Real Analysis Exchange Vol. 17 (1991-92)

T. Natkaniec*, Instytut Matematyki WSP, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland.

Almost Continuity

1 Preliminaries.

1.1 Notations.

Let us establish some of terminology to be used in whole paper. Symbols X, Y will denote topological spaces. \Re denotes the real line (or the one dimensional Euclidean space), I denotes the unit interval [0, 1]. The symbols N and Q denote the sets of all positive integers and all rationals, respectively.

We use standard topological denotations (see e.g. [19]). If A is a subset of a topological space X then int(A) (or $int_X(A)$) and fr(A) (or $fr_X(A)$) denote the interior of A and the boundary of A, respectively. The closure of A is denoted by cl(A), $cl_X(A)$ or \overline{A} . If X is a metric space, $x \in X$ and $\varepsilon > 0$, then $B_X(x,\varepsilon)$ (or simply, $B(x,\varepsilon)$) denotes the open ball centered at x and with the radius ε .

For a subset A of $X \times Y$ we denote by dom(A) and rng(A) the x-projection and y-projection of A; $dom(A) = \{x : \exists y \in Y (x, y) \in A\}, rng(A) = \{y : \exists x \in X (x, y) \in A\}$. If B is a subset of X then A|B denotes the set $A \cap (B \times Y)$. Moreover, if $x \in X$ and $y \in Y$ are fixed, then A_x and A^y denote sections of A; $A_x = \{t \in Y : (x, t) \in A\}, A^y = \{t \in X : (t, y) \in A\}$.

We consider a function $f: X \longrightarrow Y$ and its graph (i.e. a subset of $X \times Y$) to be coincident. Symbols Const(X, Y), C(X, Y) and Y^X denote the families of all constant functions, all continuous functions and all functions from Xinto Y, respectively. We will write Const and C instead of Const(X, Y)and C(X, Y) when X and Y are fixed. Symbol C(f) denotes the set of all continuity points of f. If we consider a function f defined on \Re then the symbols $C^-(f, x)$ and $C^+(f, x)$ denote the left and the right cluster sets of f

^{*}Partially supported by KBN Research Grant.

at the point x. If f is a real function defined on X then the notation [f > 0] means the set $\{x \in X : f(x) > 0\}$. Likewise for $[f = 0], [f \neq 0]$, etc.

If A is a set then by card(A) we shall denote the cardinality of A. Cardinals will be identified with initial ordinals.

We shall use the following set theoretical assumptions:

- A(c): the union of less than 2^{ω} many first category subsets of \Re is again of the first category.
- A(m): the union of less than 2^{ω} many subsets of measure zero of \Re is again of measure zero.

It is well-known that these conditions follow from Martin's Axiom and therefore also from the Continuum Hypothesis (see e.g. [56]). If not explicitly stated otherwise, we shall work in (ZFC) without further assumptions.

1.2 Basic definitions.

A function $f: X \longrightarrow Y$ is almost continuous in the sense of Stallings iff for any open set $U \subset X \times Y$ containing f, U contains a continuous function $g: X \longrightarrow Y$ [60]. The class of all almost continuous functions from X into Y is denoted by $\mathcal{A}(X,Y)$, or \mathcal{A} when X and Y are fixed.

Clearly any continuous function is almost continuous. There are, however, many almost continuous real functions which are not continuous. The following two examples of non-continuous, almost continuous functions are "classical".

Example 1.1 Let $f_0: [-1,1] \longrightarrow [-1,1]$ be defined by $f_0(x) = sin(1/x)$ for $x \neq 0$ and $f_0(0) = 0$. It is easy to observe that f_0 is almost continuous.

Example 1.2 Let $f: I \longrightarrow I$ be defined by $f(x) = \overline{\lim_{n \longrightarrow \infty}} (a_1 + \ldots a_n)/n$, where a_i are given by the unique nonterminating binary expansion of the number $x = (0.a_1a_2...)$. Then f is almost continuous [6].

Note that the last function is dense in I^2 . Other examples of almost continuous, dense in I^2 functions are constructed in [40], [21], [3]. One can construct such examples using the following notion of blocking sets. This notion was introduced by Kellum and Garret [40], and was used later in many papers, e.g. in [33], [34], [38], [39], [26] and [47], [48], [49] and [50].

Observe that if a function $f: X \longrightarrow Y$ is not almost continuous then there exists a closed set $F \subset X \times Y$ such that $F \cap f = \emptyset$ and $F \cap g \neq \emptyset$ for each continuous function $g: X \longrightarrow Y$. Every such set is called a blocking set for f in $X \times Y$. If no proper subset of F is a blocking set of f in $X \times Y$, F is said to be a minimal blocking set for f in $X \times Y$. If set F is a (minimal) blocking set of some function $f: X \longrightarrow Y$, then F is said to be a (minimal) blocking set in $X \times Y$.

Remark 1.1 A function $f : X \longrightarrow Y$ is almost continuous iff it intersects every blocking set in $X \times Y$.

We say that a topological space X has the fixed point property iff for any continuous function f from X into X there exists a point $x \in X$ such that f(x) = x. Stallings introduced the notion of almost continuity in order to prove a generalization of the Brower fixed point theorem. Note that for a non-degenerate Hausdorff space X with the fixed point property the diagonal $\{(x, x) : x \in X\}$ is a blocking set in $X \times X$. Therefore we obtain the following property of almost continuous functions.

Theorem 1.1 If X is a Hausdorff space with the fixed point property then each almost continuous function $f : X \longrightarrow X$ has a fixed point [60].

Theorem 1.2 Suppose that X is a compact space and $f : X \longrightarrow Y$ is not almost continuous. Then

- (1) there exists a minimal blocking set K of f in $X \times Y$, and
- (2) dom(K) is contained in a component of X,
- (3) if one of the following conditions holds:
 - (i) X is perfectly normal and Y is an interval in \Re^k , $(k \in N)$,
 - (ii) X is an interval in \Re and Y is a convex subspace of \Re^k , $(k \in N)$,
 - (iii) Y is an ε -absolute retract (see [37] for definitions),

then dom(K) is a non-degenerate connected set,

(4) rng(K) = Y.

 $\mathbf{P} \mathbf{r} \mathbf{o} \mathbf{o} \mathbf{f}$. (1) is proved in [36].

(2) Suppose that K is a blocking set for f in $X \times Y$ and S_1, S_2 are different components of X with $dom(K) \cap S_1 \neq \emptyset \neq dom(K) \cap S_2$. Since X is compact, there exists a clopen set $A_1 \subset X$ such that $S_1 \subset A_1$ and $S_2 \subset A_2 = X \setminus A_1$ (see e.g. [19], Theorem 8, p. 431). Since $K|A_i \ (i = 1, 2)$ are not blocking for f, there exist continuous functions $g_i : X \longrightarrow Y$ such that $g_i \cap (K|A_i) = \emptyset$. Thus $(g_1|A_1) \cup (g_2|A_2)$ is continuous and disjoint from K, a contradiction.

(3.i) Suppose that dom(K) is not connected. Let (A_1, A_2) be a partition of dom(K) into disjoint, non-empty sets which are clopen in dom(K). Let $g_1, g_2: X \longrightarrow Y$ be continuous and such that $g_i \cap (K|A_i) = \emptyset$ for i = 1, 2. Let $C = fr_X(A_1)$. Since X is perfectly normal, there exists a decreasing sequence of open sets $(U_n)_n$ such that $C = \bigcap_{n=1}^{\infty} U_n$. Since g_1, g_2 are bounded, there exists a cube $J_0 \subset Y$ such that $rng(g_i) \subset J_0$ for i = 1, 2. For each $n \in N$ let $h_n: X \longrightarrow J_0$ be a continuous extension of the function $(g_1|(\overline{A_1} \setminus U_n)) \cup$ $(g_2|(\overline{A_2} \setminus U_n))$. Since K is blocking, there exists $x_n \in U_n \cap dom(K)$ such that $(x_n, h_n(x_n)) \in K$. Let (x, y) be a limit point of the sequence $(x_n, h_n(x_n))_n$. Then $x \in C \cap dom(K) = fr_{dom(K)}(A_1)$, which is impossible.

Proofs of the statements (3.ii) and (4) are the same as in [34] (when $X = Y = \Re$). (3.iii) is proved in [37], Theorem 5.2.

Q.E.D.

Corollary 1.1 If $f : \Re \longrightarrow \Re^k$ is not almost continuous then there exists a blocking set $K \subset \Re \times \Re^k$ for f such that dom(K) is a non-degenerate interval (cf. [34]).

Now we try to shed some light on the problem suggested in Remark 3 of [36].

Theorem 1.3 (on homogeneity of minimal blocking sets.) Assume that $K \subset I \times \Re^k$ is a minimal blocking set, $U_1 = (a_1, a_2) \subset I$, U_2 is an open interval in \Re^k and $U_1 \times U_2 \cap K \neq \emptyset$. Then:

(1) $int(dom(K \cap (U_1 \times U_2))) \neq \emptyset$ or K intersects every $f \in \mathcal{C}(U_1, U_2)$,

(2) $dom(K \cap (U_1 \times U_2))$ is dense in itself or $\overline{U_2} \subset K_x$ for some $x \in U_1$.

P roof. (1) Suppose that $f: U_1 \longrightarrow U_2$ is continuous and $f \cap K = \emptyset$. It follows from minimality of K that $h \cap (K \setminus (U_1 \times U_2)) = \emptyset$ for some continuous function $h: I \longrightarrow \Re^k$. Since K is blocking, $h \cap K \cap (U_1 \times U_2) \neq \emptyset$. Since

 $h \cap K$ is compact and $dom(h \cap K) \subset U_1$, we can choose reals b_1, b_2 such that $a_1 < b_1 < m_1 = min(dom(h \cap K)) \le m_2 = max(dom(h \cap K)) < b_2 < a_2$. Since $A = rng(f|[b_1, b_2]) \cup rng(h \cap K)$ is a compact subset of U_2 , there exists a closed interval $J \subset U_2$ such that $A \subset int(J)$. Note that $h \cap K \subset (b_1, b_2) \times int(J)$.

Suppose that $int(dom(K \cap (U_1 \times U_2))) = \emptyset$. Since $K_0 = K \cap ([b_1, b_2] \times J)$ is compact, $dom(K_0)$ is nowhere dense and we can choose intervals $[t_1, t_2] \subset (b_1, m_1) \setminus dom(K_0)$ and $[v_1, v_2] \subset (m_2, a_2) \setminus dom(K_0)$ such that $rng(h|[t_1, t_2]) \cup rng(h|[v_1, v_2]) \subset J$. Then $a_1 < t_1 < t_2 < m_1 \le m_2 < v_1 < v_2 < a_2$. Let g_1, g_2 be segments in $I \times J$ with end-points $(t_1, h(t_1)), (t_2, f(t_2))$ and $(v_1, f(v_1)), (v_2, h(v_2))$, respectively. Then the function $g = h|(I \setminus (t_1, v_2)) \cup g_1 \cup g_2 \cup f|(t_2, v_1)$ is continuous and disjoint with K, a contradiction.

(2) Suppose that x is isolated in $dom(K \cap (U_1 \times U_2))$. Let $V \subset U_1$ be an interval such that $\{x\} = V \cap dom(K \cap (U_1 \times U_2))$. Then, by (1), $rng(K \cap (V \times U_2)) = U_2$ and therefore $\overline{U_2} \subset K_x$.

Q.E.D.

Theorem 1.4 Let $f : \Re \longrightarrow \Re$ be a function such that $f \cap cl(u) \neq \emptyset$ for any upper semi-continuous function u, defined on non-degenerate interval. Then f is almost continuous [38].

A pair of topological spaces X, Y will be called a (K, G) pair (Kellum-Garret pair) iff there exists a family \mathcal{F} of blocking sets in $X \times Y$ such that

- (1) if $f \notin \mathcal{A}(X,Y)$ then in \mathcal{F} there exists a blocking set for f,
- (2) $card(dom(F)) \ge card(\mathcal{F})$ for any $F \in \mathcal{F}$.

A family which satisfies the conditions (1) and (2) will be called a blocking family for the pair (X, Y).

Proposition 1.1 The following pairs (X, Y) are of (K, G) type.

- (1) X is compact, perfectly normal and Y is a non-degenerate interval in \mathbb{R}^k ,
- (2) X is a compact interval in \Re and Y is a convex subspace of \Re^k ,
- (3) X is an interval in \Re and Y is a convex subspace of \Re^k .

P r o o f. In the cases (1) and (2) we can take the families of minimal blocking sets in $X \times Y$ as the blocking families for (X, Y) (cf. Theorem 1.2). In the case (3), X can be decomposed into a countable sequence $(I_n)_n$ of closed intervals such that $I_n \cap I_{n+1} \neq \emptyset$ for $n \in N$. One can prove that if $f \notin \mathcal{A}(X,Y)$ then $f|I_n \notin \mathcal{A}(I_n,Y)$ for some $n \in N$ (see Lemma 2.3 below). Let \mathcal{F}_n be a blocking family for (I_n, Y) . Then the union of all $\mathcal{F}_n, n \in N$, is a blocking family for the pair (X, Y).

Q.E.D.

Proposition 1.2 (\Re^k, \Re^m) is a (K, G) pair for all $k, m \in N$.

P roof. Obviously $card(\mathcal{K}) \leq 2^{\omega}$ for every blocking family \mathcal{K} in $\mathfrak{R}^k \times \mathfrak{R}^m$ (in fact it is easy to see that $card(\mathcal{K}) = 2^{\omega}$). Thus it is sufficient to prove that $card(dom(K)) = 2^{\omega}$ for every blocking set K in $\mathfrak{R}^k \times \mathfrak{R}^m$. Suppose that $card(dom(K)) < 2^{\omega}$. Then there exists an increasing sequence $(r_n)_n$ of positive reals such that $\lim_{n \to \infty} r_n = \infty$ and $S_n \cap dom(K) = \emptyset$, where S_n denotes the (k-1)-dimensional sphere in \mathfrak{R}^k centered at 0 and with radius r_n . Fix $n \in N$ and put $A_n = \overline{B(0, r_n)} \setminus B(0, r_{n-1})$. Then for each $i \in N, K_{n,i} = dom(K \cap (A_n \cap [-i, i]^m))$ is compact and $card(K_{n,i}) < 2^{\omega}$. Hence $K \cap (A_n \cap [-i, i]^m)$ is not blocking in $A_n \cap [-i, i]^m$, so either there exists a continuous function $f : A_n \longrightarrow [-i, i]^m$ such that $f \cap K = \emptyset$ or $\{x\} \times [-i, i]^m \subset K$ for some $x \in A_n$. Note that there exist i_n and a continuous function $f_n : A_n \longrightarrow [-i_n, i_n]^m$ such that $f_n \cap K = \emptyset$. Indeed, suppose that for each $i \in N$ there exists $x_i \in A_n$ such that $\{x_i\} \times [-i, i]^m \subset K$. Let x_0 be a limit point of the sequence $(x_i)_i$. Since K is closed $\{x_0\} \times \mathfrak{R}^m \subset K$, which contradicts the assumption that K is blocking.

Since K_{n,i_n} is compact, $dist(K_{n,i_n}, S_{n-1} \cup S_n) > 0$, so we can assume that $f_n|(S_{n-1} \cup S_n) \equiv 0$. Then $f = \bigcup_{n=1}^{\infty} f_n$ is continuous and disjoint with K, a contradiction.

Q.E.D.

1.3 Collation with other classes of functions.

1.3.1 Almost continuity and continuity.

T. Husain [28] has introduced another notion of almost continuity. A function $f: X \longrightarrow Y$ is almost continuous in the sense of Husain (H-almost continuous) iff for each $x \in X$, if $V \subset Y$ is a neighbourhood of f(x) then $f^{-1}(V)$ is dense in a some neighbourhood of x. Relationships between continuity, almost continuity (in the sense of Stallings) and H-almost continuity are studied in [20], [44], [58], [59]. A function $f: X \longrightarrow Y$ is of Cesaro type iff there exist non-empty open sets $U \subset X$ and $V \subset Y$, such that $f^{-1}(y)$ is dense in U for each $y \in V$ (cf. [59]). The class of all functions of Cesaro type for which U = X and V = Y will be denoted by $\mathcal{D}^*(X,Y)$ (or \mathcal{D}^* when X and Y are fixed). Now let (Y, ρ) be a metric space. A function $f: X \longrightarrow Y$ is called *cliquish* iff for each $\varepsilon > 0$, every non-empty open set $U \subset X$ contains a non-empty open set V such that $\rho(f(x), f(y)) < \varepsilon$ whenever $x, y \in V$.

Theorem 1.5 Let X be a regular locally connected Baire space. Then for every real function f, f is continuous iff f is almost continuous, H-almost continuous, and not of Cesaro type [58] (and [60] for $X = \Re$).

Example 1.3 There exists an almost continuous and H-almost continuous function $f: I \longrightarrow \Re^2$ which is not of Cesaro type and not continuous.

Indeed, let $f_1 = id_I$, $f_2 : I \longrightarrow \Re$ be almost continuous, $f_2 \in \mathcal{D}^*$ and let $f = (f_1, f_2)$. Then f is almost continuous (see Theorem 4.4 below), H-almost continuous injection (so it is not of Cesaro type) and it is not continuous.

Theorem 1.6 Let X be a regular locally connected Baire space. If a real function defined on X is almost continuous and not of the Cesaro type then it is cliquish [58].

Note that there exist almost continuous real functions defined on I which are of Cesaro type (see e.g. Example 1.2). Clearly such functions have no points of continuity. Moreover, J. Ceder gave an example (under CH) of an almost continuous function $f: I \longrightarrow \Re$ such that f|A is discontinuous whenever A is uncountable ([15], see also [38]).

1.3.2 Almost continuity, connectivity and other Darboux-like properties.

Theorem 1.7 If X is a connected T_1 space, Y is a hereditarily normal Hausdorff space and $f: X \longrightarrow Y$ is almost continuous, then rng(f) is connected.

P roof. Suppose that rng(f) is not connected. Since Y is hereditarily normal, there exist disjoint open sets $U, V \subset Y$ such that $rng(f) \subset U \cup V$

and $rng(f) \cap U \neq \emptyset \neq rng(f) \cap V$ (see e.g. [19], Theorem 6, p. 96). Fix $x_1, x_2 \in X$ such that $f(x_1) \in U$ and $f(x_2) \in V$. Then $G = X \times (U \cup V) \setminus ((\{x_1\} \times (Y \setminus U)) \cup (\{x_2\} \times (Y \setminus V)))$ is an open neighbourhood of fand it includes a continuous function $g: X \longrightarrow Y$. Since $g(x_1) \in U$ and $g(x_2) \in V$, $rng(g) \cap U \neq \emptyset \neq rng(g) \cap V$. Hence rng(g) is not connected, which contradicts the continuity of g. Q.E.D.

Theorem 1.8 If $X \times Y$ is a hereditarily normal Hausdorff space, X is connected and $f: X \longrightarrow Y$ is almost continuous, then f is a connected subset of $X \times Y$ [60].

Corollary 1.2 If X is a connected hereditarily normal Hausdorff space and Y is a discrete space then $\mathcal{A}(X,Y) = Const(X,Y)$.

Example 1.4 There exists a connected space X and an almost continuous bijection $f: X \longrightarrow X$ such that $f = f^{-1}$ and f is not connected in $X \times X$ (thus f is not continuous).

Indeed, let X be the unit interval with the topology $\tau = \{U \subset I : 0 \in U\} \cup \{\emptyset\}$ and let $f : X \longrightarrow X$ be the function given by f(x) = x for $x \in (0,1)$ and f(x) = 1 - x for $x \in \{0,1\}$. Then f is almost continuous. In fact, if G is a neighbourhood of f in $X \times X$ then $(x,0) \in G$ for each $x \in I$ and consequently, G includes a constant function $g \equiv 0$. Since $\{(0,1)\}$ is clopen in f, f is not connected.

