>p(X, Y) denote the family of all Darboux functions in the sense of
 Pawlak [51], i.e. functions / : X - ► Y such that f(L) is connected whenever
 L is an arc in X.

 Theorem 1.12 If Y is hereditarily normal, then A(X,Y) C 'DviX^Y).

 Proof. Let L be an arc in X and let f : X - > Y be almost continuous.
 It will be shown in Theorem 2.1, that f'L G A(L,Y). By Theorem 1.7,
 rng(f'L) is connected. Q.E.D.
 In connection with the condition (3) of Theorem 1.10 we have the follow-

 ing Lipinski's example.

 Example 1.7 Let X = [-1,1] x and Y = [-1,1]. Then Bļ(X,Y) fi
 (V(X,Y)'A(X,Y)¿t[i»].

 Let / : [-1, 1] X - * [-1, 1] be given by f(x,y ) = fo(x), where f0 is the
 function defined in Example 1.1. Then / has required properties [42].

 More information about relationships between almost continuity and other
 Darboux-like classes one can found in Gibson's papers, e.g. [23], [24], [55].

 1.4 The local characterization.

 Many authors have considered the local property of Darboux (i.e. the inter-
 mediate value property) [10] or local connectivity of a real function [22] and
 the sets of those points at which a real function of a real variable has the
 local Darboux property [43] or local connectivity property [54]. The local
 characterization of almost continuity is given in [31] and in that paper one
 can find proofs of the next three theorems.
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 We say that a function / from 3ř into 3? is almost continuous at a point
 X £ 3ř from the right iff

 (1) f{x)ec+(f,x)t

 (2) there is a positive e such that for any neighbourhood G of /|[x, oo),
 arbitrary y £ (limt

 of the point (x, y ) and arbitrary t Ç. (x, x + e) there exists a continuous
 function g : [x, x + e] - > such that g C G U U, g(x) - y and
 g(t) = f(t).

 Analogously we define the notion of almost continuity at a point from the
 left. If / is almost continuous at a point x from both sides then we say that
 / is almost continuous at x or that x is a point of almost continuity of /.

 Theorem 1.13 A function f : 3ř - ► 5R is almost continuous iff f is almost
 continuous at every point x o/3ř.

 For arbitrary function / : 9ft - ► 0ř let A(f), Conn(f) and D(f) denote the
 sets of all points at which / is almost continuous, connectivity and has the
 Darboux property, respectively.

 Theorem 1.14 For every function f : 3ř - > 3?,

 is an increasing sequence of G$-sets.

 Theorem 1.15 For every G$-set Acäß there exists a function f : āfč - ►
 such that A(f) = A.

 Problem 1.2 Find necessary and sufficient conditions for a sequence (A, B,
 C , D ) of subsets o/3fř to exist a function f : 9ř - ► SČ such that ( A , B, C, D ) =

 2 Restrictions and extensions.

 Theorem 2.1 If X o is a closed subspace of X and f G A(X, Y), then f'Xo G
 A(Xo,Y) [60].
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 The following example is a bounded version of Lipinski's function from Ex-
 ample 1.7 and shows that the assumption about Xo is important.

 Example 2.1 There exists an almost continuous function f from [-1,1] x
 [-1,1] into [-1,1] for which the restriction /|(- 1,1) x (-1,1) is not almost
 continuous.

 Indeed, let / : [-1,1] x [-1,1] - ► [-1,1] be defined by f(x,y ) = fo(x),
 where fo : [-1,1] - > [ - 1 » 1] is the function defined in Example 1.1. It
 will be proved in Corollary 4.2 that / is almost continuous. We shall ver-
 ify that f'A is not almost continuous for A = (-1,1) x (-1,1). Let h :
 (-1,1) - ► 3Î be an increasing homeomorphism. Put B0 = {( x,y,z ) : |x| <
 e-h2M/lO and |z| < e^^/lO} and B1 = {( x,y,z ) : x ¿ 0 and 'z -
 sin( l/x)| < 1/10}. Clearly Bo and B' are open and f'A C B0 U B'. Sup-
 pose that there exists a continuous function g : A - > [ - 1, 1] contained in
 Bq U B'. Then (0,0,^(0,0)) G Bq and 1^(0,0)1 < 1/10 and therefore there
 is a positive 8 such that |jgr(ar, 0)| < 1/10 for x G (- S, S). Fix x0 G (0,5)
 such that sin(l/x0 ) = 1 and y0 e (0,1) for which ar0 > e~h2M / 10. Then
 (so, 2/0, g(xo, Vo)) G Bi, so g(x0,y0) > 9/10. Observe that the a;0-section gXQ
 of g (given by gXo(y ) = g(x0,y) for y e (-1, 1)) is continuous, ^o(0) < 1/10
 and gXo(y0) > 9/10. Moreover, ^„(y)! < 1/10 for ( x0,y,g(x0,y )) G B0 and
 kxoiy)! > 9/10 if(x0,y,g(x0,y)) G Bx. Since gXo C (ß0U Bx )xoi 9xq does not
 have the Darboux property, which contradicts the continuity of gXo .

 Lemma 2.1 If X is a second countable zero-dimensional space then each
 function defined on X is almost continuous.

 Proof. Fix / : X - * Y and an open neighbourhood G C X x Y of
 /. Then G = U^Li Un x Vn , where the sets Un are clopen in X, the sets Vn
 are open in Y and Un, Vn are non-empty. For any n G N choose yn G Vn.
 Then g = (J^Ļ1(t/n ' (Jt<n Ui) x {yn} is a continuous function defined on X
 and contained in G.

 Q.E.D.

 Corollary 2.1 Every function defined on a boundary subset of di is almost
 continuous (see [40] for real functions defined on compact subsets of I).

 Lemma 2.2 Let A be a subset of I and let f : A - ► 3ft* be a function such
 that f'clA(J) G A(clA(J),ïïk) for every component J of int(A). Then f is
 almost continuous.
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 Proof. Let G C A x be a neighbourhood of /. For every component
 J of int(A) choose an open interval Uj C I such that cIa(J) C Uj and:

 (i) Uj is clopen in A,

 (ii) if a is a left (right) end-point of J and a £ A then inf(Uj ) = a
 (sup(Uj) = a),

 (iii) if a is a left (right) end-point of J and a G A then there exists a neigh-
 bourhood Va of f(a) such that ( inf(Uj),a ) x Va C G (( a,sup(Uj )) x
 Va C G),

 (iv) if Ji, Jļ are components of int(A) then Uj 1 fl Uj2 = 0 or Uj^ C Uj2 or
 Uj2 c u.h.

 Put B = A ' Uj Uj. Then there exist open sets i G N such that

 (v) B C U£i U.,

 (vi) U£i Ui xViCG,

 (vii) Ui are pairwise disjoint and clopen in A ,

 (viii) for any component J of int(A) and for each i G N either Uj D Ui = 0
 or Uj c Ui.

 Fix an arbitrary component J of int(A). Since J'cIa( J) is almost continuous,
 there exists a continuous function gj : cIa(J) - > such that gj C G and
 9j'frA(J) = f'FrA(J). Let g j : Uj - ► be an extension of gj given by
 9j = (inf(Uj), inf(J) ' x {f(inf(J))}'JgjU[sup(J), sup(Uj)) x {f(sup(J))}.

 Observe that A = USi U Uj. For each n G N choose yn G Vn.

 Then g = ļj^i Ui x {y¿} U UjgļJ. t/, 9j is a continuous function defined on A
 and contained in G.

 Q.E.D.
 The following lemma is proved in [30] for real functions defined on the

 real line.

 Lemma 2.3 Let an interval J C Sß be a union of countably many of closed
 intervals In such that int(In) fl int(Im) = 0 for m ^ n and, In D /„+ 1 ^ 0 for
 n G N, and let Y be a convex subspace of$łk. For any function f : J - ► Y
 iff |/» is almost continuous for each n then f is almost continuous, too.
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 Proof. This proof is analogous to the corresponding proof in [30].

 Corollary 2.2 A function f : is almost continuous iff f'[k, k -'- 1]
 is almost continuous for each integer k [34]-

 Note that the analogous result does not hold for functions of two variables.
 Indeed, if / : [-1, 1] x 3ft - ► [-1, 1] is Lipinski's function from Example 1.7
 then /1 [ - 1, 1] x[k,k+ 1] is almost continuous for any integer k (see Theorem
 4.6 below) but / is not almost continuous.

 Theorem 2.2 If f : I - ► is almost continuous and A is a subset of I
 then f'A is almost continuous.

 Proof. By Lemma 2.2 it is sufficient to prove that /'cIa(J) is almost
 continuous for any component J of int(A). If cIa(J) is compact then, by
 Theorem 2.1, /|c/^(J) is almost continuous. Otherwise, cIa(J) can be rep-
 resented as a union of countably many of compact intervals satisfying the
 assumptions of Lemma 2.3. Thus, almost continuity of flcl^i J) follows from
 that lemma.

 Q.E.D.
 On the other hand it is easy to find a set A C I and a continuous function

 f '• A - ► which cannot be extended to an almost continuous real function
 defined on the entire interval I.

 Theorem 2.3 For any non-void, subset A of I and positive integer k the
 following conditions are equivalent:

 (t') each almost continuous function f : A - > 9fř* can be extended to an
 almost continuous function f* : I - >

 (ii) each continuous function f : A - * 9ř* can be extended to an almost
 continuous function f* : I - y 3Č*,

 (iii) the set I ' A is bilaterally c-dense in itself,

 (iv) there exists a function g : I ' A - > such that f U g is almost
 continuous for each almost continuous function f : A - ► 0řfc.
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 Proof. Obviously only two implications need to be proved.
 (ii) => (iii). Assume that xq is a point of I ' A and card((x o, a?o +

 e) ' A) < 2" for some positive e. We define a function / : A - ► by
 f(x ) = (0, 0, . . . , 0) for X < x0 and f(x) = (l/(x - a:0), 0, . . . , 0) for x > x0.
 Then / is continuous and it has no Darboux extension on whole interval I.

 (m) =>■ (¿u). Let ( Jn)n be a sequence of all components of int(A). Note
 that Jn C A for each n E N. Let (Fa)a< 2* be a sequence of all minimal
 blocking sets F C I x such that dom(Fa ) C Jn for no n E N. Then
 card(dom(Fa) ' A) = 2W for every a < 2W. We choose (xa,ya) G Fa such
 that xa / Xß for a ^ ß. Put g(x) = ya if x = xQ, a < 2" and g(x) = 0 for
 other x E I ' A.

 Let / : A - > be an arbitrary almost continuous function. Then / U g
 is almost continuous, too. Indeed, let F be a minimal blocking set in I x
 Then either dom(Fa ) C Jn for some n € N or F = Fa for some a < 2W. In
 the first case F is blocking in Jn x and therefore / (IF / 0. Otherwise
 (xa,ya) E F D g. Thus F D (/ U <7) ^ 0 and consequently / U g is almost
 continuous.

 Q.E.D.
 The following simple but useful fact is proved in [30] (for k = 1).

 Theorem 2.4 Assume that h : (a, b ) - ► !Rfe is almost continuous and y, z E
 hļ = h U {(a, y)}, hļ = h U {(6, z)} and h3 = hļ U h2. Then hļ, hļ, /13

 are almost continuous iff y E C+(h,a), z E C~(h,b) and y E C+(h,a),
 z E C~(h,b ) respectively.

 Theorem 2.5 For any non-empty subset A of I and positive integer k the
 following conditions are equivalent:

 (¿) each bounded almost continuous function f : A - > Sfc* can be extended
 to an almost continuous function f* : I - ►

 (ii) any bounded continuous function f : A - ► can be extended to an
 almost continuous function f* : I - ► 3fřfc,

 (iii) the set I ' A is c-dense in itself

 Proof, (n) => (iii). Assume that xo E I ' A and card((x 0 - e, Xo +
 e) ' A) < 2W for some positive e. Then the function g : A - * given by
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 s(z) = (0,...,0) for X < x0 and g(x) = (1, 0, . . . , 0) for x > x0 is continuous
 and it has no Darboux extension on whole I.