Theorem 1.9 Assume that $f: X \longrightarrow Y$. Then

- (1) if Y_0 is a subspace of Y, $rng(f) \subset Y_0$ and $f \in \mathcal{A}(X, Y_0)$, then $f \in \mathcal{A}(X, Y)$,
- (2) for any function $f : X \longrightarrow Y$ there exists an extension Y' of Y for which $f \in \mathcal{A}(X, Y')$ [36].
- (3) if J is an interval in \mathfrak{R} , $f \in \mathcal{A}(X,\mathfrak{R})$ and $rng(f) \subset J$, then $f \in \mathcal{A}(X,J)$. (Hence $f \in \mathcal{A}(X,\mathfrak{R})$ iff $f \in \mathcal{A}(X,rng(f))$ for each real-valued function f defined on X.)

Proof. (1) is obvious. To prove (3) assume that $f \in \mathcal{A}(X, \mathfrak{R}), rng(f) \subset J$ and J is an interval in \mathfrak{R} , e.g. of the form (a, b|. Let $G \subset X \times J$ be an open neighbourhood of f in $X \times J$. Then $G_1 = G \cup (X \times (b, \infty))$ is a neighbourhood of f in $X \times \mathfrak{R}$. Let $g_1 : X \longrightarrow \mathfrak{R}$ be a continuous function contained in $X \times \mathfrak{R}$. Then $g = min(g_1, b)$ is continuous and contained in G. Finally note that rng(f) is an interval (see Theorem 1.7) and therefore $f \in \mathcal{A}(X, \mathfrak{R})$ iff $f \in \mathcal{A}(X, rng(f))$.

Q.E.D.

Example 1.5 There exist Y and $f \in \mathcal{A}(I,Y) \setminus \mathcal{A}(I,rng(f))$ [36].

Indeed, let Y be the space X defined in Example 1.4 and let $f: I \longrightarrow Y$ be given by f(x) = x for $x \neq 0$ and f(x) = 1 for x = 0. As in Example 1.4 one can verify that $f \in \mathcal{A}(I,Y)$. Moreover, rng(f) is a discrete space (of cardinality 2^{ω}), and therefore only constant functions belong to the family $\mathcal{A}(I, rng(f))$.

Note that it follows from the above example that there are almost continuous functions defined on connected spaces whose images are not connected.

Almost continuous retractions of cubes $[-1, 1]^n$ are described in [35], [36]. Now we shall consider the following classes of functions from X into Y:

- $\mathcal{D}(X,Y)$ the family of all Darboux functions. f is a Darboux function iff f(C) is connected whenever C is connected in X.
- Conn(X, Y) the family of all connectivity functions. f is a connectivity function iff f|C is a connected subset of $X \times Y$ whenever C is connected in X.
- $\mathcal{E}xt(X,Y)$ the class of all extendable functions. f is extendable iff there exists $g \in \mathcal{C}onn(X \times I, Y)$ such that f(x) = g(x, 0) for each $x \in X$.

We shall write \mathcal{D} , Conn and $\mathcal{E}xt$, respectively, when X and Y are fixed. Now let X = I, $Y = \Re$ and

- \mathcal{L} the class of Lebesgue measurable functions from I into \mathfrak{R} .
- \mathcal{B} the class of Borel measurable functions from I into \mathfrak{R} .
- \mathcal{J}_1 the class of pointwise limits of sequences of functions from I into \Re which have only discontinuities of the first kind.

- \mathcal{R}_1 the class of pointwise limits of sequences of functions from I into \Re which are continuous from the right.
- \mathcal{B}_1 the first class of Baire of functions from I into \mathfrak{R} .

Note that $\mathcal{B}_1 \subset \mathcal{R}_1 \subset \mathcal{J}_1 \subset \mathcal{B} \subset \mathcal{L}$ [52].

Theorem 1.10 In the class of all real functions defined on I the following relations hold:

- (1) $\mathcal{E}xt \subset \mathcal{A} \subset \mathcal{C}onn \subset \mathcal{D}$ [60].
- (2) $A \neq Conn$ (see [9] and [18], [32], [53] and [60] for examples).
- (3) $\mathcal{L} \cap \mathcal{E}xt \neq \mathcal{L} \cap \mathcal{A} \text{ and } \mathcal{B}_1 \cap \mathcal{E}xt = \mathcal{B}_1 \cap \mathcal{A}$ [7].
- (4) $\mathcal{B}_1 \cap \mathcal{A} = \mathcal{B}_1 \cap \mathcal{C}onn \text{ and } \mathcal{R}_1 \cap \mathcal{A} \neq \mathcal{R}_1 \cap \mathcal{C}onn [5].$

Problem 1.1 For which $\mathcal{X} \in {\mathcal{B}, \mathcal{J}_1, \mathcal{R}_1}$ is it true that $\mathcal{X} \cap \mathcal{E}xt = \mathcal{X} \cap \mathcal{A}$? [7]

Note that the inclusion $Conn(X,Y) \subset \mathcal{D}(X,Y)$ holds for each pair of topological spaces X, Y. However this is not true for all inclusions (1) from 1.10, even for real functions defined on cubes.

Theorem 1.11 If k > 1 then $Conn(I^k, I) \subset \mathcal{A}(I^k, I)$ [60].

Example 1.6 There exists $f \in \mathcal{A}(I^2, I) \setminus \mathcal{D}(I^2, I)$.

Indeed, let A_0 be a closed segment with end-points (0,1) and (1,1), and for each $n \in N$ let A_n be a closed segment with end-points (1/n, 0) and (1/n, 1). Let $A = \bigcup_{n=0}^{\infty} A_n$ and $B = A \cup \{(0,0)\}$. Observe that B is connected and for each non-degenerate continuum $C \in I^2$ either $C \subset A$ or $card(C \setminus B) = 2^{\omega}$. In fact, let us assume that C is a non-degenerate continuum and $C \setminus A \neq \emptyset$. If $dom(C \setminus A) \cap (0,1] \neq \emptyset$ or $C \subset \{0\} \times I$ then the assertion is obvious. Otherwise, dom(C) is a non-degenerate interval and there exists $\delta > 0$ such that $(0,\delta) \times \{1\} \subset C$. Let y < 1 be such that $x = (0,y) \in C$. If $B(x,r) \cap (0,1] \times I = \emptyset$ for some r > 0 then $\{0\} \times J \subset C$ for some closed nondegenerate interval J. Otherwise there exist an increasing sequence $(k_n)_n$ and $z \in (y,1)$ such that and $\{1/k_n\} \times [z,1] \subset C$ for each $n \in N$ and therefore, $\{0\} \times [z,1] \subset C$ and $card(C \setminus B) = 2^{\omega}$.

Let $(K_{\alpha})_{\alpha<2^{\omega}}$ be a sequence of all minimal blocking sets K in $I^2 \times I$ such that $dom(K) \setminus A \neq \emptyset$. Let $(x_{\alpha}, y_{\alpha})_{\alpha<2^{\omega}}$ be a sequence of points such that $(x_{\alpha}, y_{\alpha}) \in K_{\alpha}, x_{\alpha} \in dom(K_{\alpha}) \setminus B$ and $x_{\alpha} \neq x_{\beta}$ for $\alpha \neq \beta$. Define $f: I^2 \longrightarrow I$ by f(x) = 1 for $x = (0,0), f(x_{\alpha}) = y_{\alpha}$ for $\alpha < 2^{\omega}$ and f(x) = 0 otherwise. Observe that f intersects each blocking set in $I^2 \times I$. In fact, let F be a blocking set and let $K \subset F$ be a minimal blocking set. If $K = K_{\alpha}$ for some $\alpha < 2^{\omega}$ then $(x_{\alpha}, y_{\alpha}) \in f \cap K$. If $K \neq K_{\alpha}$ for each $\alpha < 2^{\omega}$ then f(x) = 0 for each $x \in dom(K)$. Since rng(K) = I, $(x, 0) \in f \cap K$ for some $x \in dom(K)$. Thus $f \in \mathcal{A}(I^2, I)$. Since $f(B) = \{0, 1\}, f \notin \mathcal{D}(I^2, I)$.

Let $\mathcal{D}_P(X, Y)$ denote the family of all Darboux functions in the sense of Pawlak [51], i.e. functions $f: X \longrightarrow Y$ such that f(L) is connected whenever L is an arc in X.

Theorem 1.12 If Y is hereditarily normal, then $\mathcal{A}(X,Y) \subset \mathcal{D}_{\mathcal{P}}(X,Y)$.

P r o o f. Let L be an arc in X and let $f: X \longrightarrow Y$ be almost continuous. It will be shown in Theorem 2.1, that $f|L \in \mathcal{A}(L,Y)$. By Theorem 1.7, rng(f|L) is connected. Q.E.D.

In connection with the condition (3) of Theorem 1.10 we have the following Lipiński's example.

Example 1.7 Let $X = [-1,1] \times \Re$ and Y = [-1,1]. Then $\mathcal{B}_1(X,Y) \cap (\mathcal{D}(X,Y) \setminus \mathcal{A}(X,Y) \neq \emptyset$ [42].

Let $f: [-1,1] \times \Re \longrightarrow [-1,1]$ be given by $f(x,y) = f_0(x)$, where f_0 is the function defined in Example 1.1. Then f has required properties [42].

More information about relationships between almost continuity and other Darboux-like classes one can found in Gibson's papers, e.g. [23], [24], [55].

1.4 The local characterization.

Many authors have considered the local property of Darboux (i.e. the intermediate value property) [10] or local connectivity of a real function [22] and the sets of those points at which a real function of a real variable has the local Darboux property [43] or local connectivity property [54]. The local characterization of almost continuity is given in [31] and in that paper one can find proofs of the next three theorems. We say that a function f from \Re into \Re is almost continuous at a point $x \in \Re$ from the right iff

- (1) $f(x) \in C^+(f, x)$,
- (2) there is a positive ε such that for any neighbourhood G of $f|[x,\infty)$, arbitrary $y \in (\underline{lim}_{t \longrightarrow x^+} f(t), \overline{lim}_{t \longrightarrow x^+} f(t))$, arbitrary neighbourhood Uof the point (x, y) and arbitrary $t \in (x, x + \varepsilon)$ there exists a continuous function $g : [x, x + \varepsilon] \longrightarrow \Re$ such that $g \subset G \cup U$, g(x) = y and g(t) = f(t).

Analogously we define the notion of almost continuity at a point from the left. If f is almost continuous at a point x from both sides then we say that f is almost continuous at x or that x is a point of almost continuity of f.

Theorem 1.13 A function $f : \Re \longrightarrow \Re$ is almost continuous iff f is almost continuous at every point x of \Re .

For arbitrary function $f : \Re \longrightarrow \Re$ let A(f), Conn(f) and D(f) denote the sets of all points at which f is almost continuous, connectivity and has the Darboux property, respectively.

Theorem 1.14 For every function $f : \Re \longrightarrow \Re$,

(C(f), A(f), Conn(f), D(f))

is an increasing sequence of G_{δ} -sets.

Theorem 1.15 For every G_{δ} -set $A \subset \Re$ there exists a function $f : \Re \longrightarrow \Re$ such that A(f) = A.

Problem 1.2 Find necessary and sufficient conditions for a sequence (A, B, C, D) of subsets of \Re to exist a function $f : \Re \longrightarrow \Re$ such that (A, B, C, D) = (C(f), A(f), Conn(f), D(f)).

2 Restrictions and extensions.

Theorem 2.1 If X_0 is a closed subspace of X and $f \in \mathcal{A}(X, Y)$, then $f|_{X_0} \in \mathcal{A}(X_0, Y)$ [60].

The following example is a bounded version of Lipiński's function from Example 1.7 and shows that the assumption about X_0 is important.

Example 2.1 There exists an almost continuous function f from $[-1,1] \times [-1,1]$ into [-1,1] for which the restriction $f|(-1,1) \times (-1,1)$ is not almost continuous.

Indeed, let $f: [-1,1] \times [-1,1] \longrightarrow [-1,1]$ be defined by $f(x,y) = f_0(x)$, where $f_0: [-1,1] \longrightarrow [-1,1]$ is the function defined in Example 1.1. It will be proved in Corollary 4.2 that f is almost continuous. We shall verify that f|A is not almost continuous for $A = (-1,1) \times (-1,1)$. Let h: $(-1,1) \longrightarrow \Re$ be an increasing homeomorphism. Put $B_0 = \{(x,y,z) : |x| < 1\}$ $e^{-h^2(y)}/10$ and $|z| < e^{-h^2(y)}/10$ } and $B_1 = \{(x,y,z) : x \neq 0 \text{ and } |z - y| < 0 \}$ sin(1/x)| < 1/10. Clearly B_0 and B_1 are open and $f|A \subset B_0 \cup B_1$. Suppose that there exists a continuous function $g: A \longrightarrow [-1, 1]$ contained in $B_0 \cup B_1$. Then $(0, 0, g(0, 0)) \in B_0$ and |g(0, 0)| < 1/10 and therefore there is a positive δ such that |g(x,0)| < 1/10 for $x \in (-\delta, \delta)$. Fix $x_0 \in (0, \delta)$ such that $sin(1/x_0) = 1$ and $y_0 \in (0,1)$ for which $x_0 > e^{-h^2(y_0)}/10$. Then $(x_0, y_0, g(x_0, y_0)) \in B_1$, so $g(x_0, y_0) > 9/10$. Observe that the x_0 -section g_{x_0} of g (given by $g_{x_0}(y) = g(x_0, y)$ for $y \in (-1, 1)$) is continuous, $g_{x_0}(0) < 1/10$ and $g_{x_0}(y_0) > 9/10$. Moreover, $|g_{x_0}(y)| < 1/10$ for $(x_0, y, g(x_0, y)) \in B_0$ and $|g_{x_0}(y)| > 9/10$ if $(x_0, y, g(x_0, y)) \in B_1$. Since $g_{x_0} \subset (B_0 \cup B_1)_{x_0}, g_{x_0}$ does not have the Darboux property, which contradicts the continuity of g_{x_0} .

Lemma 2.1 If X is a second countable zero-dimensional space then each function defined on X is almost continuous.

P roof. Fix $f: X \longrightarrow Y$ and an open neighbourhood $G \subset X \times Y$ of f. Then $G = \bigcup_{n=1}^{\infty} U_n \times V_n$, where the sets U_n are clopen in X, the sets V_n are open in Y and U_n, V_n are non-empty. For any $n \in N$ choose $y_n \in V_n$. Then $g = \bigcup_{n=1}^{\infty} (U_n \setminus \bigcup_{i < n} U_i) \times \{y_n\}$ is a continuous function defined on X and contained in G.

Q.E.D.

Corollary 2.1 Every function defined on a boundary subset of \Re is almost continuous (see [40] for real functions defined on compact subsets of I).

Lemma 2.2 Let A be a subset of I and let $f : A \longrightarrow \Re^k$ be a function such that $f|cl_A(J) \in \mathcal{A}(cl_A(J), \Re^k)$ for every component J of int(A). Then f is almost continuous.

P r o o f. Let $G \subset A \times \Re^k$ be a neighbourhood of f. For every component J of int(A) choose an open interval $U_J \subset I$ such that $cl_A(J) \subset U_J$ and:

- (i) U_J is clopen in A,
- (ii) if a is a left (right) end-point of J and $a \notin A$ then $inf(U_J) = a$ $(sup(U_J) = a)$,
- (iii) if a is a left (right) end-point of J and $a \in A$ then there exists a neighbourhood V_a of f(a) such that $(inf(U_J), a) \times V_a \subset G$ $((a, sup(U_J)) \times V_a \subset G)$,
- (iv) if J_1, J_2 are components of int(A) then $U_{J_1} \cap U_{J_2} = \emptyset$ or $U_{J_1} \subset U_{J_2}$ or $U_{J_2} \subset U_{J_1}$.
- Put $B = A \setminus \bigcup_J U_J$. Then there exist open sets $U_i, V_i, i \in N$ such that

$$(v) \ B \subset \bigcup_{i=1}^{\infty} U_i,$$

- $(vi) \bigcup_{i=1}^{\infty} U_i \times V_i \subset G,$
- (vii) U_i are pairwise disjoint and clopen in A,
- (viii) for any component J of int(A) and for each $i \in N$ either $U_J \cap U_i = \emptyset$ or $U_J \subset U_i$.

Fix an arbitrary component J of int(A). Since $f|cl_A(J)$ is almost continuous, there exists a continuous function $g_J : cl_A(J) \longrightarrow \Re^k$ such that $g_J \subset G$ and $g_J|fr_A(J) = f|Fr_A(J)$. Let $g_J^* : U_J \longrightarrow \Re^k$ be an extension of g_J given by $g_J^* = (inf(U_J), inf(J)| \times \{f(inf(J))\} \cup g_J \cup [sup(J), sup(U_J)) \times \{f(sup(J))\}.$ Observe that $A = \bigcup_{i=1}^{\infty} U_i \cup \bigcup_{J \not\in \bigcup_i U_i} U_i$. For each $n \in N$ choose $y_n \in V_n$.

Then $g = \bigcup_{i=1}^{\infty} U_i \times \{y_i\} \cup \bigcup_{J \not\in \bigcup_i U_i} U_i g_J^*$ is a continuous function defined on A and contained in G.

Q.E.D.

The following lemma is proved in [30] for real functions defined on the real line.

Lemma 2.3 Let an interval $J \subset \Re$ be a union of countably many of closed intervals I_n such that $int(I_n) \cap int(I_m) = \emptyset$ for $m \neq n$ and $I_n \cap I_{n+1} \neq \emptyset$ for $n \in N$, and let Y be a convex subspace of \Re^k . For any function $f: J \longrightarrow Y$ if $f|I_n$ is almost continuous for each n then f is almost continuous, too. **P** r o o f. This proof is analogous to the corresponding proof in [30].

Corollary 2.2 A function $f : \Re \longrightarrow \Re$ is almost continuous iff f|[k, k+1] is almost continuous for each integer k [34].

Note that the analogous result does not hold for functions of two variables. Indeed, if $f: [-1,1] \times \Re \longrightarrow [-1,1]$ is Lipiński's function from Example 1.7 then $f|[-1,1] \times [k,k+1]$ is almost continuous for any integer k (see Theorem 4.6 below) but f is not almost continuous.

Theorem 2.2 If $f : I \longrightarrow \Re^k$ is almost continuous and A is a subset of I then f|A is almost continuous.

Proof. By Lemma 2.2 it is sufficient to prove that $f|cl_A(J)$ is almost continuous for any component J of int(A). If $cl_A(J)$ is compact then, by Theorem 2.1, $f|cl_A(J)$ is almost continuous. Otherwise, $cl_A(J)$ can be represented as a union of countably many of compact intervals satisfying the assumptions of Lemma 2.3. Thus, almost continuity of $f|cl_A(J)$ follows from that lemma.

Q.E.D.

On the other hand it is easy to find a set $A \subset I$ and a continuous function $f: A \longrightarrow \Re$ which cannot be extended to an almost continuous real function defined on the entire interval I.

Theorem 2.3 For any non-void subset A of I and positive integer k the following conditions are equivalent:

- (i) each almost continuous function $f : A \longrightarrow \Re^k$ can be extended to an almost continuous function $f^* : I \longrightarrow \Re^k$,
- (ii) each continuous function $f : A \longrightarrow \Re^k$ can be extended to an almost continuous function $f^* : I \longrightarrow \Re^k$,
- (iii) the set $I \setminus A$ is bilaterally c-dense in itself,
- (iv) there exists a function $g : I \setminus A \longrightarrow \Re^k$ such that $f \cup g$ is almost continuous for each almost continuous function $f : A \longrightarrow \Re^k$.

P r o o f. Obviously only two implications need to be proved.

 $(ii) \implies (iii)$. Assume that x_0 is a point of $I \setminus A$ and $card((x_0, x_0 + \varepsilon) \setminus A) < 2^{\omega}$ for some positive ε . We define a function $f : A \longrightarrow \Re^k$ by $f(x) = (0, 0, \ldots, 0)$ for $x < x_0$ and $f(x) = (1/(x - x_0), 0, \ldots, 0)$ for $x > x_0$. Then f is continuous and it has no Darboux extension on whole interval I.