 ( m ) ==> (¿). Let / : A - ► be a bounded almost continuous function
 and J be a fc-dimensional closed cube containing f(A) U {0}. Fix t G J. Let
 (Jn)n be a sequence of all components of int(A). It follows from Theorem
 2.4 that for each n 6 N the function f'Jn can be extended to an almost
 continuous function /* : Jn - > J. Let ( FQ)a<2u, be a sequence of all minimal
 blocking sets in Ix J. As in the proof of Theorem 2.5 we choose a sequence of
 points (xa,ya)a<2u suchthat ( xa,yQ ) G Fa for each a and {(xa,t/a) : a < 2"}
 is a function which agrees with / on the set A. Put f*(x) = fn(x ) f°r x £ Jn
 and n G N, f*(xQ ) = ya for x = xa, a < 2W and f*(x ) = 0 otherwise.
 Then f*'A = f and /* € From Theorem 1.9,(1) we obtain that

 The implication (i) => ( ii ) is obvious.
 Q.E.D.

 3 Compositions.

 Obviously the class 3Č) of all functions having the Darboux property
 is closed under compositions. Thus the following fact follows from Theorem
 1.10,(1).

 Theorem 3.1 The composition g o / of almost continuous functions f,g :
 3řř - > 3Č has Darboux property .

 On the other hand, there exists a function / G .4(/, I ) such that / o /
 has no fixed point and consequently is not almost continuous [39] (see also
 [33], where for arbitrary positive integers n,m almost continuous functions
 / : In - > /m, g : Im - > In are constructed such that the composition go f
 has no fixed point). The foregoing suggests also the following question.

 Problem 3.1 Is any Darboux function from di into 3fř a composition of (two)
 almost continuous functions ? [39], [49]

 Theorem 3.2 Assume A(c). Then any function from the class £>*(3?, 3?) is
 the composition of two almost continuous functions [Ą9].
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 Now we shall prove a similar result concerning ( K,G ) pairs of topological
 spaces.

 Proposition 3.1 Suppose that X is a 7' space, ( X , Y ) and ( Y , Z) are (K, G)
 pairs with blocking families T and 1C, respectively. If card(J-) = card(JC) =
 card(X) = card(Y) = u and any F E T satisfies the following condition:

 (1) the set dom(F) cannot be decomposed into less than k subsets which are
 nowhere dense in dom(F),

 then every function f : X - ► Z such that

 (2) card(G fl /-1(z)) = k for any F E J7, z E Z and any non-empty set G
 open in dom(F),

 can be expressed as a composition of two almost continuous functions f' G
 A(X,Y) and f2 e A(Y,Z).

 Proof. Let (za)a</e5 ( Fa)a<K and ( Ka)a<K be sequences of all points of
 X , and all sets from T and /C, respectively. We choose for each a < k points
 (aa,a'a) G Fa, ( ba,b'Q ) E Ka and ca E Y such that

 (i) aa ap, ba bß and ca ^ Cß for a ^ ß,

 (ü) if aa = a'ß for ct,ß < k, then f(aa) = f(a,ß),

 (iii) if a'a = bß for ot,ß < k, then f(aa) = b'ß ,

 (¿u) if a'a = Cß for a,ß<K, then f(aa) - f(xß),

 (u) ba ^ cß f°r ot, ß < K.

 We shall verify that it is possible to choose such points. Assume that a < k
 and (aß, a'ß), (bß,b'ß), Cß are chosen for ß < a. Fix for each x E dom(Fa) a
 point y(x) such that (x,y(x)) E Fa. Put Aß = {iG dom(Fa) : y(x) = a'ß),
 Bß = {x E dom(Fa) : y(x) = bß}, Cß = {x E dom(Fa) : y(x) = Cß} for
 ß < a. Now, if¿> = dom(FQ)''Jß<a(Aß'JBßUCß'J{aß}) has cardinality«, we
 choose any aQ E D and put aa = y(aa). Otherwise, intdom(Fa)(cldom(Fa)(Ap U
 BßUCß)) is non-void for some ß < a. Let, e.g., G = intdom(Fa)(cldom(Fa)Aß) ±
 0. Then G x {a'ß} C Fa, so G C Aß. Choose aa E G D /-1 (f(o,ß)) ' {a7 : 7 <
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 a} and put a'a = a'ß. Next we choose ba G dom(Ka)'({bß, a'ß : ß < a}U{a^})
 and caeY' ({bß, a'ß , Cß : ß < a} U { a'a , ba}). Let fi, f2 be defined by

 f rx' - f a'c for x = a<x, a < K,
 ļ ca for x = xa and x {aß : ß < k}

 f(aQ) for y = a'a, a < u
 r(y) = J b'a for y = ba, a < k,

 f(xß) for y = Cß, ß < K
 k f(x 0) otherwise.

 Then fi e A(X, Y), f2 G A(Y, Z ) and f = f2 o fi.
 Q.E.D.

 Now we shall consider under which conditions for fi and f2 the composed
 map /2 0 fi is almost continuous.

 Theorem 3.3 For each f G A(X,Y) and g G C(Y, Z) the composed map
 g o f is almost continuous [60].

 Theorem 3.4 If h : X - > Y is a homeomorphism and f : Y - ► Z is
 almost continuous then the composition f oh is almost continuous [27].

 Proof. Let G C X x Z be an open neighbourhood of / o h. Then
 Go = {(h(x),z) : (x, z) G G} is an open neighbourhood of the function / in
 Y x Z. Let g : Y - ► Z be a continuous function contained in Go- Then
 goh-.X - > Z is a continuous function contained in G.

 Q.E.D.

 Corollary 3.1 Suppose that h is a homeomorphic injection from X into Y
 such that rng(h) is closed in Y . Then f o h G A(X, Z) for any f G A(Y, Z).

 Proof. It follows from Theorem 2.1 that f'rng(h) G A(rng(h), Z).
 Since h is a homeomorphism between X and rng(h), f oh = (f'rng(h)) o h G
 A(X,Z).

 Q.E.D.

 Theorem 3.5 If a space X is compact, Y is a Hausdorff space, g G C(X, Y)
 and f G A(Y, Z), then f o g G A{X, Z).
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 Proof. This theorem is proved in [60]. We give here only the sketch of
 the proof which is based on the notion of blocking sets. Suppose that fog
 is not almost continuous. Let K be a blocking set for / o g in X x Z. Then
 {(g(x),z) : {x,z) E K} is a blocking set for f'rng(g ), which contradicts
 Theorem 2.1.

 Q.E.D.
 Note that the assumption about X is important. Indeed, let / : [- 1, 1] x
 - > [ - 1, 1] be Lipinski's function from Example 1.7 and let g : [-1,1] x

 9Í - ► [-1, 1] X {0} be a continuous function given by g(x , y ) = (ar, 0). Then /
 is not almost continuous, /|([- 1, 1] x {0}) is almost continuous (by Corollary
 3.1) and / = (/|[-1, 1] x {0}) o g.

 Theorem 3.6 If A is a subspace o/3ř, / 6 C(A,āft) and g (E -4(3fř, then
 gof £ A{A, W).

 Proof. This is a consequence of Theorem 3.5 if A is a compact interval,
 of Lemma 2.3 if A is an interval and, finally, of Lemma 2.2 for arbitrary
 subset A of 3ř.

 Q.E.D.

 Lemma 3.1 Suppose that C is a closed , dense in itself and nowhere dense
 subset of I and f : I - > satisfies the following conditions:

 (1) rng(f) is an interval,

 (2) f'J is almost continuous for any component J of the complement ofC,

 (3) both unilateral cluster sets of the function f at the end-points of com-
 ponents of the set I ' C equal rng(f).

 Then, f is almost continuous.

 Proof. Suppose that / is not almost continuous. Let K be a minimal
 blocking set for / in I x rng(f). Conditions (2) and (3) and Theorem 2.4
 imply that f' J is almost continuous, for arbitrary component J of I ' C .
 Therefore, dom(K) is contained in the closure of no component of I ' C and
 consequently there exists a component J contained in dom(K). Suppose
 J = ( s,t ). Since (/i|[0, 5]) and (/ť|[í, 1]) are not blocking in I x rng(f),
 there are continuous functions g,h : I - ► rng(f) such that (#|[0, s]) D

 481



 K = 0 = (/í|[ť, 1]) D K. Finally it is easy to observe that the function
 k = p|[0, s] U /|(s,i) U /i ļ [/, 1] is almost continuous and disjoint from K , a
 contradiction.

 Q.E.D.

 Theorem 3.7 Let f' £ -4(/, 3ř), /2 6 -4.(3ř, 3£), the set D of all points at
 which /1 is not continuous is nowhere dense and adequate unilateral cluster
 sets of the function /1 at the end-points of components of the set I'D coincide
 with rng(fi). Then /2 o fļ is almost continuous.

 Proof. By Theorem 3.6 we obtain that (/2 o fi)'J € A(J, 3ř) for any
 component J of I ' D. Since /2 0 /1 has the Darboux property, rng(fļ ° fi)
 is an interval. Note that unilateral cluster sets of the function /2 o fi at
 the end-points of components of the set I ' D equal rng(f2 o fļ). Almost
 continuity of the composition f2 o fļ now follows from Lemmas 3.1 and 2.3.

 Q.E.D.

 Lemma 3.2 Let J-q, K,q be families of subsets of X and Y respectively such
 that max(card(Fo),card(lCo)) < k and card(M) > k > u for all M Ç
 T0 U Kq. Then for every injection f : X - > Y there exist sets A,C C X
 and D C Y such that:

 (1) A,C and f~1(D) are pairwise disjoint, ,

 (2) card(AnF) = k for each F E T 0 and card(K '(f(A)U /(C) U D)) > k,
 for each K € /Co,

 (3) card{C ) = k and card(D) = k.

 Proof. Let ( FQ)a<K , (Ka)a<K be sequences of sets from classes To and
 /Co respectively, such that card({ct : Fa - F}) = k for each F E To and
 card({a : Ka = /<"}) = k for each K G /Co. Choose sequences
 ( ba)a<K , (ca)a<K and ( da)Q<K of points such that the following conditions
 hold for each a < k:

 (0 aa,ca € Fa ' ({aß, cp} U f~l{{bß,dß : ß < a})) and aa ± ca,

 ( ii ) ba,da G Ka ' ({bß,dß : ß < a} U {f(aß), f(cß) : ß < a}) and ba / da.
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 Put A = {aa : a < /c}, B = {bQ : a < k}, C = {ca : a < k} and
 D = {da : a < /c}. Then the conditions (1) and (3) are obvious. Since
 {aa : Fa = F} C A D F, card(A fi F) = k for all F G Tq. Similarly, for each
 K G K0 we have {ba : Ka = K} C K ' ( f(A ) U f(C) U D) and therefore
 card(K ' ( f(A ) U f(C) U D)) > k.

 Q.E.D.

 Proposition 3.2 Suppose that (X, Y) and ( Y,Z ) are ( K,G ) pairs with bloc-
 king families T and K,, respectively, card(Y ) = card(^F) = card(ÌC) = k > u>
 and card(Z) < k. If a function f : X - ► Y satisfies the following condition:
 card(f(dom(F))) = k for each F E J7, then for every surjection g : Y - ► Z
 there exist almost continuous surjections h' : Y - ► Z and hļ '■ X - > Y
 such that hļ o f = g o /i2.

 Proof. Let ( Fa)a<K and (Ka)a<K be sequences of all sets from the classes
 T and £, respectively. Let (ya)a<K and (za)a<K be sequences of all points of y
 and Z, respectively (the sequence ( za)a may not be one-to-one). Let ~ be the
 equivalence relation in X induced by /, i.e. x' ~ Xļ iff f(x i) = f(x 2). The
 equivalence class of x with respect to relation ~ is denoted by [x]. For A C X
 let A~ = {[x] : x G A} and let /~ : X~ - ► Y be defined by /~([a;]) = /(^)-
 Let To = {(dom(F))~ : F G F} and Ko = { dom(K ) : K G K}. Note
 that all assumptions of Lemma 3.2 are satisfied for /~, To and Kq. Let
 A, C C X~ and D be as in that lemma. Moreover, let {Aa : a < /c} and
 {Ba : a < k} be partitions of the sets A and B = Y ' ( f~(A U C) U D)
 into subsets which intersect each set from To and Kq , respectively and let
 he : C - > Y and hp : D - ► Z be arbitrary surjections. Now we define
 surjections hļ : Y - ► Z and hļ : - > Y such that hi o f~ = g o h^.

 (а) hļ'C = he and h''D - hß.

 (б) Let [x] G A. Then [x] G Aa for some a < k. If [x] G Aa D (dom(Fa))~,
 then we choose y E Y such that (s, y) G Fa for some s G [a:] and define
 ^2 (M) = V- If M e Aa ' (dom(Fa))~ , we put /i^([ x ]) = ya.

 (c) Let y E B. Then y G Ba for some a < k. If y G Bar'dom(Ka), we choose
 z G Z such that ( y , z) G Ka and define h'(y) = z. If y G Ba'dom(Ka ),
 put hļ(y) = za.

 (d) If [x] ^ A U C then /~( [ar]) G (i? U D). Since g is a surjection, there
 exists y E Y such that g(y) = /íi(/~([z])) and we define /^([a;]) = y.
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 (e) If y € f~(A U C) then y = /~([z]) for exactly one x G A U C and we put
 hi(y) = g(hļ ([x])).

 One can verify that the definition of and is correct and h' o /~ = g o h2.
 Now define h2 : X - > Y by h 2(x) = /i^([x]). Then hļ is a surjection and
 M / = g o h2. Moreover, hļ and hi intersect all blocking sets from T and
 K, respectively, so they are almost continuous.

 Q.E.D.

 Corollary 3.2 For any bijection b : In - ► Im there exist almost continuous
 surjections h : /m - y /m and k : /" - ► /n for which the compositions bok
 and hob are almost continuous.

 Proof. Using Proposition 3.2 for / = b and g = idim we obtain almost
 continuous surjections h : Im - ► Im and h2 : In - ► Ira such that h2 = hob.
 Similarly, for / = id¡n and g = b there exist almost continuous surjections
 h' : In - y Im and k : /" - ► /" such that hi = b o k. The functions h and
 k have the required properties.

 Q.E.D.
 For a given family T of functions from X into X we define two classes:

 - the class of all function / : X - ► X such that g o / G f for any
 g from T ,

 M.0(T) - the class of all function / : X - ► X such that / o g E T for any
 g from T .

 Problem 3.2 Characterize the classes M0(A(I,I)) and

 Finally remark that there exist a continuous surjection / from / onto I
 and g £ A(I , I) such that g o f G A(I , I) [41].

 4 Cartesian products and diagonals.
 Theorem 4.1 Assume that X2 is a compact space, fi E A{Xi,Yi) and f2 G
 C(Xļ,Yļ). Then the cartesian product h = (fi, fi) '■ Xi x Xļ - ► Yi x Y2 of
 fi and fļ (given by h(xi,x2) = (fi(xi), fļ(x2))) is almost continuous (cf. [1]
 if all Xi, X2,Yi,Y2 are compact).
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 Proof. Suppose that K C X' x X2 x Y' x Y2 is a blocking set for
 h. We shall verify that F = {(xi,t/i) G Xi x Vi : (xi,x2,yi, /2(^2)) G
 K for some x2 G X2} is blocking for /1 in Xi x Vļ.

 (1) F is closed. Indeed, fix (xi, t/i) € Xi x Y' ' F. Then for each x2 G X2,
 {xi,x2,yi,f2(x2)) (Ļ K. For every x2 G X2 choose open neighbourhoods
 U'{x2) of xi, U2(x2) of x2, Vi (£2) of y' and ^(£2) of f(x 2) such that Ui(x2 ) x
 U2(x2)xVļ(x2)xV2(x2) is disjoint with K. Let W{x2) = U2{x2)C'f1l(y2(x2)).
 Then Ui(x2) x W(x2) x Vi(x2) x V2{x2) C Xx x X2 x Yi x Y2 ' K is an
 open neighbourhood of the point {xi,x2,yi,f(x2)). Let VK(ii), . . . , W(ť„)
 be a finite subcovering of X2 chosen from the covering {W{x 2) : x2 G
 X2). Denote U = n"=i ¿M*«) an(l V = fi"=i Vi(U). Then U x V is an open
 neighbourhood of (xl5yi) disjoint with F.

 (2) Since K and h are disjoint, F is disjoint with f'.
 (3). If g : X' - ► Y' is continuous then ( g,f2 ) : Xi x X2 - ► Vļ x Y2

 is continuous, too. Since K is blocking, (xi, x2, g(xi), f2(x2)) E K for some
 xi G X', x2 G X2, and therefore (xi,<7(xi)) G F.

 Q.E.D.
 Note that the assumption about X2 is important. Indeed, let Xi = Yi =

 Y2 = [-1, 1], X2 = /0 : [-1, 1] - ► [-1, 1] be the function from Example
 1.1, / be Lipinski's function from Example 1.7 and /1 = 0. Suppose that
 h = (foji) is almost continuous. Since / is a composition of h and the
 projection tti from [-1, 1] x [-1, 1] into [-1, 1], Theorem 3.1 implies almost
 continuity of /, a contradiction.

 Theorem 4.2 Let MP(A(I , /)) be the class of all functions f from I into
 such that (f,g) G A(I x 7,3? x 3ř) when g G .4(7, 3ř). Then A4P(A(I , I)) =
 C(7,R).

 Proof. The inclusion " D" follows from Theorem 4.1. Now assume that

 f : 7 - > is not almost continuous. It will be proved in Theorem 6.2 that
 there exists g G >4(7, 3fř) such that f + g & A(1, 9fc). Suppose that ( f,g ) G
 A(I X 7,3fř2). Then / + 5, as the composition ( f,g ) with the "addition" map
 is almost continuous, a contradiction.

 Q.E.D.
 Now we shall consider functions /, g defined on the same space. Assume

 that / : X - ► Y and g : X - > Z. The map fAg : X - y Y x Z defined
 by fAg(x) = (/(x),^(x)) for any x G X is called a diagonal of / and g. It
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 is obvious that fAg = (f,g) o d, where d : X - ► {(x,x) : x G X } is given
 by d(x) = (x,x). The following fact follows from Corollary 3.1.

 Theorem 4.3 If X is a Iīausdorff space and ( f,g ) G A(X x X, Y x Z) then
 fAg € A(X,Y x Z).

 Theorem 4.4 If f G ^(A", Y) and g G C(X, Z) then fAg G A(X, Y x Z)
 [SO].

 Proof. If X is compact, this theorem follows from Theorems 4.1 and
 4.3. In the case of metric spaces X, Y and Z it is proved in [48] (see also [1]
 for X , y, Z metric and compact).

 In the general case assume that fAg is not almost continuous. Let K be
 a blocking set for fAg in X x (Y x Z). It is easy to verify that F = {(x, y) :
 (x,y,g(x)) G K) is blocking for / in X x Y.

 Q.E.D.
 For arbitrary topological spaces X , V, Z let Md(A(X , Y x Z) be the family

 of all functions from X into Y such that fAg is almost continuous provided
 g : X - ► Z is almost continuous. As in Theorem 4.2 one can prove the
 following equality.

 Corollary 4.1 ft x ft)) = C(ft, ft)

 Lemma 4.1 Suppose that D is a closed and nowhere dense subset of I , ( /n)n
 is a sequence of all components of the complement of D and f : I - ► ftfc
 satisfies the following conditions:

 (1) f'In is almost continuous for every n G N ,

 (2) f'D is continuous.

 Then f is almost continuous.

 Proof. We can assume that 0, 1 G D. Let G be an open neighbourhood
 of / in I x ftfc. For each x G D we choose open intervals Ux, Vx such that:

 (a) (xj(x)) eUxxVxcKxV*CG,

 (b) f'{DnīTx)<zīrxxVx,
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 (c) inf(Ux ) < inf(D D Ux) < sup(D D Ux) < sup(Ux) (this condition must
 be interpreted unilaterally at the points 0 and 1).

 Since f'D is compact, there are points xi,...,xn G D such that f'D C
 Ur=i(^z. x Vxi)- We can assume that 0 € UXi, 1 G UXn and inf(UXi) <
 in f(UXj) for i < j. If UXi H UXi+i ^ 0 then there exists a continuous function
 g defined on W = UXi U UXi+1 such that g C G and g(x) = f(x) for x G
 {inf(D H VK), sup(D D W)}. Let W', . . . , Wm be components of the union
 U"=i U xi- For every i = 1 there exists a continuous function g2i- 1
 defined on W, such that ^2i_i C G and g(x) = f(x) for x 6 {inf(D D
 Wi),sup(D H W¿)}. Additionally, for i < m there exists such that Ini =
 (snp(D D Wi), in f(D D Wi+i)). Since f'Ini is almost continuous, there exists
 a continuous function g2i '• Ini - * such that g2i C G, and g2i{x) - f(x)
 for x e {inf(Ini), s«p( /„.)}. Then U¿=i-1 <7, is a continuous function defined
 on all of / and contained in G.

 Q.E.D.

 Theorem 4.5 Suppose that /i,/2 o.re almost continuous real functions de-
 fined on I and D is the set of points at which f' is discontinuous. If f''D is
 continuous and D C ^(/2), then /1A/2 is almost continuous.

 Proof. This is a consequence of Lemma 4.1 and Theorem 4.4.
 Note that the assumption "/) C C(f2)n is important. Indeed, let f2 :

 [-1,1] - y [ - 1, 1] be defined by /¿(x) = (- l)'sm(l/x) for x ^ 0, i = 1,2
 and /i(x) = f2(x) = 1. Suppose that /1A/2 G .4([- 1, 1], [- 1, lj2). Then, as
 in Theorem 4.2, /1 + /2 € ,4([- 1, 1], [- 1, 1]), but this is impossible because
 /1 + /2 does not have the Darboux property.

 Theorem 4.6 Suppose that X2 is compact, /1 G A{X',Y ), f2 G C(X2,Y),
 and F G C(Y' x Y,Y). Then the function F(fi,f2) : X' x X2 - ► Y defined
 by F(fx,f2){xi,x2) = F(/i(x!),/2(x2)) for (xi,x2) G Xļ x X2 is almost
 continuous.

 Proof. The function (fi,f2) : X' x X2 - y KxFis almost continuous
 by Theorem 4.1. Hence F(fi,f2) is almost continuous by Theorem 3.1.

 Q.E.D.

 Corollary 4.2 If X 2 is compact, f' G A(X',Y) and f2 G C(X2,Y), then

 (1) F : Xi x X2 - ► Y given by F(xi,x2) = fi(x') is almost continuous,
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 (2) if Y = then Fi(xi,x2) = fi(xi) + /2(^2), ^2(^1,^2) = /i(zi)/2(z2),
 ^3(^1, x2) = max(fi(xi), fļ{x2)) and F4(x i,x2) = rnin(fi(xi), f2{x2))
 are almost continuous.

 Note that the assumption about X2 in the last results is important (see e.g.
 Lipinski's function from Example 1.7). As it was remarked by Grande [26],
 continuity of all sections of / : / x / - ► I does not imply almost continuity
 of /.