 $(iii) \Longrightarrow (iv)$. Let $(J_n)_n$ be a sequence of all components of int(A). Note that $\overline{J_n} \subset A$ for each $n \in N$. Let $(F_{\alpha})_{\alpha < 2^{\omega}}$ be a sequence of all minimal blocking sets $F \subset I \times \Re^k$ such that $dom(F_{\alpha}) \subset \overline{J_n}$ for no $n \in N$. Then $card(dom(F_{\alpha}) \setminus A) = 2^{\omega}$ for every $\alpha < 2^{\omega}$. We choose $(x_{\alpha}, y_{\alpha}) \in F_{\alpha}$ such that $x_{\alpha} \neq x_{\beta}$ for $\alpha \neq \beta$. Put $g(x) = y_{\alpha}$ if $x = x_{\alpha}, \alpha < 2^{\omega}$ and g(x) = 0 for other $x \in I \setminus A$.

Let $f: A \longrightarrow \Re^k$ be an arbitrary almost continuous function. Then $f \cup g$ is almost continuous, too. Indeed, let F be a minimal blocking set in $I \times \Re^k$. Then either $dom(F_\alpha) \subset \overline{J_n}$ for some $n \in N$ or $F = F_\alpha$ for some $\alpha < 2^\omega$. In the first case F is blocking in $\overline{J_n} \times \Re^k$ and therefore $f \cap F \neq \emptyset$. Otherwise $(x_\alpha, y_\alpha) \in F \cap g$. Thus $F \cap (f \cup g) \neq \emptyset$ and consequently $f \cup g$ is almost continuous.

Q.E.D.

The following simple but useful fact is proved in [30] (for k = 1).

Theorem 2.4 Assume that $h: (a, b) \longrightarrow \Re^k$ is almost continuous and $y, z \in \Re^k$, $h_1 = h \cup \{(a, y)\}$, $h_2 = h \cup \{(b, z)\}$ and $h_3 = h_1 \cup h_2$. Then h_1, h_2, h_3 are almost continuous iff $y \in C^+(h, a)$, $z \in C^-(h, b)$ and $y \in C^+(h, a)$, $z \in C^-(h, b)$ respectively.

Theorem 2.5 For any non-empty subset A of I and positive integer k the following conditions are equivalent:

- (i) each bounded almost continuous function $f : A \longrightarrow \Re^k$ can be extended to an almost continuous function $f^* : I \longrightarrow \Re^k$,
- (ii) any bounded continuous function $f : A \longrightarrow \mathbb{R}^k$ can be extended to an almost continuous function $f^* : I \longrightarrow \mathbb{R}^k$,
- (iii) the set $I \setminus A$ is c-dense in itself.

P r o o f. (*ii*) \implies (*iii*). Assume that $x_0 \in I \setminus A$ and $card((x_0 - \varepsilon, x_0 + \varepsilon) \setminus A) < 2^{\omega}$ for some positive ε . Then the function $g: A \longrightarrow \Re^k$ given by

g(x) = (0, ..., 0) for $x < x_0$ and g(x) = (1, 0, ..., 0) for $x > x_0$ is continuous and it has no Darboux extension on whole I.

 $(iii) \Longrightarrow (i)$. Let $f: A \longrightarrow \Re^k$ be a bounded almost continuous function and J be a k-dimensional closed cube containing $f(A) \cup \{0\}$. Fix $t \in J$. Let $(J_n)_n$ be a sequence of all components of int(A). It follows from Theorem 2.4 that for each $n \in N$ the function $f|J_n$ can be extended to an almost continuous function $f_n^*: \overline{J_n} \longrightarrow J$. Let $(F_\alpha)_{\alpha < 2^\omega}$ be a sequence of all minimal blocking sets in $I \times J$. As in the proof of Theorem 2.5 we choose a sequence of points $(x_\alpha, y_\alpha)_{\alpha < 2^\omega}$ such that $(x_\alpha, y_\alpha) \in F_\alpha$ for each α and $\{(x_\alpha, y_\alpha): \alpha < 2^\omega\}$ is a function which agrees with f on the set A. Put $f^*(x) = f_n^*(x)$ for $x \in \overline{J_n}$ and $n \in N$, $f^*(x_\alpha) = y_\alpha$ for $x = x_\alpha$, $\alpha < 2^\omega$ and $f^*(x) = 0$ otherwise. Then $f^*|A = f$ and $f^* \in \mathcal{A}(I, J)$. From Theorem 1.9,(1) we obtain that $f^* \in \mathcal{A}(I, \Re^k)$.

The implication $(i) \Longrightarrow (ii)$ is obvious.

Q.E.D.

3 Compositions.

Obviously the class $\mathcal{D}(\mathfrak{R},\mathfrak{R})$ of all functions having the Darboux property is closed under compositions. Thus the following fact follows from Theorem 1.10,(1).

Theorem 3.1 The composition $g \circ f$ of almost continuous functions $f, g : \Re \longrightarrow \Re$ has Darboux property.

On the other hand, there exists a function $f \in \mathcal{A}(I, I)$ such that $f \circ f$ has no fixed point and consequently is not almost continuous [39] (see also [33], where for arbitrary positive integers n, m almost continuous functions $f: I^n \longrightarrow I^m, g: I^m \longrightarrow I^n$ are constructed such that the composition $g \circ f$ has no fixed point). The foregoing suggests also the following question.

Problem 3.1 Is any Darboux function from \Re into \Re a composition of (two) almost continuous functions ? [39], [49]

Theorem 3.2 Assume A(c). Then any function from the class $\mathcal{D}^*(\Re, \Re)$ is the composition of two almost continuous functions [49].

Now we shall prove a similar result concerning (K, G) pairs of topological spaces.

Proposition 3.1 Suppose that X is a T_1 space, (X, Y) and (Y, Z) are (K, G) pairs with blocking families \mathcal{F} and \mathcal{K} , respectively. If $card(\mathcal{F}) = card(\mathcal{K}) = card(X) = card(Y) = \kappa$ and any $F \in \mathcal{F}$ satisfies the following condition:

(1) the set dom(F) cannot be decomposed into less than κ subsets which are nowhere dense in dom(F),

then every function $f: X \longrightarrow Z$ such that

(2) $card(G \cap f^{-1}(z)) = \kappa$ for any $F \in \mathcal{F}$, $z \in Z$ and any non-empty set G open in dom(F),

can be expressed as a composition of two almost continuous functions $f_1 \in \mathcal{A}(X,Y)$ and $f_2 \in \mathcal{A}(Y,Z)$.

P roof. Let $(x_{\alpha})_{\alpha < \kappa}$, $(F_{\alpha})_{\alpha < \kappa}$ and $(K_{\alpha})_{\alpha < \kappa}$ be sequences of all points of X, and all sets from \mathcal{F} and \mathcal{K} , respectively. We choose for each $\alpha < \kappa$ points $(a_{\alpha}, a'_{\alpha}) \in F_{\alpha}, (b_{\alpha}, b'_{\alpha}) \in K_{\alpha}$ and $c_{\alpha} \in Y$ such that

(i) $a_{\alpha} \neq a_{\beta}, b_{\alpha} \neq b_{\beta}$ and $c_{\alpha} \neq c_{\beta}$ for $\alpha \neq \beta$,

- (ii) if $a'_{\alpha} = a'_{\beta}$ for $\alpha, \beta < \kappa$, then $f(a_{\alpha}) = f(a_{\beta})$,
- (iii) if $a'_{\alpha} = b_{\beta}$ for $\alpha, \beta < \kappa$, then $f(a_{\alpha}) = b'_{\beta}$,
- (iv) if $a'_{\alpha} = c_{\beta}$ for $\alpha, \beta < \kappa$, then $f(a_{\alpha}) = f(x_{\beta})$,
- (v) $b_{\alpha} \neq c_{\beta}$ for $\alpha, \beta < \kappa$.

We shall verify that it is possible to choose such points. Assume that $\alpha < \kappa$ and (a_{β}, a'_{β}) , (b_{β}, b'_{β}) , c_{β} are chosen for $\beta < \alpha$. Fix for each $x \in dom(F_{\alpha})$ a point y(x) such that $(x, y(x)) \in F_{\alpha}$. Put $A_{\beta} = \{x \in dom(F_{\alpha}) : y(x) = a'_{\beta}\}, B_{\beta} = \{x \in dom(F_{\alpha}) : y(x) = b_{\beta}\}, C_{\beta} = \{x \in dom(F_{\alpha}) : y(x) = c_{\beta}\}$ for $\beta < \alpha$. Now, if $D = dom(F_{\alpha}) \setminus \bigcup_{\beta < \alpha} (A_{\beta} \cup B_{\beta} \cup C_{\beta} \cup \{a_{\beta}\})$ has cardinality κ , we choose any $a_{\alpha} \in D$ and put $a'_{\alpha} = y(a_{\alpha})$. Otherwise, $int_{dom(F_{\alpha})}(cl_{dom(F_{\alpha})}A_{\beta}) \neq \emptyset$. Then $G \times \{a'_{\beta}\} \subset F_{\alpha}$, so $G \subset A_{\beta}$. Choose $a_{\alpha} \in G \cap f^{-1}(f(a_{\beta})) \setminus \{a_{\gamma} : \gamma < b^{-1}\}$ α and put $a'_{\alpha} = a'_{\beta}$. Next we choose $b_{\alpha} \in dom(K_{\alpha}) \setminus (\{b_{\beta}, a'_{\beta} : \beta < \alpha\} \cup \{a'_{\alpha}\})$ and $c_{\alpha} \in Y \setminus (\{b_{\beta}, a'_{\beta}, c_{\beta} : \beta < \alpha\} \cup \{a'_{\alpha}, b_{\alpha}\})$. Let f_1, f_2 be defined by

$$f_1(x) = \left\{egin{array}{cc} a'_lpha & ext{for } x = a_lpha, \ lpha < \kappa, \ c_lpha & ext{for } x = x_lpha ext{ and } x
ot\in \{a_eta:\ eta < \kappa\} \end{array}
ight.$$

$$f_2(y) = \begin{cases} f(a_{\alpha}) & \text{for } y = a'_{\alpha}, \ \alpha < \kappa \\ b'_{\alpha} & \text{for } y = b_{\alpha}, \ \alpha < \kappa \\ f(x_{\beta}) & \text{for } y = c_{\beta}, \ \beta < \kappa \\ f(x_0) & \text{otherwise.} \end{cases}$$

Then $f_1 \in \mathcal{A}(X, Y)$, $f_2 \in \mathcal{A}(Y, Z)$ and $f = f_2 \circ f_1$.

Q.E.D.

Now we shall consider under which conditions for f_1 and f_2 the composed map $f_2 \circ f_1$ is almost continuous.

Theorem 3.3 For each $f \in \mathcal{A}(X,Y)$ and $g \in \mathcal{C}(Y,Z)$ the composed map $g \circ f$ is almost continuous [60].

Theorem 3.4 If $h : X \longrightarrow Y$ is a homeomorphism and $f : Y \longrightarrow Z$ is almost continuous then the composition $f \circ h$ is almost continuous [27].

P roof. Let $G \subset X \times Z$ be an open neighbourhood of $f \circ h$. Then $G_0 = \{(h(x), z) : (x, z) \in G\}$ is an open neighbourhood of the function f in $Y \times Z$. Let $g : Y \longrightarrow Z$ be a continuous function contained in G_0 . Then $g \circ h : X \longrightarrow Z$ is a continuous function contained in G.

Q.E.D.

Corollary 3.1 Suppose that h is a homeomorphic injection from X into Y such that rng(h) is closed in Y. Then $f \circ h \in \mathcal{A}(X, Z)$ for any $f \in \mathcal{A}(Y, Z)$.

P r o o f. It follows from Theorem 2.1 that $f|rng(h) \in \mathcal{A}(rng(h), Z)$. Since h is a homeomorphism between X and rng(h), $f \circ h = (f|rng(h)) \circ h \in \mathcal{A}(X, Z)$.

Q.E.D.

Theorem 3.5 If a space X is compact, Y is a Hausdorff space, $g \in C(X, Y)$ and $f \in A(Y, Z)$, then $f \circ g \in A(X, Z)$. **P**roof. This theorem is proved in [60]. We give here only the sketch of the proof which is based on the notion of blocking sets. Suppose that $f \circ g$ is not almost continuous. Let K be a blocking set for $f \circ g$ in $X \times Z$. Then $\{(g(x), z) : (x, z) \in K\}$ is a blocking set for f|rng(g), which contradicts Theorem 2.1.

Q.E.D. Note that the assumption about X is important. Indeed, let $f: [-1,1] \times$ $\Re \longrightarrow [-1,1]$ be Lipiński's function from Example 1.7 and let $g: [-1,1] \times$ $\Re \longrightarrow [-1,1] \times \{0\}$ be a continuous function given by g(x,y) = (x,0). Then f is not almost continuous, $f|([-1,1] \times \{0\})$ is almost continuous (by Corollary 3.1) and $f = (f|[-1,1] \times \{0\}) \circ g$.

Theorem 3.6 If A is a subspace of \Re , $f \in \mathcal{C}(A, \Re)$ and $g \in \mathcal{A}(\Re, \Re^k)$ then $g \circ f \in \mathcal{A}(A, \Re^k)$.

P r o o f. This is a consequence of Theorem 3.5 if A is a compact interval, of Lemma 2.3 if A is an interval and, finally, of Lemma 2.2 for arbitrary subset A of \Re .

Q.E.D.

Lemma 3.1 Suppose that C is a closed, dense in itself and nowhere dense subset of I and $f: I \longrightarrow \Re$ satisfies the following conditions:

- (1) rng(f) is an interval,
- (2) f|J is almost continuous for any component J of the complement of C,
- (3) both unilateral cluster sets of the function f at the end-points of components of the set $I \setminus C$ equal rng(f).

Then, f is almost continuous.

P roof. Suppose that f is not almost continuous. Let K be a minimal blocking set for f in $I \times rng(f)$. Conditions (2) and (3) and Theorem 2.4 imply that $f|\overline{J}$ is almost continuous, for arbitrary component J of $I \setminus C$. Therefore, dom(K) is contained in the closure of no component of $I \setminus C$ and consequently there exists a component J contained in dom(K). Suppose J = (s, t). Since (K|[0, s]) and (K|[t, 1]) are not blocking in $I \times rng(f)$, there are continuous functions $g, h : I \longrightarrow rng(f)$ such that $(g|[0, s]) \cap$

 $K = \emptyset = (h|[t,1]) \cap K$. Finally it is easy to observe that the function $k = g|[0,s] \cup f|(s,t) \cup h|[t,1]$ is almost continuous and disjoint from K, a contradiction.

Theorem 3.7 Let $f_1 \in \mathcal{A}(I, \mathfrak{R})$, $f_2 \in \mathcal{A}(\mathfrak{R}, \mathfrak{R})$, the set D of all points at which f_1 is not continuous is nowhere dense and adequate unilateral cluster sets of the function f_1 at the end-points of components of the set $I \setminus \overline{D}$ coincide with $rng(f_1)$. Then $f_2 \circ f_1$ is almost continuous.

Proof. By Theorem 3.6 we obtain that $(f_2 \circ f_1)|J \in \mathcal{A}(J, \mathfrak{R})$ for any component J of $I \setminus \overline{D}$. Since $f_2 \circ f_1$ has the Darboux property, $rng(f_2 \circ f_1)$ is an interval. Note that unilateral cluster sets of the function $f_2 \circ f_1$ at the end-points of components of the set $I \setminus \overline{D}$ equal $rng(f_2 \circ f_1)$. Almost continuity of the composition $f_2 \circ f_1$ now follows from Lemmas 3.1 and 2.3. Q.E.D.

Lemma 3.2 Let $\mathcal{F}_0, \mathcal{K}_0$ be families of subsets of X and Y respectively such that $max(card(\mathcal{F}_0), card(\mathcal{K}_0)) \leq \kappa$ and $card(M) \geq \kappa \geq \omega$ for all $M \in \mathcal{F}_0 \cup \mathcal{K}_0$. Then for every injection $f: X \longrightarrow Y$ there exist sets $A, C \subset X$ and $D \subset Y$ such that:

- (1) A, C and $f^{-1}(D)$ are pairwise disjoint,,
- (2) $card(A \cap F) = \kappa$ for each $F \in \mathcal{F}_0$ and $card(K \setminus (f(A) \cup f(C) \cup D)) \ge \kappa$ for each $K \in \mathcal{K}_0$,
- (3) $card(C) = \kappa$ and $card(D) = \kappa$.

P roof. Let $(F_{\alpha})_{\alpha < \kappa}$, $(K_{\alpha})_{\alpha < \kappa}$ be sequences of sets from classes \mathcal{F}_0 and \mathcal{K}_0 respectively, such that $card(\{\alpha : F_{\alpha} = F\}) = \kappa$ for each $F \in \mathcal{F}_0$ and $card(\{\alpha : K_{\alpha} = K\}) = \kappa$ for each $K \in \mathcal{K}_0$. Choose sequences $(a_{\alpha})_{\alpha < \kappa}$, $(b_{\alpha})_{\alpha < \kappa}$, $(c_{\alpha})_{\alpha < \kappa}$ and $(d_{\alpha})_{\alpha < \kappa}$ of points such that the following conditions hold for each $\alpha < \kappa$:

(i)
$$a_{\alpha}, c_{\alpha} \in F_{\alpha} \setminus (\{a_{\beta}, c_{\beta}\} \cup f^{-1}(\{b_{\beta}, d_{\beta} : \beta < \alpha\})) \text{ and } a_{\alpha} \neq c_{\alpha},$$

(ii) $b_{\alpha}, d_{\alpha} \in K_{\alpha} \setminus (\{b_{\beta}, d_{\beta} : \beta < \alpha\} \cup \{f(a_{\beta}), f(c_{\beta}) : \beta \le \alpha\}) \text{ and } b_{\alpha} \neq d_{\alpha}$

Put $A = \{a_{\alpha} : \alpha < \kappa\}, B = \{b_{\alpha} : \alpha < \kappa\}, C = \{c_{\alpha} : \alpha < \kappa\}$ and $D = \{d_{\alpha} : \alpha < \kappa\}$. Then the conditions (1) and (3) are obvious. Since $\{a_{\alpha} : F_{\alpha} = F\} \subset A \cap F, card(A \cap F) = \kappa$ for all $F \in \mathcal{F}_0$. Similarly, for each $K \in \mathcal{K}_0$ we have $\{b_{\alpha} : K_{\alpha} = K\} \subset K \setminus (f(A) \cup f(C) \cup D)$ and therefore $card(K \setminus (f(A) \cup f(C) \cup D)) \ge \kappa$.

Proposition 3.2 Suppose that (X, Y) and (Y, Z) are (K, G) pairs with blocking families \mathcal{F} and \mathcal{K} , respectively, $card(Y) = card(\mathcal{F}) = card(\mathcal{K}) = \kappa \ge \omega$ and $card(Z) \le \kappa$. If a function $f : X \longrightarrow Y$ satisfies the following condition: $card(f(dom(F))) = \kappa$ for each $F \in \mathcal{F}$, then for every surjection $g : Y \longrightarrow Z$ there exist almost continuous surjections $h_1 : Y \longrightarrow Z$ and $h_2 : X \longrightarrow Y$ such that $h_1 \circ f = g \circ h_2$.