 Example 4.1 There exists a function f : I x I - ► I such that fx,fy are
 continuous for each x,y G I but f is not almost continuous .

 Indeed, let / : lxi - ► / be defined by f(x,y) = 2 xy/(x2 + y 2) if
 (x,y) ^ (0,0) and /(0,0) = 0. Then all sections of / are continuous but
 for a connected set D = {(z, z) : x G 1} we have f(D ) = {0,1}. Thus
 the function f0 from I into I given by fo(x) = f(x,x) does not have Dar-
 boux property. Suppose that / is almost continuous. Then f'D is almost
 continuous, in contradiction with Corollary 3.1.

 Lemma 4.2 Assume that m G N, F G C(9Č2,3Č), / G .4(3řm,3fř), g G
 C(3£, 3ř) and h : 5čm+1 - ► 3? is defined by

 h(x 1 , . . • , Xy^Xm-^i) - F(f(xi , . . .

 If there exists a compact subset K of such that [h ^ 0] C x K then h
 is almost continuous.

 Proof. Fix reals a, 6 such that K C ( a,b ) and an open neighbourhood
 G C 3řm+2 of h. Let (Sk)k be a sequence of all m-dimensional cubes of
 the form + 1]» where ki,...,km are integers. For each k G N
 choose positive reals rk,qk such that Sk x [a - rt,a + r*] x [- rfc,r¿] C G
 and Sk x [b - qk,b + qk ] x [-qk,qk] C G. By Theorem 4.6, h'$tm x [a, 6]
 is almost continuous and therefore there exists a continuous function t :

 x [a, 6] - ► 3Č contained in GWJfL^Sk x {a} x ((- °°,- r/tļ U fa, 00)) U
 Sk X {6} X ((-00, - qk] U [çfc, 00))). Let ta be a surface consisting of all closed
 segments in 3řm+2 with end-points (x, a, t(x , a)) and (x, a - |ť(x, a)|, 0) for all
 x G 3řm. Analogously, let U be a surface consisting of all closed segments
 in 9čm+2 with end-points (x, 6, t(x, b)) and ( x,b+ |ť(x, 6)1,0) for all x G 8čm.
 Then one can easily see that t U ta U tb U (9?m+1 ' dom(t U ta U tķ)) x {0} is a
 continuous function contained in G. Q.E.D.
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 Corollary 4.3 Iff G .4(3řm, 3£), g 6 C(3ř, 3Î) and the support of g is bounded
 then the function h : 3řm+1 - ► defined by

 h(x i , . . . ) = f{X' Î • . ■ ®77i) ' 1 )ł

 is almost continuous.

 Theorem 4.7 Each almost continuous function f : 5R* - ► 3? can be ex-
 tended to almost continuous function f* : - ► 3 Í such that /*(x, 0) =
 f(x) for all X G (cf. [37], Theorem 5.6.).

 Proof. Put g(x) = max( 1 - |x|,0) for x G and f*{x', . . . , xjt+i) =
 f(xi, . . . ,Xk) • g(x fc+i). The almost continuity of f* follows from Corollary
 4.3. Moreover, /*(x,0) = f(x) for all x G 3Č*.

 Q.E.D.

 Corollary 4.4 Assume that k,m are positive integers and k < m. Then
 each almost continuous function f : üR* - ► can be extended to an al-
 most continuous function f* : such that f*(x', . . . , Xk, 0, . . . , 0) =
 f(x for ( xi,...,xk ) G $tk.

 5 Limits of sequences.

 Lemma 5.1 Suppose that (X,Y) is a ( K,G ) pair, T is a blocking family
 for (X, Y) and max(u>,K,) < A = card{!F). Then there exists a partition of
 X into k many sets Xa (a < n), such that card(dom(F) DXa) > A for each
 a < k and F G T .

 Proof. Let ( Fa)a<' be a sequence of all sets from the family T ,
 let ip : A - ► k X A x A, tp = (<pi,tp2i<p3) be an arbitrary bijection. For
 each a < A we choose xa G dom{F^3(a^) ' {xß : ß < a). Then the sets
 XQ = {xp : ß < A, ipi(ß) = a} for 0 < a < k and X0 = X ' Uo<a<K XQ form
 the required partition.

 Q.E.D.
 Recall that a function / : X - ► y is a discrete limit of a net

 where (E, <) is a directed set, iff for each x G X there exists Oq G E such
 that fa(x) = f(x) whenever <r0 < o .
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 Proposition 5.1 Suppose that (X, Y) is (A', G) pair, T is a blocking family
 for (X, Y) and (£,<) is a directed set such that card(!F) > card(H) > u.
 Then each function f : X - ► Y is a discrete limit of a net of almost
 continuous functions from X into Y .

 Proof. Let card(F) = A and T = {Fa : a < A}. By Lemma 5.1
 there is a partition { X a : a E £} of X such that card(dom(F) D Xc T) > A for
 every <r G E and FGf. For each <r E S and a < A choose (xaļ0nyata) E Fa
 such that xa<a E X„ ' {x„tß : ß < a}. Let fa be defined by fa{x„t0) = ya<Q
 for a < A and fa{x ) = f(x) for A' ' {xa,a : a < A}. Then any fa is almost
 continuous and for every x E X there exists <t0 € S such that fa (x) = f(x)
 for all a >(Jq.

 Q.E.D.

 Corollary 5.1 Suppose that (X, Y) is ( K,G ) pair with an infinite blocking
 family T . Then each function f : X - ► Y is a discrete limit of a sequence
 of almost continuous functions in X x Y .

 In particular each function f : 3fř - ► 3ř is a discrete limit of a sequence
 of almost continuous functions (fn)n [34]-

 Remark 5.1 /// : üR - y 3fè is Lebesgue measurable (has the Baire property),
 then f is a discrete limit of a sequence of m easurable functions ( with the Baire
 property) from the class .4(3?, 5R) [26],

 Recall the following notion. A sequence (/Q)a<Wl of functions from X
 into Y converges to a function / : X - v Y if for each x E X and each
 neighbourhood U of f(x) there exists a < such that fß(x) E U for all
 a < ß <u i [57].

 Corollary 5.2 Suppose that (X, Y) is ( K,G ) pair and T is an uncountable
 blocking family for (A, V). Then each function f : X - > Y is a limit of a
 transfinite sequence {fa)a< wi of almost continuous functions in X x Y .

 In particular every function f : 3ř - ► is a limit of a transfinite sequence
 (fa)a< ui of almost continuous functions.

 Remark 5.2 Suppose A(c ) (A(m)). If f : 3ř - ► 3ř is measurable (has
 the Baire property) then it is a transfinite limit of a sequence of measurable
 functions ( with the Baire property) from the class ^4(3ř, 9?) ( see [26]).
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 Suppose that Y is a metric space and T is an arbitrary family of functions
 from X into Y . The class of all limits of uniformly convergent sequences of
 functions from J- will be denoted by T . Note that:

 (1) The class «4(3ř, 8č) is not closed with respect to uniform limits [34], [38].

 (2) >4(3fř, 3řř) C Z>(9ř, 3ř) = U. , where the class U is defined in [13].

 (3) There exists a connectivity function / from / into I which is not a limit
 of uniformly convergent sequence of almost continuous functions [29].
 Thus U ' >l(R,R) ¿ 0.

 Suppose that (X, Y) is a (K,G) pair with a blocking family J7, ( Y,py ) is
 a metric space and Ky is the least cardinal for which there exists a family
 of Ky many sets of the first category in Y which union is of the second
 category (or Ky = 0 if Y is of the first category on itself). For arbitrary
 / : X - > Y and positive e we define an e-hull S(f,e ) of / in X x Y as
 S(f,e) = {(®,î/) G X x Y : py(f(x),y) < e}. We define two conditions
 for /:

 (a) for sufficiently small e > 0 and for every blocking set K € T either
 card(dom(K f~l S(f,e))) > card(F) or J9y(/(x),e) C Kx for some x G
 X,

 ( ß ) for each e > 0 and for every blocking set K 6 T either card(dom(K fl
 S(f,e))) > Ky or inty(I' fi S(f,e))x ^ 0 for some x £ X.

 Under the assumptions and denotations above the following implications
 hold.

 Proposition 5.2

 (1) For every function f from X into Y we have:

 (a) => / 6 ■4(X,V)

 (2) Moreover, if (V, +) ts a topologica! group and it is a Baire space then

 f e A(X,Y) =» (ß)
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 Proof. (1) For sufficiently small positive e we shall find an almost
 continuous function g from X into Y contained in S(f,e). Let card(J- ) = A
 and let (Ka)a<x be a sequence of all blocking sets from T. For each a < A
 we can choose a point ( xaiyQ ) G Ka fl S(f,e ) such that for a, ß < A the
 condition xa = Xß implies ya = yß. Indeed, assume that ( Xß,yß ) are chosen
 for ß < a. There are two possible cases. If card(dom(Ka D S(f,e))) > A
 then we choose ( xQ,yQ ) 6 Ka fl S(f,e) such that xa ^ iß for all ß < a. In
 the other case, BY(f(x),e) C ( Ka)x for some x G X and we put xQ = x and
 Va = yß whenever x = Xß for some ß < a or yQ - f(x) otherwise. It is easy
 to verify that the function g : X - > Y defined by g(xa) = ya for a < A and
 g(x) = f(x) for other x is almost continuous and g C S(f,e).

 (2) Suppose that (/„)n is a uniformly convergent sequence of almost con-
 tinuous functions and / is the limit of (/„)„. Fix K 6 T, a positive e and sup-
 pose that card(dom(K fi S(f,e))) < ky. Then /„ C S(f,e/2) for some posi-
 tive integer n. Additionally there exists a positive 6 such that fn+y C S(f , e)
 whenever y € BY( 0, S). By Theorems 4.4 and 3.3, fn + y € A(X, Y) for any
 y E By(0,ó). Thus fn + y intersects K , i.e.

 Vy e By(0,6) 3(xy,ty ) 6 K D (/„ + y) C S(f,e).

 Since card(dom(K D S(f,s))) < ky, the set A = {y € BY(Q, Í) : xy = x}
 is of the second category in BY(0, Í) for some x G X. Then ( x,ty ) G fn + y
 for y e A and therefore, ty = fn(x ) + y. Thus the set {ty : y G 4} is
 of the second category in fn(x) + BY(0,6) and consequently there exists a
 non-empty open set U C 5y(0,¿) such that fn(x ) + U C cl({ty : y G /1}).
 Since K is closed, fn(x) + U C Kx and we obtain (ß).

 Q.E.D.

 Corollary 5.3

 ( 1) If for sufficiently small positive e and for every blocking set K in Uč2
 either card(dom(I< fi S(/,e))) = 2W or ( f(x ) - e,f(x) + e) C Kx for
 some x G then f G -4(3ř, 3Fř) .

 (2) Assume A(c). If f G ,4(3ř, 3ř) then for each positive e and blocking set
 K in ft2 either card(dom(I< nS(f,e))) = 2 w ortni((ÄTl5(/,e)),) ¿ 0
 for some x G X .

 Corollary 5.4 Every function f : / - > 3ř which satisfies the condition:
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 (*) card({x G J : ' f(x) - g| < e}) = 2<" for each subinterval J C I, rational
 q and positive e ,

 is a limit of uniformly convergent sequence of almost continuous functions.
 In particular, T>* C ,4(7, 3ř).