P roof. Let $(F_{\alpha})_{\alpha < \kappa}$ and $(K_{\alpha})_{\alpha < \kappa}$ be sequences of all sets from the classes \mathcal{F} and \mathcal{K} , respectively. Let $(y_{\alpha})_{\alpha < \kappa}$ and $(z_{\alpha})_{\alpha < \kappa}$ be sequences of all points of Y and Z, respectively (the sequence $(z_{\alpha})_{\alpha}$ may not be one-to-one). Let ~ be the equivalence relation in X induced by f, i.e. $x_1 \sim x_2$ iff $f(x_1) = f(x_2)$. The equivalence class of x with respect to relation ~ is denoted by [x]. For $A \subset X$ let $A^{\sim} = \{[x] : x \in A\}$ and let $f^{\sim} : X^{\sim} \longrightarrow Y$ be defined by $f^{\sim}([x]) = f(x)$. Let $\mathcal{F}_0 = \{(dom(F))^{\sim} : F \in \mathcal{F}\}$ and $\mathcal{K}_0 = \{dom(K) : K \in \mathcal{K}\}$. Note that all assumptions of Lemma 3.2 are satisfied for f^{\sim} , \mathcal{F}_0 and \mathcal{K}_0 . Let $A, C \subset X^{\sim}$ and D be as in that lemma. Moreover, let $\{A_{\alpha} : \alpha < \kappa\}$ and $\{B_{\alpha} : \alpha < \kappa\}$ be partitions of the sets A and $B = Y \setminus (f^{\sim}(A \cup C) \cup D)$ into subsets which intersect each set from \mathcal{F}_0 and \mathcal{K}_0 , respectively and let $h_C : C \longrightarrow Y$ and $h_D : D \longrightarrow Z$ be arbitrary surjections. Now we define surjections $h_1 : Y \longrightarrow Z$ and $h_2 : X^{\sim} \longrightarrow Y$ such that $h_1 \circ f^{\sim} = g \circ h_2^{\sim}$.

- (a) $h_{2}^{\sim}|C = h_{C}$ and $h_{1}|D = h_{D}$.
- (b) Let $[x] \in A$. Then $[x] \in A_{\alpha}$ for some $\alpha < \kappa$. If $[x] \in A_{\alpha} \cap (dom(F_{\alpha}))^{\sim}$, then we choose $y \in Y$ such that $(s, y) \in F_{\alpha}$ for some $s \in [x]$ and define $h_{2}^{\sim}([x]) = y$. If $[x] \in A_{\alpha} \setminus (dom(F_{\alpha}))^{\sim}$, we put $h_{2}^{\sim}([x]) = y_{\alpha}$.
- (c) Let $y \in B$. Then $y \in B_{\alpha}$ for some $\alpha < \kappa$. If $y \in B_{\alpha} \cap dom(K_{\alpha})$, we choose $z \in Z$ such that $(y, z) \in K_{\alpha}$ and define $h_1(y) = z$. If $y \in B_{\alpha} \setminus dom(K_{\alpha})$, put $h_1(y) = z_{\alpha}$.
- (d) If $[x] \notin A \cup C$ then $f^{\sim}([x]) \in (B \cup D)$. Since g is a surjection, there exists $y \in Y$ such that $g(y) = h_1(f^{\sim}([x]))$ and we define $h_2^{\sim}([x]) = y$.

(e) If $y \in f^{\sim}(A \cup C)$ then $y = f^{\sim}([x])$ for exactly one $x \in A \cup C$ and we put $h_1(y) = g(h_2^{\sim}([x])).$

One can verify that the definition of and h_2^{\sim} is correct and $h_1 \circ f^{\sim} = g \circ h_2^{\sim}$. Now define $h_2 : X \longrightarrow Y$ by $h_2(x) = h_2^{\sim}([x])$. Then h_2 is a surjection and $h_1 \circ f = g \circ h_2$. Moreover, h_2 and h_1 intersect all blocking sets from \mathcal{F} and \mathcal{K} , respectively, so they are almost continuous.

Q.E.D.

Corollary 3.2 For any bijection $b: I^n \longrightarrow I^m$ there exist almost continuous surjections $h: I^m \longrightarrow I^m$ and $k: I^n \longrightarrow I^n$ for which the compositions $b \circ k$ and $h \circ b$ are almost continuous.

P roof. Using Proposition 3.2 for f = b and $g = id_{I^m}$ we obtain almost continuous surjections $h: I^m \longrightarrow I^m$ and $h_2: I^n \longrightarrow I^m$ such that $h_2 = h \circ b$. Similarly, for $f = id_{I^n}$ and g = b there exist almost continuous surjections $h_1: I^n \longrightarrow I^m$ and $k: I^n \longrightarrow I^n$ such that $h_1 = b \circ k$. The functions h and k have the required properties.

Q.E.D.

For a given family \mathcal{F} of functions from X into X we define two classes:

- $\mathcal{M}_i(\mathcal{F})$ the class of all function $f: X \longrightarrow X$ such that $g \circ f \in \mathcal{F}$ for any g from \mathcal{F} ,
- $\mathcal{M}_o(\mathcal{F})$ the class of all function $f: X \longrightarrow X$ such that $f \circ g \in \mathcal{F}$ for any g from \mathcal{F} .

Problem 3.2 Characterize the classes $\mathcal{M}_o(\mathcal{A}(I, I))$ and $\mathcal{M}_i(\mathcal{A}(I, I))$.

Finally remark that there exist a continuous surjection f from I onto Iand $g \notin \mathcal{A}(I, I)$ such that $g \circ f \in \mathcal{A}(I, I)$ [41].

4 Cartesian products and diagonals.

Theorem 4.1 Assume that X_2 is a compact space, $f_1 \in \mathcal{A}(X_1, Y_1)$ and $f_2 \in \mathcal{C}(X_2, Y_2)$. Then the cartesian product $h = (f_1, f_2) : X_1 \times X_2 \longrightarrow Y_1 \times Y_2$ of f_1 and f_2 (given by $h(x_1, x_2) = (f_1(x_1), f_2(x_2))$) is almost continuous (cf. [1] if all X_1, X_2, Y_1, Y_2 are compact).

P r o o f. Suppose that $K \subset X_1 \times X_2 \times Y_1 \times Y_2$ is a blocking set for h. We shall verify that $F = \{(x_1, y_1) \in X_1 \times Y_1 : (x_1, x_2, y_1, f_2(x_2)) \in K \text{ for some } x_2 \in X_2\}$ is blocking for f_1 in $X_1 \times Y_1$.

(1) F is closed. Indeed, fix $(x_1, y_1) \in X_1 \times Y_1 \setminus F$. Then for each $x_2 \in X_2$, $(x_1, x_2, y_1, f_2(x_2)) \notin K$. For every $x_2 \in X_2$ choose open neighbourhoods $U_1(x_2)$ of $x_1, U_2(x_2)$ of $x_2, V_1(x_2)$ of y_1 and $V_2(x_2)$ of $f(x_2)$ such that $U_1(x_2) \times U_2(x_2) \times V_1(x_2) \times V_2(x_2)$ is disjoint with K. Let $W(x_2) = U_2(x_2) \cap f_2^{-1}(V_2(x_2))$. Then $U_1(x_2) \times W(x_2) \times V_1(x_2) \times V_2(x_2) \subset X_1 \times X_2 \times Y_1 \times Y_2 \setminus K$ is an open neighbourhood of the point $(x_1, x_2, y_1, f(x_2))$. Let $W(t_1), \ldots, W(t_n)$ be a finite subcovering of X_2 chosen from the covering $\{W(x_2) : x_2 \in X_2\}$. Denote $U = \bigcap_{i=1}^n U_1(t_i)$ and $V = \bigcap_{i=1}^n V_1(t_i)$. Then $U \times V$ is an open neighbourhood of (x_1, y_1) disjoint with F.

(2) Since K and h are disjoint, F is disjoint with f_1 .

(3). If $g: X_1 \longrightarrow Y_1$ is continuous then $(g, f_2): X_1 \times X_2 \longrightarrow Y_1 \times Y_2$ is continuous, too. Since K is blocking, $(x_1, x_2, g(x_1), f_2(x_2)) \in K$ for some $x_1 \in X_1, x_2 \in X_2$, and therefore $(x_1, g(x_1)) \in F$.

Q.E.D.

Note that the assumption about X_2 is important. Indeed, let $X_1 = Y_1 = Y_2 = [-1,1], X_2 = \Re, f_0 : [-1,1] \longrightarrow [-1,1]$ be the function from Example 1.1, f be Lipiński's function from Example 1.7 and $f_1 \equiv 0$. Suppose that $h = (f_0, f_1)$ is almost continuous. Since f is a composition of h and the projection π_1 from $[-1,1] \times [-1,1]$ into [-1,1], Theorem 3.1 implies almost continuity of f, a contradiction.

Theorem 4.2 Let $\mathcal{M}_p(\mathcal{A}(I, I))$ be the class of all functions f from I into \Re such that $(f,g) \in \mathcal{A}(I \times I, \Re \times \Re)$ when $g \in \mathcal{A}(I, \Re)$. Then $\mathcal{M}_p(\mathcal{A}(I, I)) = \mathcal{C}(I, \Re)$.

P roof. The inclusion " \supset " follows from Theorem 4.1. Now assume that $f: I \longrightarrow \Re$ is not almost continuous. It will be proved in Theorem 6.2 that there exists $g \in \mathcal{A}(I, \Re)$ such that $f + g \notin \mathcal{A}(I, \Re)$. Suppose that $(f, g) \in \mathcal{A}(I \times I, \Re^2)$. Then f + g, as the composition (f, g) with the "addition" map is almost continuous, a contradiction.

Q.E.D.

Now we shall consider functions f, g defined on the same space. Assume that $f: X \longrightarrow Y$ and $g: X \longrightarrow Z$. The map $f \Delta g: X \longrightarrow Y \times Z$ defined by $f \Delta g(x) = (f(x), g(x))$ for any $x \in X$ is called a *diagonal* of f and g. It

is obvious that $f \triangle g = (f, g) \circ d$, where $d : X \longrightarrow \{(x, x) : x \in X\}$ is given by d(x) = (x, x). The following fact follows from Corollary 3.1.

Theorem 4.3 If X is a Hausdorff space and $(f,g) \in \mathcal{A}(X \times X, Y \times Z)$ then $f \Delta g \in \mathcal{A}(X, Y \times Z)$.

Theorem 4.4 If $f \in \mathcal{A}(X,Y)$ and $g \in \mathcal{C}(X,Z)$ then $f \triangle g \in \mathcal{A}(X,Y \times Z)$ [30].

P r o o f. If X is compact, this theorem follows from Theorems 4.1 and 4.3. In the case of metric spaces X, Y and Z it is proved in [48] (see also [1] for X, Y, Z metric and compact).

In the general case assume that $f \Delta g$ is not almost continuous. Let K be a blocking set for $f \Delta g$ in $X \times (Y \times Z)$. It is easy to verify that $F = \{(x, y) : (x, y, g(x)) \in K\}$ is blocking for f in $X \times Y$.

Q.E.D.

For arbitrary topological spaces X, Y, Z let $\mathcal{M}_d(\mathcal{A}(X, Y \times Z))$ be the family of all functions from X into Y such that $f \Delta g$ is almost continuous provided $g: X \longrightarrow Z$ is almost continuous. As in Theorem 4.2 one can prove the following equality.

Corollary 4.1 $\mathcal{M}_d(\mathcal{A}(\Re, \Re \times \Re)) = \mathcal{C}(\Re, \Re)$

Lemma 4.1 Suppose that D is a closed and nowhere dense subset of I, $(I_n)_n$ is a sequence of all components of the complement of D and $f : I \longrightarrow \Re^k$ satisfies the following conditions:

- (1) $f|\overline{I_n}$ is almost continuous for every $n \in N$,
- (2) f|D is continuous.

Then f is almost continuous.

Proof. We can assume that $0, 1 \in D$. Let G be an open neighbourhood of f in $I \times \Re^k$. For each $x \in D$ we choose open intervals U_x, V_x such that:

- (a) $(x, f(x)) \in U_x \times V_x \subset \overline{U_x} \times \overline{V_x} \subset G$,
- (b) $f|(D \cap \overline{U_x}) \subset \overline{U_x} \times V_x$,

(c) $inf(U_x) < inf(D \cap \overline{U_x}) \le sup(D \cap \overline{U_x}) < sup(U_x)$ (this condition must be interpreted unilaterally at the points 0 and 1).

Since f|D is compact, there are points $x_1, \ldots, x_n \in D$ such that $f|D \subset \bigcup_{i=1}^n (U_{x_i} \times V_{x_i})$. We can assume that $0 \in U_{x_1}$, $1 \in U_{x_n}$ and $inf(U_{x_i}) < inf(U_{x_j})$ for i < j. If $U_{x_i} \cap U_{x_{i+1}} \neq \emptyset$ then there exists a continuous function g defined on $W = U_{x_i} \cup U_{x_{i+1}}$ such that $g \subset G$ and g(x) = f(x) for $x \in \{inf(D \cap W), sup(D \cap W)\}$. Let W_1, \ldots, W_m be components of the union $\bigcup_{i=1}^n U_{x_i}$. For every $i = 1, \ldots, m$ there exists a continuous function g_{2i-1} defined on W_i such that $g_{2i-1} \subset G$ and g(x) = f(x) for $x \in \{inf(D \cap W_i), sup(D \cap W_i)\}$. Additionally, for i < m there exists n_i such that $I_{n_i} = (sup(D \cap W_i), inf(D \cap W_{i+1}))$. Since $f|\overline{I_{n_i}}$ is almost continuous, there exists a continuous function $g_{2i} : \overline{I_{n_i}} \longrightarrow \Re^k$ such that $g_{2i} \subset G$, and $g_{2i}(x) = f(x)$ for $x \in \{inf(I_{n_i}), sup(I_{n_i})\}$. Then $\bigcup_{i=1}^{2m-1} g_i$ is a continuous function defined on all of I and contained in G.

Theorem 4.5 Suppose that f_1, f_2 are almost continuous real functions defined on I and D is the set of points at which f_1 is discontinuous. If $f_1|\overline{D}$ is continuous and $\overline{D} \subset C(f_2)$, then $f_1 \triangle f_2$ is almost continuous.

P r o o f. This is a consequence of Lemma 4.1 and Theorem 4.4.

Note that the assumption " $\overline{D} \subset C(f_2)$ " is important. Indeed, let f_1, f_2 : $[-1,1] \longrightarrow [-1,1]$ be defined by $f_i(x) = (-1)^i \sin(1/x)$ for $x \neq 0$, i = 1, 2and $f_1(x) = f_2(x) = 1$. Suppose that $f_1 \Delta f_2 \in \mathcal{A}([-1,1], [-1,1]^2)$. Then, as in Theorem 4.2, $f_1 + f_2 \in \mathcal{A}([-1,1], [-1,1])$, but this is impossible because $f_1 + f_2$ does not have the Darboux property.

Theorem 4.6 Suppose that X_2 is compact, $f_1 \in \mathcal{A}(X_1, Y)$, $f_2 \in \mathcal{C}(X_2, Y)$, and $F \in \mathcal{C}(Y \times Y, Y)$. Then the function $F(f_1, f_2) : X_1 \times X_2 \longrightarrow Y$ defined by $F(f_1, f_2)(x_1, x_2) = F(f_1(x_1), f_2(x_2))$ for $(x_1, x_2) \in X_1 \times X_2$ is almost continuous.

P r o o f. The function $(f_1, f_2) : X_1 \times X_2 \longrightarrow Y \times Y$ is almost continuous by Theorem 4.1. Hence $F(f_1, f_2)$ is almost continuous by Theorem 3.1. Q.E.D.

Corollary 4.2 If X_2 is compact, $f_1 \in \mathcal{A}(X_1, Y)$ and $f_2 \in \mathcal{C}(X_2, Y)$, then (1) $F: X_1 \times X_2 \longrightarrow Y$ given by $F(x_1, x_2) = f_1(x_1)$ is almost continuous, (2) if $Y = \Re$ then $F_1(x_1, x_2) = f_1(x_1) + f_2(x_2)$, $F_2(x_1, x_2) = f_1(x_1)f_2(x_2)$, $F_3(x_1, x_2) = max(f_1(x_1), f_2(x_2))$ and $F_4(x_1, x_2) = min(f_1(x_1), f_2(x_2))$ are almost continuous.

Note that the assumption about X_2 in the last results is important (see e.g. Lipiński's function from Example 1.7). As it was remarked by Grande [26], continuity of all sections of $f: I \times I \longrightarrow I$ does not imply almost continuity of f.

Example 4.1 There exists a function $f : I \times I \longrightarrow I$ such that f_x, f^y are continuous for each $x, y \in I$ but f is not almost continuous.

Indeed, let $f : I \times I \longrightarrow I$ be defined by $f(x,y) = 2xy/(x^2 + y^2)$ if $(x,y) \neq (0,0)$ and f(0,0) = 0. Then all sections of f are continuous but for a connected set $D = \{(x,x) : x \in I\}$ we have $f(D) = \{0,1\}$. Thus the function f_0 from I into I given by $f_0(x) = f(x,x)$ does not have Darboux property. Suppose that f is almost continuous. Then f|D is almost continuous, in contradiction with Corollary 3.1.

Lemma 4.2 Assume that $m \in N$, $F \in \mathcal{C}(\Re^2, \Re)$, $f \in \mathcal{A}(\Re^m, \Re)$, $g \in \mathcal{C}(\Re, \Re)$ and $h : \Re^{m+1} \longrightarrow \Re$ is defined by

$$h(x_1,\ldots,x_m,x_{m+1}) = F(f(x_1,\ldots,x_m),g(x_{m+1})).$$

If there exists a compact subset K of \Re such that $[h \neq 0] \subset \Re^m \times K$ then h is almost continuous.

P roof. Fix reals a, b such that $K \subset (a, b)$ and an open neighbourhood $G \subset \Re^{m+2}$ of h. Let $(S_k)_k$ be a sequence of all m-dimensional cubes of the form $\prod_{i=1}^{m} [k_i, k_i + 1]$, where k_1, \ldots, k_m are integers. For each $k \in N$ choose positive reals r_k, q_k such that $S_k \times [a - r_k, a + r_k] \times [-r_k, r_k] \subset G$ and $S_k \times [b - q_k, b + q_k] \times [-q_k, q_k] \subset G$. By Theorem 4.6, $h|\Re^m \times [a, b]$ is almost continuous and therefore there exists a continuous function t: $\Re^m \times [a, b] \longrightarrow \Re$ contained in $G \setminus \bigcup_{k=1}^{\infty} (S_k \times \{a\} \times ((-\infty, -r_k| \cup [r_k, \infty)) \cup S_k \times \{b\} \times ((-\infty, -q_k] \cup [q_k, \infty)))$. Let t_a be a surface consisting of all closed segments in \Re^{m+2} with end-points (x, a, t(x, a)) and (x, a - |t(x, a)|, 0) for all $x \in \Re^m$. Analogously, let t_b be a surface consisting of all closed segments in \Re^{m+2} with end-points (x, b, t(x, b)) and (x, b + |t(x, b)|, 0) for all $x \in \Re^m$. Then one can easily see that $t \cup t_a \cup t_b \cup (\Re^{m+1} \setminus dom(t \cup t_a \cup t_b)) \times \{0\}$ is a continuous function contained in G.

Corollary 4.3 If $f \in \mathcal{A}(\mathfrak{R}^m, \mathfrak{R})$, $g \in \mathcal{C}(\mathfrak{R}, \mathfrak{R})$ and the support of g is bounded then the function $h: \mathfrak{R}^{m+1} \longrightarrow \mathfrak{R}$, defined by

$$h(x_1,\ldots x_{m+1})=f(x_1,\ldots x_m)\cdot g(x_{m+1}),$$

is almost continuous.

Theorem 4.7 Each almost continuous function $f : \Re^k \longrightarrow \Re$ can be extended to almost continuous function $f^* : \Re^{k+1} \longrightarrow \Re$ such that $f^*(x,0) = f(x)$ for all $x \in \Re^k$ (cf. [37], Theorem 5.6.).

P r o o f. Put g(x) = max(1 - |x|, 0) for $x \in \Re$ and $f^*(x_1, \ldots, x_{k+1}) = f(x_1, \ldots, x_k) \cdot g(x_{k+1})$. The almost continuity of f^* follows from Corollary 4.3. Moreover, $f^*(x, 0) = f(x)$ for all $x \in \Re^k$.

Q.E.D.

Corollary 4.4 Assume that k, m are positive integers and k < m. Then each almost continuous function $f : \Re^k \longrightarrow \Re$ can be extended to an almost continuous function $f^* : \Re^m \longrightarrow \Re$ such that $f^*(x_1, \ldots, x_k, 0, \ldots, 0) =$ $f(x_1, \ldots, x_k)$ for $(x_1, \ldots, x_k) \in \Re^k$.

5 Limits of sequences.

Lemma 5.1 Suppose that (X, Y) is a (K, G) pair, \mathcal{F} is a blocking family for (X, Y) and $max(\omega, \kappa) \leq \lambda = card(\mathcal{F})$. Then there exists a partition of X into κ many sets X_{α} ($\alpha < \kappa$), such that $card(dom(F) \cap X_{\alpha}) \geq \lambda$ for each $\alpha < \kappa$ and $F \in \mathcal{F}$.

P r o o f. Let $(F_{\alpha})_{\alpha < \lambda}$ be a sequence of all sets from the family \mathcal{F} , let $\varphi : \lambda \longrightarrow \kappa \times \lambda \times \lambda$, $\varphi = (\varphi_1, \varphi_2, \varphi_3)$ be an arbitrary bijection. For each $\alpha < \lambda$ we choose $x_{\alpha} \in dom(F_{\varphi_3(\alpha)}) \setminus \{x_{\beta} : \beta < \alpha\}$. Then the sets $X_{\alpha} = \{x_{\beta} : \beta < \lambda, \varphi_1(\beta) = \alpha\}$ for $0 < \alpha < \kappa$ and $X_0 = X \setminus \bigcup_{0 < \alpha < \kappa} X_{\alpha}$ form the required partition.

Q.E.D.

Recall that a function $f: X \longrightarrow Y$ is a discrete limit of a net $(f_{\sigma})_{\sigma \in \Sigma}$, where (Σ, \leq) is a directed set, iff for each $x \in X$ there exists $\sigma_0 \in \Sigma$ such that $f_{\sigma}(x) = f(x)$ whenever $\sigma_0 \leq \sigma$. **Proposition 5.1** Suppose that (X, Y) is (K, G) pair, \mathcal{F} is a blocking family for (X, Y) and (Σ, \leq) is a directed set such that $card(\mathcal{F}) \geq card(\Sigma) \geq \omega$. Then each function $f : X \longrightarrow Y$ is a discrete limit of a net of almost continuous functions from X into Y.

P r o o f. Let $card(\mathcal{F}) = \lambda$ and $\mathcal{F} = \{F_{\alpha} : \alpha < \lambda\}$. By Lemma 5.1 there is a partition $\{X_{\sigma} : \sigma \in \Sigma\}$ of X such that $card(dom(F) \cap X_{\sigma}) \geq \lambda$ for every $\sigma \in \Sigma$ and $F \in \mathcal{F}$. For each $\sigma \in \Sigma$ and $\alpha < \lambda$ choose $(x_{\sigma,\alpha}, y_{\sigma,\alpha}) \in F_{\alpha}$ such that $x_{\sigma,\alpha} \in X_{\sigma} \setminus \{x_{\sigma,\beta} : \beta < \alpha\}$. Let f_{σ} be defined by $f_{\sigma}(x_{\sigma,\alpha}) = y_{\sigma,\alpha}$ for $\alpha < \lambda$ and $f_{\sigma}(x) = f(x)$ for $X \setminus \{x_{\sigma,\alpha} : \alpha < \lambda\}$. Then any f_{σ} is almost continuous and for every $x \in X$ there exists $\sigma_0 \in \Sigma$ such that $f_{\sigma}(x) = f(x)$ for all $\sigma \geq \sigma_0$.

Q.E.D.

Corollary 5.1 Suppose that (X, Y) is (K, G) pair with an infinite blocking family \mathcal{F} . Then each function $f : X \longrightarrow Y$ is a discrete limit of a sequence of almost continuous functions in $X \times Y$.

In particular each function $f : \Re \longrightarrow \Re$ is a discrete limit of a sequence of almost continuous functions $(f_n)_n$ [34].

Remark 5.1 If $f : \Re \longrightarrow \Re$ is Lebesgue measurable (has the Baire property), then f is a discrete limit of a sequence of measurable functions (with the Baire property) from the class $\mathcal{A}(\Re, \Re)$ [26].

Recall the following notion. A sequence $(f_{\alpha})_{\alpha < \omega_1}$ of functions from X into Y converges to a function $f: X \longrightarrow Y$ if for each $x \in X$ and each neighbourhood U of f(x) there exists $\alpha < \omega_1$ such that $f_{\beta}(x) \in U$ for all $\alpha < \beta < \omega_1$ [57].

Corollary 5.2 Suppose that (X, Y) is (K, G) pair and \mathcal{F} is an uncountable blocking family for (X, Y). Then each function $f : X \longrightarrow Y$ is a limit of a transfinite sequence $(f_{\alpha})_{\alpha < \omega_1}$ of almost continuous functions in $X \times Y$.

In particular every function $f : \Re \longrightarrow \Re$ is a limit of a transfinite sequence $(f_{\alpha})_{\alpha < \omega_1}$ of almost continuous functions.

Remark 5.2 Suppose A(c) (A(m)). If $f : \Re \longrightarrow \Re$ is measurable (has the Baire property) then it is a transfinite limit of a sequence of measurable functions (with the Baire property) from the class $\mathcal{A}(\Re, \Re)$ (see [26]).

Suppose that Y is a metric space and \mathcal{F} is an arbitrary family of functions from X into Y. The class of all limits of uniformly convergent sequences of functions from \mathcal{F} will be denoted by $\overline{\mathcal{F}}$. Note that:

- (1) The class $\mathcal{A}(\Re, \Re)$ is not closed with respect to uniform limits [34], [38].
- (2) $\overline{\mathcal{A}(\mathfrak{R},\mathfrak{R})} \subset \overline{\mathcal{D}(\mathfrak{R},\mathfrak{R})} = \mathcal{U}$, where the class \mathcal{U} is defined in [13].
- (3) There exists a connectivity function f from I into I which is not a limit of uniformly convergent sequence of almost continuous functions [29]. Thus $\mathcal{U} \setminus \overline{\mathcal{A}(\mathfrak{R}, \mathfrak{R})} \neq \emptyset$.

Suppose that (X, Y) is a (K, G) pair with a blocking family \mathcal{F} , (Y, ρ_Y) is a metric space and κ_Y is the least cardinal for which there exists a family of κ_Y many sets of the first category in Y which union is of the second category (or $\kappa_Y = 0$ if Y is of the first category on itself). For arbitrary $f: X \longrightarrow Y$ and positive ε we define an ε -hull $S(f, \varepsilon)$ of f in $X \times Y$ as $S(f, \varepsilon) = \{(x, y) \in X \times Y : \rho_Y(f(x), y) < \varepsilon\}$. We define two conditions for f:

- (a) for sufficiently small $\varepsilon > 0$ and for every blocking set $K \in \mathcal{F}$ either $card(dom(K \cap S(f, \varepsilon))) \ge card(\mathcal{F})$ or $B_Y(f(x), \varepsilon) \subset K_x$ for some $x \in X$,
- (β) for each $\varepsilon > 0$ and for every blocking set $K \in \mathcal{F}$ either $card(dom(K \cap S(f, \varepsilon))) \ge \kappa_Y$ or $int_Y(K \cap S(f, \varepsilon))_x \neq \emptyset$ for some $x \in X$.

Under the assumptions and denotations above the following implications hold.

Proposition 5.2

(1) For every function f from X into Y we have:

$$(\alpha) \Longrightarrow f \in \overline{\mathcal{A}(X,Y)}$$

(2) Moreover, if (Y, +) is a topological group and it is a Baire space then

$$f \in \overline{\mathcal{A}(X,Y)} \Longrightarrow (\beta)$$

P r o o f. (1) For sufficiently small positive ε we shall find an almost continuous function g from X into Y contained in $S(f,\varepsilon)$. Let $card(\mathcal{F}) = \lambda$ and let $(K_{\alpha})_{\alpha < \lambda}$ be a sequence of all blocking sets from \mathcal{F} . For each $\alpha < \lambda$ we can choose a point $(x_{\alpha}, y_{\alpha}) \in K_{\alpha} \cap S(f, \varepsilon)$ such that for $\alpha, \beta < \lambda$ the condition $x_{\alpha} = x_{\beta}$ implies $y_{\alpha} = y_{\beta}$. Indeed, assume that (x_{β}, y_{β}) are chosen for $\beta < \alpha$. There are two possible cases. If $card(dom(K_{\alpha} \cap S(f, \varepsilon))) \ge \lambda$ then we choose $(x_{\alpha}, y_{\alpha}) \in K_{\alpha} \cap S(f, \varepsilon)$ such that $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$. In the other case, $B_Y(f(x), \varepsilon) \subset (K_{\alpha})_x$ for some $x \in X$ and we put $x_{\alpha} = x$ and $y_{\alpha} = y_{\beta}$ whenever $x = x_{\beta}$ for some $\beta < \alpha$ or $y_{\alpha} = f(x)$ otherwise. It is easy to verify that the function $g: X \longrightarrow Y$ defined by $g(x_{\alpha}) = y_{\alpha}$ for $\alpha < \lambda$ and g(x) = f(x) for other x is almost continuous and $g \subset S(f, \varepsilon)$.

(2) Suppose that $(f_n)_n$ is a uniformly convergent sequence of almost continuous functions and f is the limit of $(f_n)_n$. Fix $K \in \mathcal{F}$, a positive ε and suppose that $card(dom(K \cap S(f, \varepsilon))) < \kappa_Y$. Then $f_n \subset S(f, \varepsilon/2)$ for some positive integer n. Additionally there exists a positive δ such that $f_n + y \subset S(f, \varepsilon)$ whenever $y \in B_Y(0, \delta)$. By Theorems 4.4 and 3.3, $f_n + y \in \mathcal{A}(X, Y)$ for any $y \in B_Y(0, \delta)$. Thus $f_n + y$ intersects K, i.e.

$$\forall y \in B_Y(0,\delta) \quad \exists (x_y,t_y) \in K \cap (f_n+y) \subset S(f,\varepsilon).$$

Since $card(dom(K \cap S(f, \varepsilon))) < \kappa_Y$, the set $A = \{y \in B_Y(0, \delta) : x_y = x\}$ is of the second category in $B_Y(0, \delta)$ for some $x \in X$. Then $(x, t_y) \in f_n + y$ for $y \in A$ and therefore, $t_y = f_n(x) + y$. Thus the set $\{t_y : y \in A\}$ is of the second category in $f_n(x) + B_Y(0, \delta)$ and consequently there exists a non-empty open set $U \subset B_Y(0, \delta)$ such that $f_n(x) + U \subset cl(\{t_y : y \in A\})$. Since K is closed, $f_n(x) + U \subset K_x$ and we obtain (β) .

Q.E.D.

Corollary 5.3

- (1) If for sufficiently small positive ε and for every blocking set K in \Re^2 either card $(dom(K \cap \underline{S(f,\varepsilon)})) = 2^{\omega}$ or $(f(x) - \varepsilon, f(x) + \varepsilon) \subset K_x$ for some $x \in \Re$ then $f \in \overline{\mathcal{A}(\Re, \Re)}$.
- (2) Assume A(c). If $f \in \overline{\mathcal{A}(\mathfrak{R},\mathfrak{R})}$ then for each positive ε and blocking set K in \mathfrak{R}^2 either card $(dom(K \cap S(f,\varepsilon))) = 2^{\omega}$ or $int((K \cap S(f,\varepsilon))_x) \neq \emptyset$ for some $x \in X$.

Corollary 5.4 Every function $f: I \longrightarrow \Re$ which satisfies the condition:

(*) $card(\{x \in J : |f(x) - q| \le \varepsilon\}) = 2^{\omega}$ for each subinterval $J \subset I$, rational q and positive ε ,

is a limit of uniformly convergent sequence of almost continuous functions. In particular, $\mathcal{D}^* \subset \overline{\mathcal{A}(I, \Re)}$.

Proof. By Proposition 5.2 it is sufficient to verify that f satisfies condition (α) . We shall prove that $card(dom(S(f,\varepsilon))) = 2^{\omega}$ for every blocking set $F \subset I \times \Re$, positive ε and f satisfying the condition (*). Indeed, fix $n \in N$ such that $2/n < \varepsilon$. For every integer k define $F_k = \{x \in I : \exists y \in \Re (x, y) \in F \text{ and } | y - (2k - 1)/n| \le 1/n \} = dom(F \cap (I \times [(2k - 2)/n, 2k/n])))$. Note that each F_k is closed and the interior of the set $\bigcup_{k \in Z} F_k = dom(F)$ is nonempty (see Theorem 1.2 (3)). Hence there exists a non-degenerate interval J which is contained in F_{k_0} for some integer k_0 . Put $m = 2k_0 - 1$ and $A = \{x \in J : |f(x) - m/n| \le 1/n\}$. By (*), $card(A) = 2^{\omega}$. Moreover, for each $x \in A$ there exists y_x such that $(x, y_x) \in F$ and $|y_x - m/n| \le 1/n$. Hence $|f(x) - y_x| \le 2/n < \varepsilon$ for $x \in A$ and the condition (α) holds.

Problem 5.1 Characterize the class of all uniform limits of almost continuous functions from I^k into I [34].

Note that the analogous problem is open for the class Conn(I, I) [11]. For k > 1 the class $Conn(I^k, I)$ is closed under this operation [25]. This is not true for the class $\mathcal{A}(I^k, I)$.

Example 5.1 For any k there exists a uniformly convergent sequence of almost continuous functions from I^k into I which limit is not almost continuous.

Indeed, let $(f_n)_n$ be a uniformly convergent sequence of almost continuous functions from I into I which limit f is not almost continuous. Let g_n, g be functions from I^k into I defined by $g_n(x_1, \ldots, x_k) = f_n(x_1)$ and $g(x_1, \ldots, x_k) = f(x_1)$. Then g is a uniform limit of g_n , by Corollary 4.2 all g_n are almost continuous and, by Theorem 2.1, g is not almost continuous.

Now we shall consider the notion of almost continuous approximation which was introduced in [1]. A sequence $(f_n)_n$ of functions from X into Y almost continuously approximates a function $f : X \longrightarrow Y$ if for every sequence $(x_n)_n$ of points from X, either there exists n such that $f_n(x_n) =$ $f(x_n)$ or there exists a subsequence (x_{n_i}) of (x_n) and $x \in X$ such that $x_{n_i} \longrightarrow x$ and $f_{n_i}(x_{n_i}) \longrightarrow f(x)$ (here X and Y are metric) [1].

Theorem 5.1 The sequence $(f_n)_n$ almost continuously approximates f iff for each open neighbourhood U of f there exists $n \in N$ such that $f_n \in U$ [1].

Corollary 5.5 If $(f_n)_n$ is a sequence of functions from the class $\mathcal{A}(X, Y)$ and $(f_n)_n$ almost continuously approximates f, then $f \in \mathcal{A}(X, Y)$ [1].

Theorem 5.2 Assume that X and Y are compact metric spaces. Then $f \in \mathcal{A}(X, Y)$ iff there exists a sequence $(f_n)_n$ of continuous functions which approximates almost continuously f [1].

6 Operations.

6.1 Sums.

Proposition 6.1 Suppose that (Y, +) is a topological group, (X, Y) is a (K, G) pair, \mathcal{K} is a blocking family for (X, Y) and κ is a cardinal such that $max(\omega, \kappa) \leq \lambda = card(\mathcal{K})$. Then for any family \mathcal{F} of functions from X into Y with $card(\mathcal{F}) = \kappa$ the following condition holds:

 $U_a(\mathcal{F})$: there exists $g: X \longrightarrow Y$ such that $g + f \in \mathcal{A}(X, Y)$ for all $f \in \mathcal{F}$.

In particular, each function f from X into Y can be expressed as a sum of two almost continuous functions in $X \times Y$.

P r o o f. Let $\{X_{\alpha} : \alpha < \kappa\}$ be a partition of the space X such that $card(dom(K) \cap X_{\alpha}) \geq \lambda$ for each $\alpha < \kappa$ and $K \in \mathcal{K}$ (such partition exists by Lemma 5.1). Let $(K_{\beta})_{\beta < \lambda}$ be a sequence of all blocking sets from the family \mathcal{K} . For every $\alpha < \kappa$ and $\beta < \lambda$ choose $(x_{\alpha,\beta}, y_{\alpha,\beta}) \in K_{\beta}$ such that $x_{\alpha,\beta} \in X_{\alpha} \setminus \{x_{\alpha,\gamma} : \gamma < \beta\}$. Let $g : X \longrightarrow Y$ be defined by $g(x_{\alpha,\beta}) = y_{\alpha,\beta} - f_{\alpha}(x_{\alpha,\beta})$ for $\alpha < \kappa$ and $\beta < \lambda$ and g(x) = 0 otherwise (0 denotes the neutral element of the group (Y, +)). Since $(x_{\alpha,\beta}, y_{\alpha,\beta}) \in (g + f_{\alpha}) \cap K_{\beta}$ for $\beta < \lambda, g + f_{\alpha} \in \mathcal{A}(X, Y)$.

Now assume that $f_0 \equiv 0$. For an arbitrary function $f: X \longrightarrow Y$ and the family $\mathcal{F} = \{f, f_0\}$ let g be a function such that $h = g + f \in \mathcal{A}(X, Y)$ and $g + f_0 \in \mathcal{A}(X, Y)$. Then f = (-g) + h, $g \in \mathcal{A}(X, Y)$ and by Theorem 3.3, $-g \in \mathcal{A}(X, Y)$.

Q.E.D.

Corollary 6.1 If \mathcal{F} is a family of functions from \Re into \Re and $card(\mathcal{F}) \leq 2^{\omega}$ then $U_a(\mathcal{F})$ holds. In particular, any function f from \Re into \Re can be written a sum of two almost continuous functions f_1, f_2 [34].

Remark 6.1 If a function $f : \Re \longrightarrow \Re$ is Lebesgue measurable (has the Baire property) then it can be represented as a sum of two almost continuous functions which are measurable (have the Baire property) [26].

The foregoing results suggest the question of how "big" can be families \mathcal{F} for which the condition $U_a(\mathcal{F})$ holds. For arbitrary topological space X and topological group (Y, +) let a(X, Y) denote the least cardinal κ for which there exists a family \mathcal{F} of functions from X into Y such that $card(\mathcal{F}) = \kappa$ and $U_a(\mathcal{F})$ is false (or a(X, Y) = 0 if the condition $U_a(Y^X)$ holds). Note that Proposition 6.1 implies the inequality $a(X, Y) > card(\mathcal{K})$ for any (K, G) pair (X, Y) with blocking family \mathcal{K} . In particular, $a(\mathfrak{R}, \mathfrak{R}) > 2^{\omega}$. Additionally, it is easy to see that the condition $U_a(\mathfrak{R}^{\mathfrak{R}})$ is false. Indeed, for every function $g: \mathfrak{R} \longrightarrow \mathfrak{R}$ there exists a function f such that f + g does not have the Darboux property. Therefore $a(\mathfrak{R}, \mathfrak{R}) \neq 0$. Hence the assumption $(2^{\omega})^+ = 2^{2^{\omega}}$ (which is a consequence of the Generalized Continuum Hypothesis for example) implies the equality $a(\mathfrak{R}, \mathfrak{R}) = 2^{2^{\omega}}$.

Problem 6.1 Can the equality $a(\Re, \Re) = 2^{2^{\omega}}$ be proved in ZFC?

Now we shall prove the condition $U_a(\mathcal{F})$ for some families of real functions of the power $2^{2^{\omega}}$. Suppose that κ is a cardinal, \mathcal{I} is a fixed family of subsets of I and \mathcal{F} is a fixed family of real functions defined on I. We shall say that \mathcal{F} is (\mathcal{I}, κ) regular if there exists a subfamily \mathcal{F}_0 of \mathcal{F} such that $card(\mathcal{F}_0) = \kappa$ and for each $f \in \mathcal{F}$ there exists $f_0 \in \mathcal{F}_0$ with $[f \neq f_0] \in \mathcal{I}$. A family \mathcal{I} of subsets of I has the property (B) if:

- (1) if $A \in \mathcal{I}$ and $B \subset A$ then $B \in \mathcal{I}$,
- (2) if $A \in \mathcal{I}$ then $J \setminus A$ includes a non-empty perfect set for every subinterval J of I.