 Proof. By Proposition 5.2 it is sufficient to verify that / satisfies condition
 (a). We shall prove that card(dom(S(f,e))) = 2W for every blocking set
 F C / X 3fč, positive e and / satisfying the condition (*). Indeed, fi x n Ç N
 such that 2 /n < e. For every integer k define Fk = {x € / : 3 y G (x, y) €
 F and I y - (2k - l)/n| < 1/n} = dom(F D (/ x [(2k - 2)/n,2fc/n])). Note
 that each Fk is closed and the interior of the set 'Jkez Fk = dom(F) is non-
 empty (see Theorem 1.2 (3)). Hence there exists a non-degenerate interval
 J which is contained in Fk0 for some integer ko. Put m = 2ko - 1 and
 A = {x e J : I f(x) - mļn' < 1/n}. By (*), card(A) = 2W. Moreover, for
 each x € A there exists yx such that (x,yr) G F and - m/n ' < l/n.
 Hence | f(x) - yx' < 2/n < e for x G A and the condition (a) holds.

 Q.E.D.

 Problem 5.1 Characterize the class of all uniform limits of almost contin-
 uous functions from Ik into I [34].

 Note that the analogous problem is open for the class Conn(I, I) [11]. For
 k > 1 the class Conn(Ik , I) is closed under this operation [25]. This is not
 true for the class A(Ik,I).

 Example 5.1 For any k there exists a uniformly convergent sequence of
 almost continuous functions from Ik into I which limit is not almost contin-
 uous.

 Indeed, let (fn)n be a uniformly convergent sequence of almost continu-
 ous functions from I into I which limit / is not almost continuous. Let
 gn,g be functions from Ik into I defined by gn(xi, . . . , x*) = /„(x i) and
 g(x', . . . ,Xfc) = /(x i). Then g is a uniform limit of gn, by Corollary 4.2 all
 gn are almost continuous and, by Theorem 2.1, g is not almost continuous.

 Now we shall consider the notion of almost continuous approximation
 which was introduced in [1]. A sequence (/n)n of functions from X into
 Y almost continuously approximates a function / : X - * Y if for every
 sequence (x„)„ of points from X , either there exists n such that /n(xn ) =
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 f(xn) or there exists a subsequence (a;nJ of (;rn) and x G X such that xni - ►
 X and fn,{xm ) - ► /(®) (here X and Y are metric) [1].

 Theorem 5.1 The sequence ( /„)„ almost continuously approximates f iff
 for each open neighbourhood U of f there exists n G N such that fn G U [1].

 Corollary 5.5 If (/„)n is a sequence of functions from the class A(X, Y)
 and (fn)n almost continuously approximates f, then f G .4(A', Y) [1],

 Theorem 5.2 Assume that X and Y are compact metric spaces. Then
 f G A(X, Y) iff there exists a sequence ( /n)„ of continuous functions which
 approximates almost continuously f [1].

 6 Operations.

 6.1 Sums.

 Proposition 6.1 Suppose that (K, -j-) is a topological group, (A', Y ) is a
 ( K,G ) pair, K is a blocking family for (.Y, Y) and k is a cardinal such that
 max(uj, k) < A = card(IC). Then for any family T of functions from X into
 Y with card{T ) = « the following condition holds:

 Ua{F) : there exists g : X - ► Y such that g + / G A{X, Y) for all f G T.

 In particular, each function f from X into Y can be expressed as a sum of
 two almost continuous functions in X x Y .

 Proof. Let { Xa : a < k} be a partition of the space X such that
 card(dom(K) fl A'a) > A for each a < k and K G K (such partition exists
 by Lemma 5.1). Let ( Kß)ß<' be a sequence of all blocking sets from the
 family AC. For every a < k and ß < A choose (x^, ya<p) G Kp such that
 xa,0 € Xa ' {ia,7 : 7 < /?}. Let g : X - * Y be defined by g(xQß) =
 Va,ß - fa(xQ,ß) for a < k and ß < A and g(x) = 0 otherwise (0 denotes the
 neutral element of the group (V,+)). Since (xQtß, ya,0) G (g + fQ) D I<ß for
 ß<',g + faeA(X,Y).

 Now assume that /o = 0. For an arbitrary function / : X - * Y and the
 family T = {/, /0} let g be a function such that h = g + / G A(X, Y) and
 g + /o € A(X, Y). Then / = (-g) + h, g G A(X, Y) and by Theorem 3.3,
 -geA(X,Y).

 Q.E.D.
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 Corollary 6.1 IfT is a family of functions fromlSt into and card(F) < 2W
 then Ua(F) holds. In particular, any function f from into Sřcan be written
 a sum of two almost continuous functions /i,/2 [34]-

 Remark 6.1 If a function f : - ► 3Fř is Lebesgue measurable (has the
 Baire property) then it can be represented as a sum of two almost continuous
 functions which are measurable (have the Baire property) [26].

 The foregoing results suggest the question of how "big" can be families T
 for which the condition Ua(f) holds. For arbitrary topological space X and
 topological group (V, +) let a (A', Y) denote the least cardinal k for which
 there exists a family T of functions from X into Y such that card(F) = k
 and Ua(F) is false (or a(X, Y) = 0 if the condition Ua(Yx) holds). Note that
 Proposition 6.1 implies the inequality a(X, Y) > card(fC) for any (A', G) pair
 (X, Y) with blocking family JC. In particular, a(3ř, 3ř) > 2"' Additionally, it
 is easy to see that the condition ř/a(3řs) is false. Indeed, for every function
 g : 3fř - ► 5ft there exists a function / such that / + g does not have the
 Darboux property. Therefore a(3ř, SR) ^ 0. Hence the assumption (2W)+ =
 22" (which is a consequence of the Generalized Continuum Hypothesis for
 example) implies the equality a(3ř, 3?) = 22<û .

 Problem 6.1 Can the equality a(3ř, 8ř) = 22<" be proved in Z FC?

 Now we shall prove the condition Ua(^F) for some families of real functions
 of the power 22" . Suppose that k is a cardinal, J is a fixed family of subsets
 of I and J- is a fixed family of real functions defined on I. We shall say that
 T is (J, k) regular if there exists a subfamily Tq of T such that cardio) = k
 and for each / G F there exists /0 G Tq with [/ ^ /0] € X. A family J of
 subsets of I has the property (B) if:

 (1) if A e T and B C A then Bel,

 (2) if A € T then J ' A includes a non-empty perfect set for every subin-
 terval J of I.

 Lemma 6.1 Assume that T is a family of real functions defined on I and
 card(F) = 2t". Then there exists a function g such that for each f G T and
 minimal blocking set K , dom(K H(/ + <7)) intersects every non-empty perfect
 set contained in dom(K).
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 Proof. Let T = {fQ : a < 2W}, let {Kß : ß < 2W} be the family of all
 minimal blocking sets in Ix and let ip : 2W - ► 2" x2u x2w , y> = (<¿>1, <¿>2, <^3)
 be an arbitrary bijection. For ß < 2e" arrange all nonempty perfect subsets of
 dom(Kß) in a sequence {Fßn)^K 2*. For each a < 2W choose ( xa,ya ) G K<p2(a)
 such that xa G ^2(a),v3(a)) ' {x-y '■ 7 < a}. Then the function g defined
 by g(xa) = ya - /Vl(0)(:r0) for a < 2W and g(x) = 0 for other x satisfies the
 conditions of the lemma.

 Q.E.D.

 Theorem 6.1 Assume that T is a family of subsets of I with the property
 ( B ) and T is an (1,2") regular family of real functions defined on I. Then
 the condition Ua(T) holds.

 Proof. Let To be a subfamily of T such that card(T "0) = 2e" and for each
 / G T there exists f0 G To such that [/ ^ /0] G J. Fix / G T and f0 G To
 such that [/ ^ /0] G X. Let g be the function defined in Lemma 6.1 for the
 family To- Then (<7 -f /) D K ^ 0 for any blocking A'. Indeed, suppose that
 (g + /) H K = 0. Then C = dom((g + /0) D K ) C [/ ^ /0] and therefore
 Cřl. Thus dom(K) ' C includes a non-empty perfect set, in contradiction
 with the choice of g.

 Q.E.D.

 Corollary 6.2 Let T be the family of all Lebesgue measurable functions (all
 functions with the Baire property ) from into 3ř, To be the family of Borei
 measurable functions and I be the ideal of measure zero (of the first category)
 subsets o/3ř. Then there exists a function g from 3fř into such that f + g G
 •4(3ř, §R) for each f G T '.

 For arbitrary families X, y of real functions defined on a topological space
 X let Aia(X,y) denote the maximal additive class of X with respect to [V,
 i.e.

 Ma{X, y) = {/ G X : f + g G for each g G X}.

 We shall write A4a(X) instead of Aia(X, X) and call this family the maximal
 additive class of X.

 Theorem 6.2

 whenever y E {.4(3ř, 3ř),Conn(3č, ÜR), 3fř)} .
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 Proof. For y = .4(3?, 3ft) see [30]. The same arguments work for other y.
 Q.E.D.

 Theorem 6.3 For any positive integer k we have

 Ma{A(®k,$t)) = C(%k,$t).

 Proof. This equality follows for k = 1 from Theorem 6.2. For any k the
 inclusion C(3ftfe, 3ft) C M. 0(.4(3ftfc, 3ft)) follows from Theorems 4.4 and 3.3. Now
 assume that a function g : 3ft* - ► 3ft is discontinuous at a point xo G 3ft*. Let
 lì be a homeomorphic injection of 3ft into 3ft* such that rng(h) is closed in
 3ft*, A(0) = Xo, g o h is discontinuous at 0 and there exists a homeomorphism
 hi : 3 ft* - ► 3ft* such that Ai(x,0, ... ,0) = h(x) for x G 3ft. Let /0 : 3ft - ► 3ft
 be an almost continuous function such that fo+goh £ ^4(3ft, 3ft). By Theorem
 4.7, there exists an almost continuous extension f' : 3ftfc - > 3ft of fo such that

 fi(x , 0, . . . , 0) = fo(x) for any x G 3ft. By Theorem 3.4, / = /i o hļ 1 is almost
 continuous. Suppose that f + g is almost continuous. Then (/ + <z)|/i(3ft) is
 almost continuous (by Theorem 2.1), and therefore, (/ +g)oh G ^(3ft, 3ft). But
 (f+g)°h = foh+goh = fo+g o h, a contradiction. Thus g £ «A^ítt(^.(3ftfc, 3ft)).

 Q.E.D.

 Corollary 6.3 For any positive integers k and m,

 Ma(A{ 3ft*,3ftm)) = C(3ft*,3ftm).

 Proof. The inclusion C(3ftfc,3ftm) C M.a(A($tk, 3ftm)) follows from Theo-
 rems 4.4 and 3.3. Assume that a function g : 3ft* - ► 3ftm, g = (gì, . . . ,gm)i
 is discontinuous at a point x0 G 3ftfc. Then g ¿ is discontinuous at xo for
 some i < m. By Theorem 6.3, / + gi is not almost continuous for some
 almost continuous function / from 3ftfc into 3ft. By Theorem 4.4, the function
 h = (hi, ... , hm) : 3ft* - ► 3ftm, where h¡ = f and hj = 0 for j ^ i, is almost
 continuous. Observe that 7r¿ o (h + g) = f + gi (where 7T,- denotes the pro-
 jection onto ith axis) is not almost continuous and, by Theorem 3.3, h + g is
 not almost continuous.

 Q.E.D.
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 6.2 Products.

 Proposition 6.2 Suppose that F is a topological field, (X, F) is a ( K , G)
 pair with an infinite blocking family IC and k > 1. Then each function f :
 X - ► F can be expressed as a scalar product of two almost continuous
 functions fuf2 :X - > Fk (i.e. f = /i,t -/2,i, where fi = (/lfl, . . - , /i,jt)
 and f2 = (/2,1, - , /2,*)^-

 Proof. By Proposition 6.1 / : X - ► F can be expressed as a sum of al-
 most continuous functions gì, gi : X - ► F. Now define /1, /2 : X - ► Fk in
 the following way: fļ(x) = (gi(x), 1, 0, . . . , 0) and /2(x) = (l,g2(x), 0, . . . , 0)
 for X G X. By Theorem 4.4 f' and f2 are almost continuous and, clearly,
 / = /i-/2.

 Q.E.D.

 Corollary 6.4

 (1) for each m, G N , k > 1 and f : Im - > there exist /i,/2 G A(Im,$Łk)
 such that f = f' • /2.

 (2) for each k > 1 and f : there exist fi,f2 G 3řfc) such that
 / = /i-/2.

 Note that the condition above is false for k = 1. Indeed, it is well-known
 that a function / : - y 3ř may not be a product of Darboux functions [45]
 and therefore, of almost continuous functions. J. Ceder proved in [16] that
 a function / : 3fř - ► 3ř is a product of two Darboux functions iff it possesses
 the following property:

 ( JC ) : / has a zero in each subinterval in which it changes sign.

 In particular, if rng(f) C (0,oo) or rng(f) C (- 00, 0) then / is a product of
 two Darboux functions.

 Theorem 6.4 Suppose A(c). A real function f defined on 3ř is a product of
 two almost continuous functions iff it has the property (JC) [48].

 Proposition 6.3 Suppose that ( X , 3ř) is a (K, G) pair, AC is a blocking family
 for ( X , 3ł) and k is a cardinal such that max(u ;, k) < A = card(ÌC). If T is a
 family of real functions defined on X, card (J7) = k and rng(f) C ( - 00, 0) or
 rn9(f) C (0, 00) for all f G T , then there exists a function g : X - ► (0, 00)
 such that g • f is almost continuous for each f G J- .
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 Proof. By Proposition 6.1 there exists a function go : X - ► such
 that g0 + h G A(X, Šř) for any h G {In o ļ/ļ : / G f). Put g = exp(g0).
 Then g(x) > 0 for each x G X and for every f £ we have:

 g-f = sgn(f) • exp(go) • exp olno'f' = sgn(f)- expo (g0 + Ino 'f') G ^(X,3ř).

 Q.E.D.

 Corollary 6.5 If (A', 3?) is a ( I',G ) pair with an infinite blocking family
 and f is an arbitrary function from X into (0, oo) then there exist almost
 continuous functions fi,fa : X - ► (0, oo) such that f = f'-fļ- In particular,
 every function f : 5ř - ► (0, oo) can be expressed as a product of Uro almost
 continuous functions [26].

 For an arbitrary family T of real functions defined on a topological space
 X let us define the following condition:

 Um{T) : there exists a non-zero function g : X - ► 3fř such that / • g G
 A(X , 5ft) whenever / € T.

 Theorem 6.5 Suppose A(c). Then every family J- of real functions defined
 on with card(F) < 2W satisfies the condition Um(F) [50].

 Example 6.1 Let T be the family of all characteristic functions of singletons
 and g : - * 8? be a function such that f • g G .4(5ft, 3?) for all f G T. Then
 g = 0 [50].

 For an arbitrary topological space X let m(X, 5ft) denote the least cardi-
 nal K for which there exists a family T of real functions from X such that
 card {?) = k and U^T) is false (or m(X, 3ř) = 0 if Um($tx) holds).

 Corollary 6.6 A(c) implies the equality m(5ft, 5ft) = 2W.

 Problem 6.2 Can the equality m(5R, 5R) = 2W be proved in Z FC ?

 For arbitrary families X,y of real functions defined on a topological space
 X let Mm(X ,y) denote the maximal multiplicative class of X with respect
 to y, i.e.

 Mm(X,y) = {feX : f-geyiovaWgeX}.
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 We shall write M.m(X) instead of M.m{X , X) and call this family the maximal
 multiplicative class of X.

 For arbitrary interval Y of 3řm let us define the family M(I,Y) of all
 functions / : I - ► Y having the following property: if xo is a right-hand
 (left-hand) side point of discontinuity of /, then /( xq ) = 0 and there is a
 sequence (xn)n converging to x0 such that xn > x0 (xn < x0) and f(xn) = 0.
 If X is any space then Aí(X, Y) denotes the class of all functions / : X - ► Y
 such that fohe M(I,Y) for any homeomorphic injection h : I - > X. This
 class was introduced by Fleissner [21] (for X = Y = 8ř).

 Theorem 6.6

 Mm(A($t,Z),y) = M(X,Z)

 whenever y G {-4(3ft, Z),Conn(3fř, Z), V(9ł, Z)} and Z e {3ř, [0, oo)}.

 Proof. For Z = and y = .4(3č, 3ř) see [30]. The proof is analogous
 for other Z and y.

 Q.E.D.
 The similar theorem can be considered for scalar products of functions

 with values in 3řfc.

 Theorem 6.7

 (1) Suppose that Z e {3ř, [0, oo)}, g 6 Mm{AÇStk, Zn)) and g =
 Then:

 (l'I) gi e Mm{AÇ$tk , Z)) for every i = 1,. . . ,n,

 (1.2) C(g) C [g = 0],

 (1.3) if n = 1 then g G 5R).

 (2) Moreover, if Z = [0,oo), then:

 (2.1) Mm(A(ïïk,Zn))cM(Btk,Zn),
 (2.2) Mm(A(9t,Zn)) = M(iï,Zn).

 (3) If Z = (0, oo) then Mm(A(Kk,Zn)) =C(dtk,Zn).
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 Proof. (1.1) Suppose that <7,- £ Mm(A(3lk, Z)) for some i < m. Then
 there exists h G A($łk,Z) such that • h ^ A($tk,Z). By Theorem 4.4 the
 function / : - ► 3řn, / = (/1, • • • , /n), where /, = h and fj = 0 for j ^ i,
 is almost continuous and / • a = h • o¿ is not almost continuous, contrary to
 gčMm(A(Xk,Xn)).

 (1.2) Suppose that g is discontinuous at xo. Then gt is discontinuous at xq
 for some t <n. By (1.1), g¡(x 0) = 0 if <7,- is discontinuous at x0. Assume that
 Çi(xo) ^ 0 for some ť < n. Then g¡ is continuous at Xo. Consequently gt+gi is
 discontinuous at x0 and (gt + gi)(xo) ^ 0. Therefore gt + gi Aím(^(§Rfc,3ř))
 and ( gt + </,) • h £ «4(3řfc,3ř) for some h G .4(3fřfc, 5R). By Theorems 4.4 and
 3.3 the function / : - ► 3řn, / = (/1, . . . ,/„) defined by ft = /,■ = h and
 fj = 0 for j ^ {ť, i}, is almost continuous and g • f - (<7t + gì) -h £ A($łk, 9ř),
 a contradiction.

 (1.3) Assume that n = 1 and g G M.m{A{$tk, Z)) ' A i($tk,Z). Let h :
 3fř - ► be a homeomorphic injection such that g o h ^ AÍ(5R, Z), rng(h)
 is closed in and there exists a homeomorphism h' : such
 that hi(x , 0, . . . , 0) = A(x) for x G 9ř. Then f0 • (g o h) .A(3ř, 3ř) for some
 /0 G -4(3ř, 3ft). By Theorem 4.7, there exists an almost continuous extension
 /1 : of /0 such that /1(1, 0, . . . ,0) = fo(x) for any x G &. By
 Theorem 3.4, / = /1 0 /ij"1 is almost continuous. Suppose that / • g is almost
 continuous. Then (/ • </) |A(SR) is almost continuous (by Theorem 2.1), and
 therefore, (/ • g) 0 h G .4(3?, 9ř). But {f-g)oh = (foh)-(goh) = f0 • (g o h),
 a contradiction.

 (2.1) For n = 1 see (1.3). Assume that g = (gi,...,gn) € Mm{?5tk ,Zn).
 We shall verify that g G Ai(3?fc, Zn). Let h : I - ► be a homeomorphic
 injection such that g o h is discontinuous at 0. We can assume that <71 o h is
 discontinuous at 0. Let h( 0) = x0. From (1.2) it follows that g(x0) = 0. Note
 that $3r=i 9 « € Mm{A{$tk , Z)). Indeed, this follows from the fact that /0 =
 (/,...,/) is almost continuous for any / G .4(9ft, [0, 00)) (as the composition
 of / and continuous function d from into 5Rn defined by cř(x) = (x, . . . , x)),
 and (£"=1 gi)- f = gŘ fo€ -4(3?fc, Z). Hence (£?=i gì) • h is almost continuous
 whenever so is h. Observe that the function (5ir=i 9Ù 0 h is discontinuous at
 0. Since (Xw=i 9Ì) 0 ^ G Mm(A(I, Z)), there is a sequence (x_,)j converging
 to 0 such that (£"=1 gi)(h(xj)) - 0 for each j. Since g¡ > 0 for each i < n,
 gi(h(xj)) = 0 for all j G N and i < n. Hence g o h G M(I, Zn).

 (2.2) The inclusion Mm(A($l, Zn)) C M{$l,Zn) follows from the con-
 dition (2.1). Now assume that g G ./Vf(3ř, [0, oo)n). Then for arbitrary
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 / G .4(3?, Z") the product / • g satisfies all assumptions of Lemma 4.1, so it
 is almost continuous. Therefore g G M.m(A($t, Z")).

 (3) The inclusion Mm(A($tk, Zn)) D C(3řfe,Zn) follows from Theorems
 4.4 and 3.3. Now suppose that / = (/i,...,/m) G Mm(A($tk, Zn)). Fix
 i < n and observe that f0 = Ino /, G Ma{AC3tk, 3ř)). Indeed, if g G .4(5?*, 5č)
 then go = exp o g G A($tk,Z) and consequently h = (h', . . . , Äm), where
 hi = gQ and hj = 0 for j ^ i, is almost continuous. Thus /,• • go = f • h is
 almost continuous and therefore fQ-'-g = In(fi-go) is almost continuous, too.
 Hence /o G 3?)) and, by Theorem 6.3, it is continuous and so is
 fi = exp o f0. Thus / is continuous.

 Q.E.D.

 Lemma 6.2 Let F be a compact subset of a metric space X , f G A(X, 3řfc)
 and f'F be continuous. Then each open neighbourhood G of f in X x 3řfc
 includes a continuous function g : X - > such that g'F = f'F.

 Proof. First suppose that f'F = 0 and G is a neighbourhood of /. Since
 F X {0} is compact, there exists a positive e such that Bx(x,e) x Z?K*(0,e) C
 G for all x G F. Since / C Gi = G ' (F x (3Çfc ' .B^O,^)), there exists
 a continuous function h : X - > dłk contained in G'. For every x G F
 choose 8X such that 0 < 6X < e/2 and ||/i(z)|| < e for z G Bx(x,6x). Let
 8 be Lebesgue number of the covering {Bx{x,6x) : x G F) of F and let
 ^ Then ||/i(2)|| < e for z G A, A x ßj}*(0,e) C G and the
 function g(z) = F)) • h(z)/S is continuous, g C G and g(x) = 0
 for x G F.

 Now we consider an arbitrary / G A(X, 3fř*) such that f'F is continuous.
 Let G C X X be a neighbourhood of / and let f* be a continuous extension
 of f'F onto whole X. Then the function h : X x $lk - ► X x defined
 by h(x,y) = (x,y - f*(x)) is a homeomorphism. Therefore Gi = h(G) is
 an open neighbourhood of an almost continuous function /i = f - f* and,
 moreover, fi'F = 0. Thus there exists a continuous function g' : X - ►
 such that <7i C G' and g''F = 0. Then g = h~l ogi = gi + /* is a continuous
 function contained in G and g'F = f'F.

 Q.E.D.

 Lemma 6.3 Suppose that X is a locally compact metric space, F is a com-
 pact subset of X and f : X - ► 3ř* satisfies the following conditions:
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 (1) /| F = O,

 (2) f'U is almost continuous for every component U of the set X ' F .

 Then f is almost continuous.