Lemma 6.1 Assume that \mathcal{F} is a family of real functions defined on I and $card(\mathcal{F}) = 2^{\omega}$. Then there exists a function g such that for each $f \in \mathcal{F}$ and minimal blocking set K, $dom(K \cap (f+g))$ intersects every non-empty perfect set contained in dom(K).

P roof. Let $\mathcal{F} = \{f_{\alpha} : \alpha < 2^{\omega}\}$, let $\{K_{\beta} : \beta < 2^{\omega}\}$ be the family of all minimal blocking sets in $I \times \Re$ and let $\varphi : 2^{\omega} \longrightarrow 2^{\omega} \times 2^{\omega} \times 2^{\omega}$, $\varphi = (\varphi_1, \varphi_2, \varphi_3)$ be an arbitrary bijection. For $\beta < 2^{\omega}$ arrange all nonempty perfect subsets of $dom(K_{\beta})$ in a sequence $(F_{\beta,\gamma})_{\gamma<2^{\omega}}$. For each $\alpha < 2^{\omega}$ choose $(x_{\alpha}, y_{\alpha}) \in K_{\varphi_2(\alpha)}$ such that $x_{\alpha} \in F_{(\varphi_2(\alpha),\varphi_3(\alpha))} \setminus \{x_{\gamma} : \gamma < \alpha\}$. Then the function g defined by $g(x_{\alpha}) = y_{\alpha} - f_{\varphi_1(\alpha)}(x_{\alpha})$ for $\alpha < 2^{\omega}$ and g(x) = 0 for other x satisfies the conditions of the lemma.

Q.E.D.

Theorem 6.1 Assume that \mathcal{I} is a family of subsets of I with the property (B) and \mathcal{F} is an $(\mathcal{I}, 2^{\omega})$ regular family of real functions defined on I. Then the condition $U_a(\mathcal{F})$ holds.

P roof. Let \mathcal{F}_0 be a subfamily of \mathcal{F} such that $card(\mathcal{F}_0) = 2^{\omega}$ and for each $f \in \mathcal{F}$ there exists $f_0 \in \mathcal{F}_0$ such that $[f \neq f_0] \in \mathcal{I}$. Fix $f \in \mathcal{F}$ and $f_0 \in \mathcal{F}_0$ such that $[f \neq f_0] \in \mathcal{I}$. Let g be the function defined in Lemma 6.1 for the family \mathcal{F}_0 . Then $(g+f) \cap K \neq \emptyset$ for any blocking K. Indeed, suppose that $(g+f) \cap K = \emptyset$. Then $C = dom((g+f_0) \cap K) \subset [f \neq f_0]$ and therefore $C \in \mathcal{I}$. Thus $dom(K) \setminus C$ includes a non-empty perfect set, in contradiction with the choice of g.

Q.E.D.

Corollary 6.2 Let \mathcal{F} be the family of all Lebesgue measurable functions (all functions with the Baire property) from \Re into \Re , \mathcal{F}_0 be the family of Borel measurable functions and \mathcal{I} be the ideal of measure zero (of the first category) subsets of \Re . Then there exists a function g from \Re into \Re such that $f + g \in \mathcal{A}(\Re, \Re)$ for each $f \in \mathcal{F}$.

For arbitrary families \mathcal{X}, \mathcal{Y} of real functions defined on a topological space X let $\mathcal{M}_a(\mathcal{X}, \mathcal{Y})$ denote the maximal additive class of \mathcal{X} with respect to \mathcal{Y} , i.e.

$$\mathcal{M}_{a}(\mathcal{X},\mathcal{Y}) = \{ f \in \mathcal{X} : f + g \in \mathcal{Y} \text{ for each } g \in \mathcal{X} \}.$$

We shall write $\mathcal{M}_a(\mathcal{X})$ instead of $\mathcal{M}_a(\mathcal{X}, \mathcal{X})$ and call this family the maximal additive class of \mathcal{X} .

Theorem 6.2

$$\mathcal{M}_a(\mathcal{A}(\Re, \Re), \mathcal{Y}) = \mathcal{C}(\Re, \Re)$$

whenever $\mathcal{Y} \in \{\mathcal{A}(\Re, \Re), \mathcal{C}onn(\Re, \Re), \mathcal{D}(\Re, \Re)\}$.

P r o o f. For $\mathcal{Y} = \mathcal{A}(\mathfrak{R}, \mathfrak{R})$ see [30]. The same arguments work for other \mathcal{Y} . Q.E.D.

Theorem 6.3 For any positive integer k we have

$$\mathcal{M}_a(\mathcal{A}(\Re^k, \Re)) = \mathcal{C}(\Re^k, \Re)$$

P roof. This equality follows for k = 1 from Theorem 6.2. For any k the inclusion $\mathcal{C}(\Re^k, \Re) \subset \mathcal{M}_a(\mathcal{A}(\Re^k, \Re))$ follows from Theorems 4.4 and 3.3. Now assume that a function $g: \Re^k \longrightarrow \Re$ is discontinuous at a point $x_0 \in \Re^k$. Let h be a homeomorphic injection of \Re into \Re^k such that rng(h) is closed in \Re^k , $h(0) = x_0, g \circ h$ is discontinuous at 0 and there exists a homeomorphism $h_1: \Re^k \longrightarrow \Re^k$ such that $h_1(x, 0, \ldots, 0) = h(x)$ for $x \in \Re$. Let $f_0: \Re \longrightarrow \Re$ be an almost continuous function such that $f_0+g \circ h \notin \mathcal{A}(\Re, \Re)$. By Theorem 4.7, there exists an almost continuous extension $f_1: \Re^k \longrightarrow \Re$ of f_0 such that $f_1(x, 0, \ldots, 0) = f_0(x)$ for any $x \in \Re$. By Theorem 3.4, $f = f_1 \circ h_1^{-1}$ is almost continuous. Suppose that f + g is almost continuous. Then $(f + g)|h(\Re)$ is almost continuous (by Theorem 2.1), and therefore, $(f+g)\circ h \in \mathcal{A}(\Re, \Re)$. But $(f+g)\circ h = f\circ h + g\circ h = f_0 + g\circ h$, a contradiction. Thus $g \notin \mathcal{M}_a(\mathcal{A}(\Re^k, \Re))$.

Corollary 6.3 For any positive integers k and m,

$$\mathcal{M}_a(\mathcal{A}(\Re^k, \Re^m)) = \mathcal{C}(\Re^k, \Re^m).$$

Proof. The inclusion $\mathcal{C}(\Re^k, \Re^m) \subset \mathcal{M}_a(\mathcal{A}(\Re^k, \Re^m))$ follows from Theorems 4.4 and 3.3. Assume that a function $g: \Re^k \longrightarrow \Re^m$, $g = (g_1, \ldots, g_m)$, is discontinuous at a point $x_0 \in \Re^k$. Then g_i is discontinuous at x_0 for some $i \leq m$. By Theorem 6.3, $f + g_i$ is not almost continuous for some almost continuous function f from \Re^k into \Re . By Theorem 4.4, the function $h = (h_1, \ldots, h_m) : \Re^k \longrightarrow \Re^m$, where $h_i = f$ and $h_j \equiv 0$ for $j \neq i$, is almost continuous. Observe that $\pi_i \circ (h + g) = f + g_i$ (where π_i denotes the projection onto i^{th} axis) is not almost continuous and, by Theorem 3.3, h + g is not almost continuous.

Q.E.D.

6.2 Products.

Proposition 6.2 Suppose that F is a topological field, (X, F) is a (K, G) pair with an infinite blocking family \mathcal{K} and k > 1. Then each function $f: X \longrightarrow F$ can be expressed as a scalar product of two almost continuous functions $f_1, f_2: X \longrightarrow F^k$ (i.e. $f = \sum_{i=1}^k f_{1,i} \cdot f_{2,i}$, where $f_1 = (f_{1,1}, \ldots, f_{1,k})$ and $f_2 = (f_{2,1}, \ldots, f_{2,k})$).

Proof. By Proposition 6.1 $f: X \longrightarrow F$ can be expressed as a sum of almost continuous functions $g_1, g_2: X \longrightarrow F$. Now define $f_1, f_2: X \longrightarrow F^k$ in the following way: $f_1(x) = (g_1(x), 1, 0, \ldots, 0)$ and $f_2(x) = (1, g_2(x), 0, \ldots, 0)$ for $x \in X$. By Theorem 4.4 f_1 and f_2 are almost continuous and, clearly, $f = f_1 \cdot f_2$.

Q.E.D.

Corollary 6.4

- (1) for each $m \in N$, k > 1 and $f : I^m \longrightarrow \Re$ there exist $f_1, f_2 \in \mathcal{A}(I^m, \Re^k)$ such that $f = f_1 \cdot f_2$.
- (2) for each k > 1 and $f : \mathfrak{R} \longrightarrow \mathfrak{R}$ there exist $f_1, f_2 \in \mathcal{A}(\mathfrak{R}, \mathfrak{R}^k)$ such that $f = f_1 \cdot f_2$.

Note that the condition above is false for k = 1. Indeed, it is well-known that a function $f: \mathfrak{R} \longrightarrow \mathfrak{R}$ may not be a product of Darboux functions [45] and therefore, of almost continuous functions. J. Ceder proved in [16] that a function $f: \mathfrak{R} \longrightarrow \mathfrak{R}$ is a product of two Darboux functions iff it possesses the following property:

(JC) : f has a zero in each subinterval in which it changes sign.

In particular, if $rng(f) \subset (0,\infty)$ or $rng(f) \subset (-\infty,0)$ then f is a product of two Darboux functions.

Theorem 6.4 Suppose A(c). A real function f defined on \Re is a product of two almost continuous functions iff it has the property (JC) [48].

Proposition 6.3 Suppose that (X, \mathfrak{R}) is a (K, G) pair, \mathcal{K} is a blocking family for (X, \mathfrak{R}) and κ is a cardinal such that $max(\omega, \kappa) \leq \lambda = card(\mathcal{K})$. If \mathcal{F} is a family of real functions defined on X, $card(\mathcal{F}) = \kappa$ and $rng(f) \subset (-\infty, 0)$ or $rng(f) \subset (0, \infty)$ for all $f \in \mathcal{F}$, then there exists a function $g: X \longrightarrow (0, \infty)$ such that $g \cdot f$ is almost continuous for each $f \in \mathcal{F}$. **P** roof. By Proposition 6.1 there exists a function $g_0 : X \longrightarrow \Re$ such that $g_0 + h \in \mathcal{A}(X, \Re)$ for any $h \in \{ln \circ | f| : f \in \mathcal{F}\}$. Put $g = exp(g_0)$. Then g(x) > 0 for each $x \in X$ and for every $f \in \mathcal{F}$ we have:

$$g \cdot f = sgn(f) \cdot exp(g_0) \cdot exp \circ ln \circ |f| = sgn(f) \cdot exp \circ (g_0 + ln \circ |f|) \in \mathcal{A}(X, \Re).$$

Corollary 6.5 If (X, \Re) is a (K, G) pair with an infinite blocking family and f is an arbitrary function from X into $(0, \infty)$ then there exist almost continuous functions $f_1, f_2 : X \longrightarrow (0, \infty)$ such that $f = f_1 \cdot f_2$. In particular, every function $f : \Re \longrightarrow (0, \infty)$ can be expressed as a product of two almost continuous functions [26].

For an arbitrary family \mathcal{F} of real functions defined on a topological space X let us define the following condition:

 $U_m(\mathcal{F})$: there exists a non-zero function $g: X \longrightarrow \Re$ such that $f \cdot g \in \mathcal{A}(X, \Re)$ whenever $f \in \mathcal{F}$.

Theorem 6.5 Suppose A(c). Then every family \mathcal{F} of real functions defined on \Re with $card(\mathcal{F}) < 2^{\omega}$ satisfies the condition $U_m(\mathcal{F})$ [50].

Example 6.1 Let \mathcal{F} be the family of all characteristic functions of singletons and $g: \Re \longrightarrow \Re$ be a function such that $f \cdot g \in \mathcal{A}(\Re, \Re)$ for all $f \in \mathcal{F}$. Then $g \equiv 0$ [50].

For an arbitrary topological space X let $m(X, \mathfrak{R})$ denote the least cardinal κ for which there exists a family \mathcal{F} of real functions from X such that $card(\mathcal{F}) = \kappa$ and $U_m(\mathcal{F})$ is false (or $m(X, \mathfrak{R}) = 0$ if $U_m(\mathfrak{R}^X)$ holds).

Corollary 6.6 A(c) implies the equality $m(\Re, \Re) = 2^{\omega}$.

Problem 6.2 Can the equality $m(\Re, \Re) = 2^{\omega}$ be proved in ZFC ?

For arbitrary families \mathcal{X}, \mathcal{Y} of real functions defined on a topological space X let $\mathcal{M}_m(\mathcal{X}, \mathcal{Y})$ denote the maximal multiplicative class of \mathcal{X} with respect to \mathcal{Y} , i.e.

 $\mathcal{M}_m(\mathcal{X},\mathcal{Y}) = \{ f \in \mathcal{X} : f \cdot g \in \mathcal{Y} \text{ for all } g \in \mathcal{X} \}.$

We shall write $\mathcal{M}_m(\mathcal{X})$ instead of $\mathcal{M}_m(\mathcal{X}, \mathcal{X})$ and call this family the maximal multiplicative class of \mathcal{X} .

For arbitrary interval Y of \Re^m let us define the family $\mathcal{M}(I, Y)$ of all functions $f: I \longrightarrow Y$ having the following property: if x_0 is a right-hand (left-hand) side point of discontinuity of f, then $f(x_0) = 0$ and there is a sequence $(x_n)_n$ converging to x_0 such that $x_n > x_0$ $(x_n < x_0)$ and $f(x_n) = 0$. If X is any space then $\mathcal{M}(X, Y)$ denotes the class of all functions $f: X \longrightarrow Y$ such that $f \circ h \in \mathcal{M}(I, Y)$ for any homeomorphic injection $h: I \longrightarrow X$. This class was introduced by Fleissner [21] (for $X = Y = \Re$).

Theorem 6.6

$$\mathcal{M}_m(\mathcal{A}(\Re, Z), \mathcal{Y}) = \mathcal{M}(\Re, Z)$$

whenever $\mathcal{Y} \in \{\mathcal{A}(\mathfrak{R}, Z), Conn(\mathfrak{R}, Z), \mathcal{D}(\mathfrak{R}, Z)\}$ and $Z \in \{\mathfrak{R}, [0, \infty)\}$.

P r o o f. For $Z = \Re$ and $\mathcal{Y} = \mathcal{A}(\Re, \Re)$ see [30]. The proof is analogous for other Z and \mathcal{Y} .

Q.E.D.

The similar theorem can be considered for scalar products of functions with values in \Re^k .

Theorem 6.7

- (1) Suppose that $Z \in \{\Re, [0, \infty)\}$, $g \in \mathcal{M}_m(\mathcal{A}(\Re^k, Z^n))$ and $g = (g_1, \ldots, g_n)$. Then:
 - (1.1) $g_i \in \mathcal{M}_m(\mathcal{A}(\Re^k, Z))$ for every $i = 1, \ldots, n$,
 - (1.2) $C(g) \subset [g=0],$
 - (1.3) if n = 1 then $g \in \mathcal{M}(\Re^k, \Re)$.
- (2) Moreover, if $Z = [0, \infty)$, then:

(2.1)
$$\mathcal{M}_m(\mathcal{A}(\mathfrak{R}^k, Z^n)) \subset \mathcal{M}(\mathfrak{R}^k, Z^n),$$

- (2.2) $\mathcal{M}_m(\mathcal{A}(\Re, Z^n)) = \mathcal{M}(\Re, Z^n).$
- (3) If $Z = (0, \infty)$ then $\mathcal{M}_m(\mathcal{A}(\mathfrak{R}^k, Z^n)) = \mathcal{C}(\mathfrak{R}^k, Z^n)$.

P roof. (1.1) Suppose that $g_i \notin \mathcal{M}_m(\mathcal{A}(\mathfrak{R}^k, Z))$ for some $i \leq m$. Then there exists $h \in \mathcal{A}(\mathfrak{R}^k, Z)$ such that $g_i \cdot h \notin \mathcal{A}(\mathfrak{R}^k, Z)$. By Theorem 4.4 the function $f : \mathfrak{R}^k \longrightarrow \mathfrak{R}^n$, $f = (f_1, \ldots, f_n)$, where $f_i = h$ and $f_j \equiv 0$ for $j \neq i$, is almost continuous and $f \cdot g = h \cdot g_i$ is not almost continuous, contrary to $g \in \mathcal{M}_m(\mathcal{A}(\mathfrak{R}^k, \mathfrak{R}^n))$.

(1.2) Suppose that g is discontinuous at x_0 . Then g_t is discontinuous at x_0 for some $t \leq n$. By (1.1), $g_i(x_0) = 0$ if g_i is discontinuous at x_0 . Assume that $g_i(x_0) \neq 0$ for some $i \leq n$. Then g_i is continuous at x_0 . Consequently $g_t + g_i$ is discontinuous at x_0 and $(g_t + g_i)(x_0) \neq 0$. Therefore $g_t + g_i \notin \mathcal{M}_m(\mathcal{A}(\mathfrak{R}^k, \mathfrak{R}))$ and $(g_t + g_i) \cdot h \notin \mathcal{A}(\mathfrak{R}^k, \mathfrak{R})$ for some $h \in \mathcal{A}(\mathfrak{R}^k, \mathfrak{R})$. By Theorems 4.4 and 3.3 the function $f: \mathfrak{R}^k \longrightarrow \mathfrak{R}^n$, $f = (f_1, \ldots, f_n)$ defined by $f_t = f_i = h$ and $f_j \equiv 0$ for $j \notin \{t, i\}$, is almost continuous and $g \cdot f = (g_t + g_i) \cdot h \notin \mathcal{A}(\mathfrak{R}^k, \mathfrak{R})$, a contradiction.

(1.3) Assume that n = 1 and $g \in \mathcal{M}_m(\mathcal{A}(\Re^k, Z)) \setminus \mathcal{M}(\Re^k, Z)$. Let $h: \mathfrak{R} \longrightarrow \mathfrak{R}^k$ be a homeomorphic injection such that $g \circ h \notin \mathcal{M}(\mathfrak{R}, Z)$, rng(h) is closed in \mathfrak{R}^k and there exists a homeomorphism $h_1: \mathfrak{R}^k \longrightarrow \mathfrak{R}^k$ such that $h_1(x, 0, \ldots, 0) = h(x)$ for $x \in \mathfrak{R}$. Then $f_0 \cdot (g \circ h) \notin \mathcal{A}(\mathfrak{R}, \mathfrak{R})$ for some $f_0 \in \mathcal{A}(\mathfrak{R}, \mathfrak{R})$. By Theorem 4.7, there exists an almost continuous extension $f_1: \mathfrak{R}^k \longrightarrow \mathfrak{R}$ of f_0 such that $f_1(x, 0, \ldots, 0) = f_0(x)$ for any $x \in \mathfrak{R}$. By Theorem 3.4, $f = f_1 \circ h_1^{-1}$ is almost continuous. Suppose that $f \cdot g$ is almost continuous. Then $(f \cdot g)|h(\mathfrak{R})$ is almost continuous (by Theorem 2.1), and therefore, $(f \cdot g) \circ h \in \mathcal{A}(\mathfrak{R}, \mathfrak{R})$. But $(f \cdot g) \circ h = (f \circ h) \cdot (g \circ h) = f_0 \cdot (g \circ h)$, a contradiction.

(2.1) For n = 1 see (1.3). Assume that $g = (g_1, \ldots, g_n) \in \mathcal{M}_m(\mathfrak{R}^k, \mathbb{Z}^n)$. We shall verify that $g \in \mathcal{M}(\mathfrak{R}^k, \mathbb{Z}^n)$. Let $h: I \longrightarrow \mathfrak{R}^k$ be a homeomorphic injection such that $g \circ h$ is discontinuous at 0. We can assume that $g_1 \circ h$ is discontinuous at 0. Let $h(0) = x_0$. From (1.2) it follows that $g(x_0) = 0$. Note that $\sum_{i=1}^n g_i \in \mathcal{M}_m(\mathcal{A}(\mathfrak{R}^k, \mathbb{Z}))$. Indeed, this follows from the fact that $f_0 =$ (f, \ldots, f) is almost continuous for any $f \in \mathcal{A}(\mathfrak{R}, [0, \infty))$ (as the composition of f and continuous function d from \mathfrak{R} into \mathfrak{R}^n defined by $d(x) = (x, \ldots, x)$), and $(\sum_{i=1}^n g_i) \cdot f = g \cdot f_0 \in \mathcal{A}(\mathfrak{R}^k, \mathbb{Z})$. Hence $(\sum_{i=1}^n g_i) \circ h$ is almost continuous whenever so is h. Observe that the function $(\sum_{i=1}^n g_i) \circ h$ is discontinuous at 0. Since $(\sum_{i=1}^n g_i) \circ h \in \mathcal{M}_m(\mathcal{A}(I, \mathbb{Z}))$, there is a sequence $(x_j)_j$ converging to 0 such that $(\sum_{i=1}^n g_i)(h(x_j)) = 0$ for each j. Since $g_i \ge 0$ for each $i \le n$, $g_i(h(x_j)) = 0$ for all $j \in N$ and $i \le n$. Hence $g \circ h \in \mathcal{M}(I, \mathbb{Z}^n)$.

(2.2) The inclusion $\mathcal{M}_m(\mathcal{A}(\mathfrak{R}, \mathbb{Z}^n)) \subset \mathcal{M}(\mathfrak{R}, \mathbb{Z}^n)$ follows from the condition (2.1). Now assume that $g \in \mathcal{M}(\mathfrak{R}, [0, \infty)^n)$. Then for arbitrary

 $f \in \mathcal{A}(\mathfrak{R}, \mathbb{Z}^n)$ the product $f \cdot g$ satisfies all assumptions of Lemma 4.1, so it is almost continuous. Therefore $g \in \mathcal{M}_m(\mathcal{A}(\mathfrak{R}, \mathbb{Z}^n))$.

(3) The inclusion $\mathcal{M}_m(\mathcal{A}(\mathfrak{R}^k, \mathbb{Z}^n)) \supset \mathcal{C}(\mathfrak{R}^k, \mathbb{Z}^n)$ follows from Theorems 4.4 and 3.3. Now suppose that $f = (f_1, \ldots, f_m) \in \mathcal{M}_m(\mathcal{A}(\mathfrak{R}^k, \mathbb{Z}^n))$. Fix $i \leq n$ and observe that $f_0 = ln \circ f_i \in \mathcal{M}_a(\mathcal{A}(\mathfrak{R}^k, \mathfrak{R}))$. Indeed, if $g \in \mathcal{A}(\mathfrak{R}^k, \mathfrak{R})$ then $g_0 = exp \circ g \in \mathcal{A}(\mathfrak{R}^k, \mathbb{Z})$ and consequently $h = (h_1, \ldots, h_m)$, where $h_i = g_0$ and $h_j \equiv 0$ for $j \neq i$, is almost continuous. Thus $f_i \cdot g_0 = f \cdot h$ is almost continuous and therefore $f_0 + g = ln(f_i \cdot g_0)$ is almost continuous, too. Hence $f_0 \in \mathcal{M}_a(\mathcal{A}(\mathfrak{R}^k, \mathfrak{R}))$ and, by Theorem 6.3, it is continuous and so is $f_i = exp \circ f_0$. Thus f is continuous.

Q.E.D.

Lemma 6.2 Let F be a compact subset of a metric space X, $f \in \mathcal{A}(X, \mathbb{R}^k)$ and f|F be continuous. Then each open neighbourhood G of f in $X \times \mathbb{R}^k$ includes a continuous function $g: X \longrightarrow \mathbb{R}^k$ such that g|F = f|F.

P roof. First suppose that $f|F \equiv 0$ and G is a neighbourhood of f. Since $F \times \{0\}$ is compact, there exists a positive ε such that $B_X(x,\varepsilon) \times B_{\Re^k}(0,\varepsilon) \subset G$ for all $x \in F$. Since $f \subset G_1 = G \setminus (F \times (\Re^k \setminus B_{\Re^k}(0,\varepsilon)))$, there exists a continuous function $h: X \longrightarrow \Re^k$ contained in G_1 . For every $x \in F$ choose δ_x such that $0 < \delta_x < \varepsilon/2$ and $||h(z)|| < \varepsilon$ for $z \in B_X(x, \delta_x)$. Let δ be Lebesgue number of the covering $\{B_X(x, \delta_x) : x \in F\}$ of F and let $A = \bigcup_{x \in F} B_X(x, \delta)$. Then $||h(z)|| < \varepsilon$ for $z \in A$, $A \times B_{\Re^k}(0, \varepsilon) \subset G$ and the function $g(z) = \min(\delta, \operatorname{dist}(z, F)) \cdot h(z)/\delta$ is continuous, $g \subset G$ and g(x) = 0 for $x \in F$.

Now we consider an arbitrary $f \in \mathcal{A}(X, \mathfrak{R}^k)$ such that f|F is continuous. Let $G \subset X \times \mathfrak{R}^k$ be a neighbourhood of f and let f^* be a continuous extension of f|F onto whole X. Then the function $h: X \times \mathfrak{R}^k \longrightarrow X \times \mathfrak{R}^k$ defined by $h(x, y) = (x, y - f^*(x))$ is a homeomorphism. Therefore $G_1 = h(G)$ is an open neighbourhood of an almost continuous function $f_1 = f - f^*$ and, moreover, $f_1|F \equiv 0$. Thus there exists a continuous function $g_1: X \longrightarrow \mathfrak{R}^k$ such that $g_1 \subset G_1$ and $g_1|F \equiv 0$. Then $g = h^{-1} \circ g_1 = g_1 + f^*$ is a continuous function contained in G and g|F = f|F.

Q.E.D.

Lemma 6.3 Suppose that X is a locally compact metric space, F is a compact subset of X and $f: X \longrightarrow \Re^k$ satisfies the following conditions:

(1) $f|F\equiv 0$,

(2) $f|\overline{U}$ is almost continuous for every component U of the set $X \setminus F$.

Then f is almost continuous.

P roof. Let G be an open neighbourhood of f and U be a component of $X \setminus F$. Then $f|\overline{U}$ is almost continuous, $f|fr(U) \equiv 0$ and fr(U) is compact. By Lemma 6.2 there exists a continuous function $g_U: \overline{U} \longrightarrow \Re^k$ such that $g_U \subset G$ and $g_U|fr(U) \equiv 0$. Since $F \times \{0\}$ is compact, there exists a positive ε such that $V \times \{0\} \subset G$, where $V = \{x \in X : dist(x, F) < \varepsilon\}$. Since X is locally compact, there exists an open set W such that $F \subset W \subset \overline{W} \subset V$ and \overline{W} is compact (cf. [19], Theorem 2, p. 193). Then $E = \overline{W} \setminus W$ is compact and $E \subset X \setminus F$. Let $\{U_1, \ldots, U_n\}$ be a finite subcovering of E chosen from the family of all components of $X \setminus F$. Note that for each component U of $X \setminus F$ one of the following cases holds: $U \subset X \setminus \overline{W}$ or $U = U_i$ for some $i \leq n$ or $U \subset W$. Hence the function $g: X \longrightarrow \Re^k$ given by

$$g(x) = \begin{cases} g_U(x) & \text{if } x \in U \subset X \setminus \overline{W} \\ g_{U_i}(x) & \text{if } x \in U_i, \ 1 \le i \le n \\ 0 & \text{otherwise} \end{cases}$$

is continuous. Clearly, $g \subset G$.

Q.E.D.

For any topological space X and $Y \subset \Re^k$ we shall denote by $\mathcal{M}^*(X,Y)$ the family of all functions $f: X \longrightarrow Y$ such that [f = 0] is compact and $f|\overline{U}$ is continuous for each component of U of the set $[f \neq 0]$.

Theorem 6.8

- (1) $\mathcal{M}^*(X, \mathfrak{R}^m) \subset \mathcal{A}(X, \mathfrak{R}^m) \cap \mathcal{M}(X, \mathfrak{R}^m)$ for each locally compact metric space X.
- (2) $\mathcal{M}^*(I, \mathfrak{R}^m) = \mathcal{M}(I, \mathfrak{R}^m).$
- (3) $\mathcal{A}(I^2, \Re) \cap \mathcal{M}(I^2, \Re) \setminus \mathcal{M}^*(I^2, \Re) \neq \emptyset$.
- (4) $\mathcal{M}(I^2, \Re) \setminus \mathcal{A}(I^2, \Re) \neq \emptyset$.

P r o o f. The inclusions $\mathcal{M}^*(X, \mathfrak{R}^m) \subset \mathcal{M}(X, \mathfrak{R}^m)$ (for any X) and $\mathcal{M}(I, \mathfrak{R}^m) \subset \mathcal{M}^*(I, \mathfrak{R}^m)$ are easy to observe. By Lemma 6.3, $\mathcal{M}^*(X, \mathfrak{R}^m) \subset \mathcal{A}(X, \mathfrak{R}^m)$ for any locally compact metric space X.

(3) For $n \in N$ put $J_n = \{1/n\} \times I$ and define the continuous function $f_n: J_n \longrightarrow I$ such that:

- (i) if n is even then $f_n | J_n \equiv 1$,
- (ii) if $n \equiv 1 \pmod{4}$ then $[f_n = 0] = \{1/n\} \times [0, 1 1/n]$ and $rng(f_n) = [0, 1/n]$,
- (iii) if $n \equiv 3 \pmod{4}$ then $[f_n = 0] = \{1/n\} \times [1/n, 1]$ and $rng(f_n) = [0, 1/n]$.

Moreover let $f_0 : \{0\} \times I \longrightarrow I$ be the function defined by $f_0 \equiv 0$. Let $g : (0,1] \times I \longrightarrow I$ be a continuous extension of the function $\bigcup_{n=1}^{\infty} f_n$ such that $[g = 0] = \bigcup_{n=1}^{\infty} [f_n = 0]$ and let $f = f_0 \cup g$. Then $f \in \mathcal{A}(I^2, I) \cap \mathcal{M}(I^2, I) \setminus \mathcal{M}^*(I^2, I)$.

(4) Let $f_0: I \times [-2, 2] \longrightarrow \Re$ be defined by:

$$f_0(x,y) = \left\{egin{array}{cc} 1-|y-sin(1/x)| & ext{if } x>0 ext{ and } |y-sin(1/x)|\leq 1 \ 0 & ext{otherwise} \end{array}
ight.$$

Obviously $f_0 \in \mathcal{M}(I \times [-2, 2], \mathfrak{R})$. Suppose that $f_0 \in \mathcal{A}(I \times [-2, 2], \mathfrak{R})$. Then $A = \{(x, y) : x = 0 \text{ or } (x > 0 \text{ and } y = sin(1/x))\}$ is a continuum, $f_0|A$ is almost continuous and $rng(f_0|A) = \{0,1\}$, contrary to Theorem 1.7. Thus $f_0 \in \mathcal{M}(I \times [-2,2], \mathfrak{R}) \setminus \mathcal{A}(I \times [-2,2], \mathfrak{R})$. Now let $h : I^2 \longrightarrow I \times [-2,2]$ be a homeomorphism and $f = f_0 \circ h$. Then $f \in \mathcal{M}(I^2, \mathfrak{R}) \setminus \mathcal{A}(I^2, \mathfrak{R})$.

Q.E.D.

Theorem 6.9

- (1) $\mathcal{M}^*(X, \mathfrak{R}) \subset \mathcal{M}_m(X, \mathfrak{R})$ for any locally connected metric space X.
- (2) $\mathcal{M}^*(I^k, \mathfrak{R}) \subset \mathcal{M}_m(I^k, \mathfrak{R}) \subset \mathcal{M}(I^k, \mathfrak{R}).$

P r o o f. (1) Assume that $f \in \mathcal{M}^*(X, \mathfrak{R})$, $g \in \mathcal{A}(X, \mathfrak{R})$ and put F = [f = 0]. Then $F \subset [f \cdot g = 0]$ and, by Theorems 4.4 and 3.3, $(f \cdot g)|\overline{U}$ is almost continuous for each component U of the set $X \setminus F$. By Lemma 6.3 $f \cdot g$ is almost continuous.

(2) We need only to prove the second inclusion. Suppose that $g \in \mathcal{M}_m(\mathcal{A}(I^k, \Re)) \setminus \mathcal{M}(I^k, \Re)$ and $h: I \longrightarrow I^k$ is a homeomorphic injection such that $g \circ h \notin \mathcal{M}(I, \Re)$. Let $h_1: I^k \longrightarrow h(I)$ be a retraction. Since $g \circ h \notin \mathcal{M}(I, \Re)$, there exists $f_0 \in \mathcal{A}(I, \Re)$ such that $f_0 \cdot (g \circ h) \notin \mathcal{A}(I, \Re)$. Then $f_1 = f_0 \circ h^{-1} \circ h_1 \in \mathcal{A}(I^k, \Re)$ and therefore $f_1 \cdot g \in \mathcal{A}(I^k, \Re)$. Hence $(f_1 \cdot g)|h(I) \in \mathcal{A}(h(I), \Re)$ and $(f_1 \cdot g) \circ h \in \mathcal{A}(I, \Re)$, but $(f_1 \cdot g) \circ h =$ $(f_1 \circ h) \cdot (g \circ h) = f_0 \cdot (g \circ h) \notin \mathcal{A}(I, \Re)$, a contradiction.

Q.E.D.

Problem 6.3 Characterize classes $\mathcal{M}_m(\mathcal{A}(\Re^k and \Re^n))$, $\mathcal{M}_m(\mathcal{A}(I^k, \Re^n))$ for positive integers k, n.

6.3 Maxima and minima.

Suppose that Y is a lattice. If \mathcal{F} is a family of functions from X into Y then the symbol $\mathcal{L}(\mathcal{F})$ denotes the lattice generated by \mathcal{F} , i.e. the smallest lattice of functions containing \mathcal{F} .

Proposition 6.4 Suppose that (X, Y) is a (K, G) pair with infinite blocking family \mathcal{K} and Y is a lattice. Then $\mathcal{L}(\mathcal{A}(X,Y)) = Y^X$.

More precisely, any function f from X into Y can be expressed as

 $min(max(f_1, f_2), max(f_3, f_4)),$

where f_1, f_2, f_3, f_4 are almost continuous.

P r o o f. Assume that $card(\mathcal{K}) = \lambda$ and $\{X_1, X_2, X_3, X_4\}$ is a partition of X such that $card(X_i \cap K) \geq \lambda$ for each $K \in \mathcal{K}$ and i = 1, 2, 3, 4 (such a partition exists by Lemma 5.1). Fix $f: X \longrightarrow Y$ and $i \in \{1, 2, 3, 4\}$. For each $\alpha < \lambda$ choose $(x_{i,\alpha}, y_{i,\alpha}) \in K_{\alpha}$ such that $x_{i,\alpha} \in X_i$ and $x_{i,\alpha} \neq x_{i,\beta}$ for $\alpha \neq \beta$ and $\beta < \lambda$. Now we define the function f_i by $f_i(x_{i,\alpha}) = y_{i,\alpha}$ for $\alpha < \lambda$ and $f_i(x) = f(x)$ for other x. One can easily verify that all f_i are almost continuous and $f = min(max(f_1, f_2), max(f_3, f_4))$.

Q.E.D.

Remark 6.2 If f_1, f_2, f_3 are defined as above, then $f = max(h_1, h_2)$, where $h_1 = min(max(f_1, f_2), f_3)$ and $h_1 = min(max(f_1, f_3), f_2)$.

Corollary 6.7 Each function $f : \Re \longrightarrow \Re$ can be expressed as

 $min(max(f_1, f_2), max(f_3, f_4)),$

where f_1, f_2, f_3, f_4 are almost continuous [47].

Remark 6.3 If $f : \Re \longrightarrow \Re$ is measurable (has the Baire property), then the functions f_1, f_2, f_3, f_4 from Corollary 6.7 may be chosen measurable (with the Baire property).

For arbitrary topological space X and lattice Y we shall denote by $\ell(X, Y)$ the order of the lattice $\mathcal{L}(\mathcal{A}(X, Y))$, i.e. the least positive integer k such that for any $f \in \mathcal{L}(\mathcal{A}(X, Y))$ there exists a subset $\mathcal{F}_0 \subset \mathcal{A}(X, Y)$ such that $card(\mathcal{F}_0) = k$ and $f \in \mathcal{L}(\mathcal{F}_0)$.

Corollary 6.8 $\ell(\Re, \Re) = 3$.

P r o o f. By Remark 6.2, $\ell(X, Y) \leq 3$ for any (K, G) pair with an infinite blocking family. On the other hand, the function $f : \Re \longrightarrow \Re$ defined by f(x) = x for $x \in \{-1, 1\}$ and f(x) = 0 for $x \notin \{-1, 1\}$ cannot be expressed as the minimum or the maximum of two Darboux functions, so $\ell(\Re, \Re) > 2$. Q.E.D.

Proposition 6.5 Suppose that (X, Y) is a (K, G) pair with an infinite blocking family \mathcal{K} and \leq is a partial order in Y. If a function $f : X \longrightarrow Y$ satisfies the condition:

(*) $card(\{x \in X : f(x) \ge y \text{ for some } y \in K_x\}) \ge card(\mathcal{K}) \text{ for every } K \in \mathcal{K},$

then f can be represented as a maximum of two almost continuous functions.

P r o o f. Let $card(\mathcal{K}) = \lambda$. Note that the condition (*) implies the existence of two disjoint subsets A, B of X such that $card(\{x \in A : (x, y) \in K \text{ and } f(x) \geq y \text{ for some } y \in Y\}) \geq \lambda$ and $card(\{x \in B : (x, y) \in K \text{ and } f(x) \geq y \text{ for some } y \in Y\}) \geq \lambda$ for each $K \in \mathcal{K}$. Let $(K_{\alpha})_{\alpha < \lambda}$ be a sequence of all blocking sets from the family \mathcal{K} . For every $\alpha < \lambda$ choose points $(a_{\alpha}, a'_{\alpha}), (b_{\alpha}, b'_{\alpha}) \in K_{\alpha}$ such that:

- (1) $a_{\alpha} \in A \setminus \{a_{\beta} : \beta < \alpha\}$ and $f(a_{\alpha}) \ge a'_{\alpha}$,
- (2) $b_{\alpha} \in B \setminus \{b_{\beta} : \beta < \alpha\}$ and $f(b_{\alpha}) \ge b'_{\alpha}$.

Define f_1, f_2 in the following way: $f_1(a_\alpha) = a'_\alpha$ for $\alpha < \lambda$ and $f_1(x) = f(x)$ for other x. Similarly, $f_2(b_\alpha) = b'_\alpha$ for $\alpha < \lambda$ and $f_2(x) = f(x)$ otherwise. Since f_1, f_2 meet all blocking sets from the family \mathcal{K} , they are almost continuous. Moreover, $f = max(f_1, f_2)$.

Q.E.D.

Theorem 6.10 Each function $f: I \longrightarrow \Re$ satisfying the following condition

 $(\clubsuit) \qquad [f \ge n] \text{ is } c\text{-dense in } I \text{ for any positive integer } n$

can be represented as a maximum of two almost continuous functions f_1, f_2 . Moreover, if f is measurable or has the Baire property, then f_1, f_2 may be chosen measurable or with the Baire property as well.