 Proof. Let G be an open neighbourhood of / and U be a component of
 X 'F. Then f'U is almost continuous, f'fr(U) = 0 and fr(U) is compact.
 By Lemma 6.2 there exists a continuous function gu : U - ► such that
 gu C G and ^i/|/r(ř7) = 0. Since F x {0} is compact, there exists a positive
 e such that V x {0} C G, where V = {x G X : dist(x,F) < e}. Since X is
 locally compact, there exists an open set W such that F C W C W C V and
 W is compact (cf. [19], Theorem 2, p. 193). Then E = W ' W is compact
 and E C X ' F. Let {C/i, . . . , Un) be a finite subcovering of E chosen from
 the family of all components of X ' F. Note that for each component U of
 X'F one of the following cases holds: U C X ' W or U = Ui for some i < n
 or U C W . Hence the function g : X - > 5R* given by

 ' gu(x) iîxeUcX'W
 g(x) = < gui(x) if x e Ui, 1 < i < n

 0 otherwise

 is continuous. Clearly, g C G.
 Q.E.D.

 For any topological space X and Y C we shall denote by M*(X, Y )
 the family of all functions / : X - > Y such that [/ = 0] is compact and f'U
 is continuous for each component of U of the set [/ ^0].

 Theorem 6.8

 (1) M*{X, C A{X, 9řm) fi M(X, 3řm) for each locally compact metric
 space X.

 (2) M*{I^m) = M(I,õtm).

 (3) A(P, ») n M(P, ») ' X*(/2, ») ¿ 0.

 (4)

 503



 Proof. The inclusions .M*(X, 3řm) C M.{X, 3řm) (for any X) and
 A 4(/, 3řm) C M*(I, 3?m) are easy to observe. By Lemma 6.3, A4*(X, 3řm) C
 A(X, āfčm) for any locally compact metric space X.

 (3) For n € N put Jn = { 1 /n } x I and define the continuous function
 /n : Jn - ► I such that:

 ( i ) if n is even then fn'Jn = 1,

 ( ii ) if n = 1 (mod 4) then [/n = 0] = {1/n} X [0, 1 - 1/n] and rng(fn) =
 [0, 1/n],

 (iii) if n = 3 (mod 4) then [/„ = 0] = {1/n} x [1/n, 1] and rng(fn ) =
 [0, 1/n].

 Moreover let fo : {0} x I - y I be the function defined by fo = 0. Let
 g : (0, 1] x I - * I be a continuous extension of the function U^zi fn such
 that [g = 0] = (XLi [fn = 0] and let / = /„ U g. Then / G A{P,I) D

 (4) Let fo : I x [-2, 2] - > 3? be defined by:

 ,/ x J 1 - 'y - sm(l/x)| if x > 0 and 'y - s¿n(l/x)| < 1
 /ū(*,!-)=ļ0 ,/ x J - 'y - sm(l/x)| otherwise x > 0

 Obviously fo G M(I X [-2, 2], 3?). Suppose that f0 G A(I X [-2, 2], 5R). Then
 ^ = {(x,y) : x = 0 or (x > 0 and y - sin(l/x))} is a continuum, fo'A is
 almost continuous and rng(f0'A ) = {0,1}, contrary to Theorem 1.7. Thus
 fo € M(I x [-2, 2], ft) ' A{I x [-2, 2], 3Č). Now let h : P - ► / x [-2, 2] be
 a homeomorphism and / = /0 o h. Then / 6 M(P, 3ř) ' A(P, 3ř).

 Q.E.D.

 Theorem 6.9

 (1) A4*(X, 5R) C A4m(X, 3ř) for any locally connected metric space X.

 (2) M*(Ik, ») c Mm{Ik, ») C M(Ik, »).

 Proof. (1) Assume that / e M*(X, 3Č), g e A(X, 3ř) and put F = [/ =
 0]. Then F C [/ • g = 0] and, by Theorems 4.4 and 3.3, (/ • g)'U is almost
 continuous for each component U of the set X ' F. By Lemma 6.3 f • g is
 almost continuous.
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 (2) We need only to prove the second inclusion. Suppose that g G
 •Mm(A(Ik, 3?)) ' AÍ(Ik, 3?) and h : I - ► Ik is a homeomorphic injection
 such that g o h A4(/,3č). Let hļ : Ik - ► h(I) be a retraction. Since
 goh & M(I, 9ft), there exists /0 € A(I, 5ft) such that /0 • (g o h) ^ .4(7, 9ft).
 Then /1 = /0 o h'1 o hļ G .4(7fe,9ft) and therefore fi • g E .4(7*, 9ft). Hence
 (/1 • € A(h(I),9i) and (fi ■ g) o h G .4(7, 9ft), but (fi • g) o h =
 (fi o h) • (g o h) = /0 • (g o h) £ A(1, 9ft), a contradiction.

 Q.E.D.

 Problem 6.3 Characterize classes .Mm(.4(9ftfcancř9ftn)), Mm(A(Ik, 9ftn)) for
 positive integers k,n.

 6.3 Maxima and minima.

 Suppose that Y is a lattice. If T is a family of functions from X into Y then
 the symbol C(F) denotes the lattice generated by T, i.e. the smallest lattice
 of functions containing T.

 Proposition 6.4 Suppose that (A', Y) is a ( K,G ) pair with infinite blocking
 family K, and Y is a lattice. Then C(A(X, Y)) = Yx .

 More precisely, any function f from. X into Y can be expressed as

 min(max(fi, /2), max(f3, f4)),

 where /i,/2,/3,/4 are almost continuous.

 Proof. Assume that card(IC) = A and {Xi,A2, X3,X.4} is a partition
 of X such that card(X¡ fi K) > A for each K G IC and i = 1,2,3,4 (such a
 partition exists by Lemma 5.1). Fix / : X - ► Y and i G {1,2,3,4}. For
 each a < A choose (x,)0, y,,a) G Ka such that G Xi and x,fCř ^ x¡¿ for
 a ^ ß and ß < A. Now we define the function /,■ by fi(xi,a) = Vi, a for a < A
 and fi(x) = f(x) for other x. One can easily verify that all /¿ are almost
 continuous and / = min(max(fi, f2),max(f3, f4)).

 Q.E.D.

 Remark 6.2 If fi,f2,fs arc defined as above, then f = max(hi,hļ), where
 hi = min(max(fi, /2), /3) and hļ = min(max(fi, /3), /2).
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 Corollary 6.7 Each function f : - ► 3Č can be expressed as

 min{max(f', /2), max(f3, /4)),

 where /1,/ 2, /3, /4 «re almost continuous [Ą7].

 Remark 6.3 If f : 3? - > 3? is measurable (has the Baire property), then
 the functions /1, /2, /3, /4 /rom Corollary 6.7 may be chosen measurable (with
 the Baire property).

 For arbitrary topological space X and lattice Y we shall denote by (( X , Y)
 the order of the lattice C(A{X, K)), i.e. the least positive integer k such that
 for any / G C(A(X, F)) there exists a subset Tq C A(X,Y) such that
 card(Fo) = k and / € C{!Fo).

 Corollary 6.8 = 3.

 Proof. By Remark 6.2, ^(.Y, Y) < 3 for any ( K , G) pair with an infinite
 blocking family. On the other hand, the function / : defined by
 f(x) = X for X G { - 1, 1} and f(x) = 0 for x { - 1, 1} cannot be expressed
 as the minimum or the maximum of two Darboux functions, so ¿(3ř, 3?) > 2.

 Q.E.D.

 Proposition 6.5 Suppose that (X, Y) is a ( K,G ) pair with an infinite block-
 ing family K. and < is a partial order in Y . If a function f : X - * Y satisfies
 the condition:

 (*) card({x € X : f(x) > y for some y £ Kx }) > card(lC) for every K G K,

 then f can be represented as a maximum of two almost continuous functions.

 Proof. Let card{K) = A. Note that the condition (*) implies the
 existence of two disjoint subsets A, B of X such that card{{x G A : (x,y) G
 K and f(x) > y for some y G F}) > A and card({x G B : (x,y) G
 K and f(x) > y for some y G F}) > A for each K G IC. Let (Ka)a< x be
 a sequence of all blocking sets from the family K.. For every a < A choose
 points (aa,a'a),(baib'a) G Ka such that:

 (1) aa G A ' {a0 : ß < a) and f{aQ) > a'a,

 (2) ba£B'{bß: ß<a} and f(ba) > b'a.
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 Define /1, /2 in the following way: /i(a0) = a'Q for a < A and fi(x) = f(x) for
 other X. Similarly, /2(60) = b'a for a < A and /2(3;) = f(x) otherwise. Since
 /i,/2 meet all blocking sets from the family K, they are almost continuous.
 Moreover, / = m«x(/i,/2).

 Q.E.D.

 Theorem 6.10 Each fund ion f : I - ► satisfying the following condition

 (4b) [/ > n] is c-dense in I for any positive integer n

 can be represented as a maximum of two almost continuous functions /1 , /2 •
 Moreover, if f is measurable or has the Baire property, then f',fļ may be
 chosen measurable or with the Baire property as well.

 Proof. Suppose that / : I - > satisfies the condition (A). Let
 IC be the family of all minimal blocking sets in I x It is sufficient to
 verify that the condition (*) from Proposition 6.5 is satisfied. Fix K G IC.
 Since dom(K) = (J£Li Kn, where Kn = dom(K D (Ix [- n,n])), A'„0 is of
 the second category for some positive integer no. Since A'„0 is closed, it has
 non-empty interior. Let J be a non-empty open interval contained in A'no.
 By (*), card({x 6 J : f{x) > n0}) = 2a". Since for each x 6 J there exists
 y € [- «o» rao] such that (ar, y) G A', J C {& € / : (x,y) G K and f(x) >
 y for some y G 3č} and therefore, (*) holds.

 Finally, remark that if / is measurable (has the Baire property), then we
 can choose disjoint sets of measure zero (of the first category) A, B such that
 for any real r the sets A fi [/ > r] and B D [/ > r] are c-dense in I. Now
 we can choose elements aa,bQ (as in the proof of Proposition 6.5) from such
 sets A and B. Then f',fļ will be measurable (have the Baire property).

 Q.E.D.

 Corollary 6.9 Every f G T>* can be represented as a maximum of two al-
 most continuous functions.

 For arbitrary function / : 3Č - > and x G let A'^(/, x) denote
 the right hand c-cluster set of / at x, i.e. A'+(/, x) = fi{C+(/l^ ' B,x) :
 card(B) < 2W}. Similarly we define the left hand c-cluster set of / at x
 (denoted by K~(f , x)). It is known that a function / : - > 3fř is a maximum
 of two Darboux functions iff it satisfies the following condition:

 (♦) f{x) < min(max(K+(f,x)),max(K~(f,x))) for each x G [12].
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 Problem 6.4 Is every function f : 3Č - ► 3ř satisfying (4) a maximum of
 two almost continuous functions ?

 Let X be a topological space and ,¥, y be arbitrary families of real func-
 tions defined on X. We define the following classes of functions:

 Mmax{X, y) = {/ e X : m.ax(f,g) G y for all g G X},

 Mmin(X,y) = {/ G X : min{f,g) G y for all g G X},

 Mi(X,y) = {/ G X : max(f, g), min(f, g) e y for &'' g e X}.

 Clearly, Mi(X,y) = Mmax(X,y)nMmin(X,y). We shall write Mmax(X),
 Mmin(X) and Mi(X) instead of Mmax(X, X),Mmin(X, X) and Mi(X,X),
 respectively. The last family is called the maximal lattice class for X.

 Theorem 6.11 If X E {-4(3?, 3Č), Conn(3ř, 9č), P(3fř, 3ř)} then

 (1) C(3ř,3ř) C C I *iac(R,R),

 (2) C(3 «,») C A<m,n(.4(S,R),*) C Vlsc{%ïï),

 (3) »),*)=£(»,»)

 Proof. Those relations are proved in [30] for X = .4(5ř, 3ř). The proof
 is analogous for other X.

 Q.E.D.
 Arguments similar to those used in the proofs of Theorem 6.3 and Corol-

 lary 6.3 imply the following theorem.

 Theorem 6.12 The equality $řm)) = C($lk, 3řm) holds for all pos-
 itive integers k, m.

 Problem 6.5 Describe the classes Mmax(A{^tk , 3řm)) and MminĻ 4(3?*, 3řm))
 for positive integers k, m.
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 7 Insertions of functions.

 Example 7.1 There exist almost continuons, measurable functions f,g :
 with the Baire property such that f < g and f, g admit no Darboux

 function between them.

 Indeed, let (Ka)a< 2w be the sequence of all blocking sets in x Let
 Zo,Z' , Z2 be pairwise disjoint, c-dense subsets of of measure zero and of
 the first category. Choose sequences (x,i0, y,>)Q< i- for ¿ = 1,2 such that
 ( Xi,a,yi,a ) € I<a and xitQ E Zi ' {xii0 : ß < a} for « = 1,2 and a < 2 w.
 Define the functions /, g in the following way:

 ' yìiQ if x = xlyQ, a < 2"
 y2lQ - 1 if x = x2,o, Î/2.0 < 0, a < 2"

 /(z) = S ï/2,or/2 if x = x2,a, y2,a > 0, a < 2"
 -2 if x 6 Zq
 1 otherwise

 ' y2<Q if x = x2iQ, a < f
 yii0 + 1 if x = a:i>0, yi<a > 0, a < 2W

 9(x) = < yi,a/2 if x = xli0n yltQ <0, a < 2"
 - 1 if X 6 Zq
 2 otherwise

 Then / and g are almost continuous, / < g and there is no Darboux function
 h between them (cf. [12]). Indeed, if h is a function such that f < h < g
 then h(x) < 0 for x € Zq, h(x) > 0 for x 6 & ' ( Z0 U Z' U Z2) and h(x) ^ 0
 for all x G 9Č.

 Theorem 7.1 Assume that f,g G A(X, 3ř), f < g and at least one of f,g
 is continuous. Then there exists an almost continuous h between f and g.

 Proof. Obviously the function h = (/ + g)/2 has the required property.

 Proposition 7.1 Assume that (X,Y) is a (K,G) pair with infinite blocking
 family K, and (V, <) is a partially ordered set. If T is a family of functions
 from X into Y satisfying the following conditions:

 (1) functions from T are commonly bounded, i.e.

 Vx G X 3 l(x) Bti(x) V/6^ l(x) < f(x) < u(x),
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 (2) for each K G tC we have:

 • card({x G X : 3y G Y V/ G T (x,y) G K and f(x) > y}) >
 card(K),

 and

 • card({x G X : 3y G Y V/ G T (x,y) G K and f(x) < j/}) >
 card(iC),

 then there exist almost continuous functions g¡,gu : X - ► Y such that g¡ <
 f <9u for all f G T.

 Proof. Let card(iC) = A. Let ( Ka)a<' be a sequence of all sets from
 fC. By (2) we can choose disjoint sets A',A2 C X such that card({x G
 Aļ : 3y G Y V/ G J- (x, y) G K and f(x) > t/}) > A and card({x G Aļ :
 3y G Y V/ G T {x,y) G K and f(x) < y}) > A for each K G K.. Let
 (ac*ł a'a)a<', (ba,b'Q)a< a be sequences of points such that (aa, a^), (òa, b'a) G
 Ka, aQ < f(x), f(ba) < b'Q for each / G T and a < A, and moreover, aa ^ ap ,
 ¿o ^ bß whenever a ^ ß. Then the functions g¡,gu defined by g¡(aQ) = aa,
 9u(ba) = ba for a < A and g¡(x) = l(x),gu(x) = u(x) for other x, have the
 required properties.

 Q.E.D.

 Theorem 7.2 For each function f : I - * 3fř for which {-00,00} C Kc(f,x)
 for each x G I there exist almost continuous functions g,h such that g < h
 and f = (g + h)/ 2 (hence g < f < h). Moreover, if f is measurable ( has
 the Baire property), then g and h can be taken measurable ( with the Baire
 property).

 Proof. Let ( Fa ) o<2w be the sequence of all minimal blocking sets in
 I x 3ř. For each ordinal a <2W there exist a positive integer nQ and a non-
 degenerate interval JQ such that Ja C dom(Fa D (Ix [- na,n0])). For every
 a <2W choose subsets Aa C Ja D [/ < -na], Ba C Ja D [/ > nQ] such that
 card(Aa) = card(Ba) = 2W. Note that Aa D Bp = 0 for a,ß < 2". Let
 (a0,al)<»<2«, ( bQ,b'Q)Q<2u, be sequences of points such that (aa, aQ), (bQ, b'Q) G
 Fa n (/ x [-na, nQ]), aQ G Aa ' {ap : ß < a} and ba G Ba ' {bp : ß < a} for
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 any a < 2". Now define the functions g and h in the following way:

 {a'a 2/(i>a) f(x) + - 1 b'a otherwise for for X X = = aa, ba, a a < < 2W 2W
 2/(i>a) - b'a for X = ba, a < 2W
 f(x) + 1 otherwise

 {6^ 2 f(x) f(aQ) - - 1 a'Q otherwise for for x X = = aa, ba, a a <2W <2W
 2 f(aQ) - a'Q for x = aa, a <2W
 f(x) - 1 otherwise

 Clearly, g, h are almost continuous and / = (g -f h)/2.
 Finally observe that if / is measurable (has the Baire property), then sets

 [/ > ra] and [/ < - ra] are measurable (have the Baire property) for every
 positive integer ra and we can choose c-dense in / sets of measure zero and
 of the first category An C [/ > n] and Bn C [/ < -ra]. Sets A = IXLi
 B = US* Bn have measure zero (are of the first category) and we continue
 as in the proof of general case with aa G A, ba Ç. B for a < 2W . Since
 [</ /] U [h ^ /] C A U B, g and h are measurable (have the Baire property).

 Q.E.D.

 Corollary 7.1 For every function f from P*(3ř, 9ř) there exist almost con-
 tinuous functions g and h such that g < f < h.

 8 Stationary and determining sets.

 Let T be a family of functions defined on X into Y . A subset E of X is
 called stationary for T provided that each member of T which is constant
 on E must be constant on all of X. We shall denote by S (J7) the collection
 of all stationary sets for the class J- '. A set E is called a determining set
 for T provided that each two functions from T which coincide on E must
 coincide on whole X. The class of all determining sets for T will be denoted
 byO(^). A set E C X is called a restrictive set for the pair (^1,^2) of
 families of functions from X into Y provided that f' = /2 whenever f' G T',
 /2 £ ^2 and fi'E = fļ'E. The class of all restrictive sets for will be
 denoted by R{!F 1,^*2) [9]. Note that

 (1) if Const(X,Y) C T then D{T) C S(f),
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 (2) R{f,F) = D{F) and R(Const,f) = S{ T)

 (3) if Tx C Ti then S{F2) C S{TX) and D{72) C D{T, i),

 (4) if C T-i then R{Jr2iJr) C R{?',T) for every family T of functions
 from X into Y .

 Theorem 8.1 A necessary and sufficient condition for E C I to be a sta-
 tionary set for the class A(I,$łh) is that card(I ' E) < 2W.

 Proof. Since A C V, S(T>(I ,$t)) C S(A(I, 5ft)). It is known [2] (and
 easy to obtain, see e.g. [9], p. 200) that E G S(T>(1, 3ř)) iff card(I'E) < 2W.
 Thus card(I'E) < 2» implies E G S(A{I,$ł)) C S(A(I,3łk)).

 Now assume that K - I ' E and card(K) = 2". Let K0 be the set of
 all points of bilateral c-condensation of K. Obviously K0 is non-empty and
 bilaterally c-dense in itself. Arrange all minimal blocking sets in / x 9?* such
 that dom(F) D Kq ^ 0 in a sequence (Fa)a< 2». Note that card(dom(FQ fl
 Ko)) = 2W for a < 2W. Fix arbitrary z G A'o and choose a sequence of points
 (xa,ya)a< 2" such that ( xQ,yQ ) € Fa, xQ ± z for all or < 2W and xa ^ Xß
 for a jí ß. Let / : / - ► be the function defined by /(2) = (1, . . . , 1),
 f{xa) = y Q for a < 2W and f(x) = 0 for other x. Observe that / intersects
 each minimal blocking set F in / x 3řfc. Indeed, if F = Fa for some a < 2W
 then ( xa,y0 ) G ff'F. In the other case dom(F) C J , where J is a component
 of the set I ' K0. Since rng(F) = (a:, 0) € / D F for some x G dom(F).
 Thus / is almost continuous, f'E = 0 but f jé 0, therefore E is not stationary
 for A(I,$tk).

 Q.E.D.

 Corollary 8.1 E G S(.4(9fč, Sí*)) iff cardai ' E) < 2».

 Corollary 8.2 Since A{®, ») C Conn(3fc,ft) C P(3M ř), andS(A(^)) =
 S(P(»,R)), E G S(Conn(R,»)) iff cardai. ' E) < 2».

 Theorem 8.2 The only determining set for the classes .4(3?, 3čfc), Corm(Sř, dik)
 is

 512



 Proof. For k = 1 this follows from the inclusions VBļ C .4(3?, 9ř) C
 Conn(lSt, 3Č) C P(3ř, 9ř), the condition (3) before Theorem 8.1 and the equal-
 ities D(T>Bi) = D(T>) = {3?} [14]. For k > 1 this is a consequence of the in-
 clusions »*)) C D(A(%, »)) and D(Conn(% »*)) C D(Conn{%, »)).

 Q.E.D.
 The following equalities are easy consequences of Theorems 8.1 and 8.2

 and the conditions before Theorem 8.1 (cf. [9], Theorem 2.1, p. 207).

 Corollary 8.3 In the class of real functions defined on 3ř the following equal-
 ities hold:

 (1) E € R(C,X) iff card($t 'E) < 2a", for X G {-4, Conn, T>},

 (2) R(Conn, V) = R{A,V) = R(A,Conn) = {»}.

 Assume that g is an arbitrary function and T is a family of functions
 from X into Y . We say that A C X is (g,F) -negligible if every function
 / : X - > Y which coincides with g on X ' A belongs to J- (see [4] and [38]).

 Theorem 8.3 Let M be a subset of I . There exists an almost continuous
 function g such that M is a (g, A(1 , 3£)) -negligible iff I ' M is c-dense in I
 [SS],

 Theorem 8.4 Assume that g is an almost continuous real function defined
 on I. Then the following statements are equivalent:

 (i) geW(I,%),

 ( ii ) every nowhere dense subset of I is (g, A(1 , 3ř)) -negligible,

 (iii) there exists a dense subset of I which is (g, A(I, $1)) -negligible [38].

 Example 8.1 There exists an almost continuous function g : I - * 3fř such
 that all subsets of I which are small in the sense of cardinality (i.e. with the
 cardinality less than 2 w) or of measure (i.e. of measure zero) or of category
 (i.e. of the first category) are (g, A(I ,%t)) -negligible.

 Indeed, as in the proof of Lemma 6.1 one can construct a function g € A(1 , 3ř)
 such that card(P fl dom(K fl 5)) = 2W for each minimal blocking set K and
 every non-empty perfect set P C dom(K). Then g is OK.
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 Theorem 8.5 Suppose that f,g G !?*(/,/) and there exists a finite subset
 A of I such that /-1(y) = </-1(î/) for all y G / ' A. Then f and g are both
 almost continuous or both not almost continuous [38].

 Recall that a class J- of real functions is said to be characterizable by asso-
 ciated sets if there exists a family of sets V so that / € T iff for all y G 3?
 the sets [/ < y] and [/ > y] belong to V [8].

 Corollary 8.4 The class A(1, 3ř) is not characterizable by associated sets
 [38],
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