P r o o f. Suppose that $f: I \longrightarrow \Re$ satisfies the condition (**4**). Let \mathcal{K} be the family of all minimal blocking sets in $I \times \Re$. It is sufficient to verify that the condition (*) from Proposition 6.5 is satisfied. Fix $K \in \mathcal{K}$. Since $dom(K) = \bigcup_{n=1}^{\infty} K_n$, where $K_n = dom(K \cap (I \times [-n, n]))$, K_{n_0} is of the second category for some positive integer n_0 . Since K_{n_0} is closed, it has non-empty interior. Let J be a non-empty open interval contained in K_{n_0} . By (**4**), $card(\{x \in J : f(x) \ge n_0\}) = 2^{\omega}$. Since for each $x \in J$ there exists $y \in [-n_0, n_0]$ such that $(x, y) \in K$, $J \subset \{x \in I : (x, y) \in K \text{ and } f(x) \ge y \text{ for some } y \in \Re\}$ and therefore, (*) holds.

Finally, remark that if f is measurable (has the Baire property), then we can choose disjoint sets of measure zero (of the first category) A, B such that for any real r the sets $A \cap [f \ge r]$ and $B \cap [f \ge r]$ are c-dense in I. Now we can choose elements a_{α}, b_{α} (as in the proof of Proposition 6.5) from such sets A and B. Then f_1, f_2 will be measurable (have the Baire property).

Q.E.D.

Corollary 6.9 Every $f \in \mathcal{D}^*$ can be represented as a maximum of two almost continuous functions.

For arbitrary function $f : \Re \longrightarrow \Re$ and $x \in \Re$ let $K_c^+(f, x)$ denote the right hand c-cluster set of f at x, i.e. $K_c^+(f, x) = \bigcap \{C^+(f|\Re \setminus B, x) : card(B) < 2^{\omega}\}$. Similarly we define the left hand c-cluster set of f at x(denoted by $K_c^-(f, x)$). It is known that a function $f : \Re \longrightarrow \Re$ is a maximum of two Darboux functions iff it satisfies the following condition:

$$(\spadesuit) \quad f(x) \leq \min(\max(K_c^+(f, x)), \max(K_c^-(f, x))) \text{ for each } x \in \Re \ [12].$$

Problem 6.4 Is every function $f : \Re \longrightarrow \Re$ satisfying (\blacklozenge) a maximum of two almost continuous functions ?

Let X be a topological space and \mathcal{X}, \mathcal{Y} be arbitrary families of real functions defined on X. We define the following classes of functions:

 $\mathcal{M}_{max}(\mathcal{X}, \mathcal{Y}) = \{ f \in \mathcal{X} : max(f, g) \in \mathcal{Y} \text{ for all } g \in \mathcal{X} \},\$

 $\mathcal{M}_{min}(\mathcal{X}, \mathcal{Y}) = \{ f \in \mathcal{X} : min(f, g) \in \mathcal{Y} \text{ for all } g \in \mathcal{X} \},\$

 $\mathcal{M}_{l}(\mathcal{X}, \mathcal{Y}) = \{ f \in \mathcal{X} : max(f, g), min(f, g) \in \mathcal{Y} \text{ for all } g \in \mathcal{X} \}.$

Clearly, $\mathcal{M}_l(\mathcal{X}, \mathcal{Y}) = \mathcal{M}_{max}(\mathcal{X}, \mathcal{Y}) \cap \mathcal{M}_{min}(\mathcal{X}, \mathcal{Y})$. We shall write $\mathcal{M}_{max}(\mathcal{X})$, $\mathcal{M}_{min}(\mathcal{X})$ and $\mathcal{M}_l(\mathcal{X})$ instead of $\mathcal{M}_{max}(\mathcal{X}, \mathcal{X})$, $\mathcal{M}_{min}(\mathcal{X}, \mathcal{X})$ and $\mathcal{M}_l(\mathcal{X}, \mathcal{X})$, respectively. The last family is called the maximal lattice class for \mathcal{X} .

Theorem 6.11 If $\mathcal{X} \in \{\mathcal{A}(\mathfrak{R}, \mathfrak{R}), Conn(\mathfrak{R}, \mathfrak{R}), \mathcal{D}(\mathfrak{R}, \mathfrak{R})\}$ then

- (1) $\mathcal{C}(\mathfrak{R},\mathfrak{R}) \subset \mathcal{M}_{max}(\mathcal{A}(\mathfrak{R},\mathfrak{R}),\mathcal{X}) \subset \mathcal{D}usc(\mathfrak{R},\mathfrak{R}),$
- (2) $\mathcal{C}(\mathfrak{R},\mathfrak{R}) \subset \mathcal{M}_{min}(\mathcal{A}(\mathfrak{R},\mathfrak{R}),\mathcal{X}) \subset \mathcal{D}lsc(\mathfrak{R},\mathfrak{R}),$
- (3) $\mathcal{M}_l(\mathcal{A}(\Re, \Re), \mathcal{X}) = \mathcal{C}(\Re, \Re)$

P r o o f. Those relations are proved in [30] for $\mathcal{X} = \mathcal{A}(\mathfrak{R}, \mathfrak{R})$. The proof is analogous for other \mathcal{X} .

Q.E.D.

Arguments similar to those used in the proofs of Theorem 6.3 and Corollary 6.3 imply the following theorem.

Theorem 6.12 The equality $\mathcal{M}_l(\mathcal{A}(\Re^k, \Re^m)) = \mathcal{C}(\Re^k, \Re^m)$ holds for all positive integers k, m.

Problem 6.5 Describe the classes $\mathcal{M}_{max}(\mathcal{A}(\mathfrak{R}^k, \mathfrak{R}^m))$ and $\mathcal{M}_{min}(\mathcal{A}(\mathfrak{R}^k, \mathfrak{R}^m))$ for positive integers k, m.

7 Insertions of functions.

Example 7.1 There exist almost continuous, measurable functions f, g: $\Re \longrightarrow \Re$ with the Baire property such that f < g and f, g admit no Darboux function between them.

Indeed, let $(K_{\alpha})_{\alpha<2^{\omega}}$ be the sequence of all blocking sets in $\Re \times \Re$. Let Z_0, Z_1, Z_2 be pairwise disjoint, *c*-dense subsets of \Re of measure zero and of the first category. Choose sequences $(x_{i,\alpha}, y_{i,\alpha})_{\alpha<2^{\omega}}$ for i = 1, 2 such that $(x_{i,\alpha}, y_{i,\alpha}) \in K_{\alpha}$ and $x_{i,\alpha} \in Z_i \setminus \{x_{i,\beta} : \beta < \alpha\}$ for i = 1, 2 and $\alpha < 2^{\omega}$. Define the functions f, g in the following way:

$$f(x) = \begin{cases} y_{1,\alpha} & \text{if } x = x_{1,\alpha}, \ \alpha < 2^{\omega} \\ y_{2,\alpha} - 1 & \text{if } x = x_{2,\alpha}, \ y_{2,\alpha} \le 0, \ \alpha < 2^{\omega} \\ y_{2,\alpha}/2 & \text{if } x = x_{2,\alpha}, \ y_{2,\alpha} > 0, \ \alpha < 2^{\omega} \\ -2 & \text{if } x \in Z_0 \\ 1 & \text{otherwise} \end{cases}$$

$$g(x) = \begin{cases} y_{2,\alpha} & \text{if } x = x_{2,\alpha}, \ \alpha < 2^{\omega} \\ y_{1,\alpha} + 1 & \text{if } x = x_{1,\alpha}, \ y_{1,\alpha} \ge 0, \ \alpha < 2^{\omega} \\ y_{1,\alpha}/2 & \text{if } x = x_{1,\alpha}, \ y_{1,\alpha} < 0, \ \alpha < 2^{\omega} \\ -1 & \text{if } x \in Z_0 \\ 2 & \text{otherwise} \end{cases}$$

Then f and g are almost continuous, f < g and there is no Darboux function h between them (cf. [12]). Indeed, if h is a function such that f < h < g then h(x) < 0 for $x \in Z_0$, h(x) > 0 for $x \in \Re \setminus (Z_0 \cup Z_1 \cup Z_2)$ and $h(x) \neq 0$ for all $x \in \Re$.

Theorem 7.1 Assume that $f, g \in \mathcal{A}(X, \Re)$, f < g and at least one of f, g is continuous. Then there exists an almost continuous h between f and g.

P roof. Obviously the function h = (f + g)/2 has the required property.

Proposition 7.1 Assume that (X, Y) is a (K, G) pair with infinite blocking family \mathcal{K} and (Y, \leq) is a partially ordered set. If \mathcal{F} is a family of functions from X into Y satisfying the following conditions:

(1) functions from \mathcal{F} are commonly bounded, i.e.

$$\forall x \in X \quad \exists l(x) \quad \exists u(x) \quad \forall f \in \mathcal{F} \quad l(x) \le f(x) \le u(x),$$

(2) for each $K \in \mathcal{K}$ we have:

• $card(\{x \in X : \exists y \in Y \ \forall f \in \mathcal{F} \ (x, y) \in K \ and \ f(x) \ge y\}) \ge card(\mathcal{K}),$

and

• $card(\{x \in X : \exists y \in Y \ \forall f \in \mathcal{F} \ (x,y) \in K \ and \ f(x) \leq y\}) \geq card(\mathcal{K}),$

then there exist almost continuous functions $g_l, g_u : X \longrightarrow Y$ such that $g_l \leq f \leq g_u$ for all $f \in \mathcal{F}$.

P roof. Let $card(\mathcal{K}) = \lambda$. Let $(K_{\alpha})_{\alpha < \lambda}$ be a sequence of all sets from \mathcal{K} . By (2) we can choose disjoint sets $A_1, A_2 \subset X$ such that $card(\{x \in A_1 : \exists y \in Y \forall f \in \mathcal{F}(x, y) \in K \text{ and } f(x) \geq y\}) \geq \lambda$ and $card(\{x \in A_2 : \exists y \in Y \forall f \in \mathcal{F}(x, y) \in K \text{ and } f(x) \leq y\}) \geq \lambda$ for each $K \in \mathcal{K}$. Let $(a_{\alpha}, a'_{\alpha})_{\alpha < \lambda}, (b_{\alpha}, b'_{\alpha})_{\alpha < \lambda}$ be sequences of points such that $(a_{\alpha}, a'_{\alpha}), (b_{\alpha}, b'_{\alpha}) \in K_{\alpha}, a'_{\alpha} \leq f(x), f(b_{\alpha}) \leq b'_{\alpha}$ for each $f \in \mathcal{F}$ and $\alpha < \lambda$, and moreover, $a_{\alpha} \neq a_{\beta}, b_{\alpha} \neq b_{\beta}$ whenever $\alpha \neq \beta$. Then the functions g_l, g_u defined by $g_l(a_{\alpha}) = a'_{\alpha}, g_u(b_{\alpha}) = b'_{\alpha}$ for $\alpha < \lambda$ and $g_l(x) = l(x), g_u(x) = u(x)$ for other x, have the required properties.

Q.E.D.

Theorem 7.2 For each function $f : I \longrightarrow \Re$ for which $\{-\infty, \infty\} \subset K_c(f, x)$ for each $x \in I$ there exist almost continuous functions g, h such that g < hand f = (g + h)/2 (hence g < f < h). Moreover, if f is measurable (has the Baire property), then g and h can be taken measurable (with the Baire property).

P roof. Let $(F_{\alpha})_{\alpha<2^{\omega}}$ be the sequence of all minimal blocking sets in $I \times \Re$. For each ordinal $\alpha < 2^{\omega}$ there exist a positive integer n_{α} and a nondegenerate interval J_{α} such that $J_{\alpha} \subset dom(F_{\alpha} \cap (I \times [-n_{\alpha}, n_{\alpha}]))$. For every $\alpha < 2^{\omega}$ choose subsets $A_{\alpha} \subset J_{\alpha} \cap [f < -n_{\alpha}], B_{\alpha} \subset J_{\alpha} \cap [f > n_{\alpha}]$ such that $card(A_{\alpha}) = card(B_{\alpha}) = 2^{\omega}$. Note that $A_{\alpha} \cap B_{\beta} = \emptyset$ for $\alpha, \beta < 2^{\omega}$. Let $(a_{\alpha}, a'_{\alpha})_{\alpha<2^{\omega}}, (b_{\alpha}, b'_{\alpha})_{\alpha<2^{\omega}}$ be sequences of points such that $(a_{\alpha}, a'_{\alpha}), (b_{\alpha}, b'_{\alpha}) \in F_{\alpha} \cap (I \times [-n_{\alpha}, n_{\alpha}]), a_{\alpha} \in A_{\alpha} \setminus \{a_{\beta} : \beta < \alpha\}$ and $b_{\alpha} \in B_{\alpha} \setminus \{b_{\beta} : \beta < \alpha\}$ for any $\alpha < 2^{\omega}$. Now define the functions g and h in the following way:

$$h(x) = \begin{cases} a'_{\alpha} & \text{for } x = a_{\alpha}, \ \alpha < 2^{\omega} \\ 2f(b_{\alpha}) - b'_{\alpha} & \text{for } x = b_{\alpha}, \ \alpha < 2^{\omega} \\ f(x) + 1 & \text{otherwise} \end{cases}$$
$$g(x) = \begin{cases} b'_{\alpha} & \text{for } x = b_{\alpha}, \ \alpha < 2^{\omega} \\ 2f(a_{\alpha}) - a'_{\alpha} & \text{for } x = a_{\alpha}, \ \alpha < 2^{\omega} \\ f(x) - 1 & \text{otherwise} \end{cases}$$

Clearly, g, h are almost continuous and f = (g + h)/2.

Finally observe that if f is measurable (has the Baire property), then sets [f > n] and [f < -n] are measurable (have the Baire property) for every positive integer n and we can choose c-dense in I sets of measure zero and of the first category $A_n \subset [f > n]$ and $B_n \subset [f < -n]$. Sets $A = \bigcup_{n=1}^{\infty} A_n$, $B = \bigcup_{n=1}^{\infty} B_n$ have measure zero (are of the first category) and we continue as in the proof of general case with $a_{\alpha} \in A$, $b_{\alpha} \in B$ for $\alpha < 2^{\omega}$. Since $[g \neq f] \cup [h \neq f] \subset A \cup B$, g and h are measurable (have the Baire property). Q.E.D.

Corollary 7.1 For every function f from $\mathcal{D}^*(\Re, \Re)$ there exist almost continuous functions g and h such that g < f < h.

8 Stationary and determining sets.

Let \mathcal{F} be a family of functions defined on X into Y. A subset E of X is called *stationary* for \mathcal{F} provided that each member of \mathcal{F} which is constant on E must be constant on all of X. We shall denote by $S(\mathcal{F})$ the collection of all stationary sets for the class \mathcal{F} . A set E is called a *determining set* for \mathcal{F} provided that each two functions from \mathcal{F} which coincide on E must coincide on whole X. The class of all determining sets for \mathcal{F} will be denoted by $D(\mathcal{F})$. A set $E \subset X$ is called a *restrictive set* for the pair $(\mathcal{F}_1, \mathcal{F}_2)$ of families of functions from X into Y provided that $f_1 = f_2$ whenever $f_1 \in \mathcal{F}_1$, $f_2 \in \mathcal{F}_2$ and $f_1 | E = f_2 | E$. The class of all restrictive sets for $(\mathcal{F}_1, \mathcal{F}_2)$ will be denoted by $\mathbf{R}(\mathcal{F}_1, \mathcal{F}_2)$ [9]. Note that

(1) if $Const(X,Y) \subset \mathcal{F}$ then $D(\mathcal{F}) \subset S(\mathcal{F})$,

- (2) $\mathbf{R}(\mathcal{F},\mathcal{F}) = \mathbf{D}(\mathcal{F})$ and $\mathbf{R}(Const,\mathcal{F}) = \mathbf{S}(\mathcal{F})$
- (3) if $\mathcal{F}_1 \subset \mathcal{F}_2$ then $S(\mathcal{F}_2) \subset S(\mathcal{F}_1)$ and $D(\mathcal{F}_2) \subset D(\mathcal{F}_1)$,
- (4) if $\mathcal{F}_1 \subset \mathcal{F}_2$ then $\mathbf{R}(\mathcal{F}_2, \mathcal{F}) \subset \mathbf{R}(\mathcal{F}_1, \mathcal{F})$ for every family \mathcal{F} of functions from X into Y.

Theorem 8.1 A necessary and sufficient condition for $E \subset I$ to be a stationary set for the class $\mathcal{A}(I, \Re^k)$ is that $card(I \setminus E) < 2^{\omega}$.

Proof. Since $\mathcal{A} \subset \mathcal{D}$, $S(\mathcal{D}(I, \mathfrak{R})) \subset S(\mathcal{A}(I, \mathfrak{R}))$. It is known [2] (and easy to obtain, see e.g. [9], p. 200) that $E \in S(\mathcal{D}(I, \mathfrak{R}))$ iff $card(I \setminus E) < 2^{\omega}$. Thus $card(I \setminus E) < 2^{\omega}$ implies $E \in S(\mathcal{A}(I, \mathfrak{R})) \subset S(\mathcal{A}(I, \mathfrak{R}^k))$.

Now assume that $K = I \setminus E$ and $card(K) = 2^{\omega}$. Let K_0 be the set of all points of bilateral c-condensation of K. Obviously K_0 is non-empty and bilaterally c-dense in itself. Arrange all minimal blocking sets in $I \times \Re^k$ such that $dom(F) \cap K_0 \neq \emptyset$ in a sequence $(F_{\alpha})_{\alpha < 2^{\omega}}$. Note that $card(dom(F_{\alpha} \cap K_0)) = 2^{\omega}$ for $\alpha < 2^{\omega}$. Fix arbitrary $z \in K_0$ and choose a sequence of points $(x_{\alpha}, y_{\alpha})_{\alpha < 2^{\omega}}$ such that $(x_{\alpha}, y_{\alpha}) \in F_{\alpha}, x_{\alpha} \neq z$ for all $\alpha < 2^{\omega}$ and $x_{\alpha} \neq x_{\beta}$ for $\alpha \neq \beta$. Let $f: I \longrightarrow \Re^k$ be the function defined by $f(z) = (1, \ldots, 1)$, $f(x_{\alpha}) = y_{\alpha}$ for $\alpha < 2^{\omega}$ and f(x) = 0 for other x. Observe that f intersects each minimal blocking set F in $I \times \Re^k$. Indeed, if $F = F_{\alpha}$ for some $\alpha < 2^{\omega}$ then $(x_{\alpha}, y_{\alpha}) \in f \cap F$. In the other case $dom(F) \subset \overline{J}$, where J is a component of the set $I \setminus \overline{K_0}$. Since $rng(F) = \Re^k$, $(x, 0) \in f \cap F$ for some $x \in dom(F)$. Thus f is almost continuous, $f | E \equiv 0$ but $f \not\equiv 0$, therefore E is not stationary for $\mathcal{A}(I, \Re^k)$.

Q.E.D.

Corollary 8.1 $E \in S(\mathcal{A}(\mathfrak{R}, \mathfrak{R}^k))$ iff $card(\mathfrak{R} \setminus E) < 2^{\omega}$.

Corollary 8.2 Since $\mathcal{A}(\mathfrak{R},\mathfrak{R}) \subset Conn(\mathfrak{R},\mathfrak{R}) \subset \mathcal{D}(\mathfrak{R},\mathfrak{R})$, and $S(\mathcal{A}(\mathfrak{R},\mathfrak{R})) = S(\mathcal{D}(\mathfrak{R},\mathfrak{R}))$, $E \in S(Conn(\mathfrak{R},\mathfrak{R}))$ iff $card(\mathfrak{R} \setminus E) < 2^{\omega}$.

Theorem 8.2 The only determining set for the classes $\mathcal{A}(\mathfrak{R}, \mathfrak{R}^k)$, $Conn(\mathfrak{R}, \mathfrak{R}^k)$ is \mathfrak{R} .

P r o o f. For k = 1 this follows from the inclusions $\mathcal{DB}_1 \subset \mathcal{A}(\mathfrak{R}, \mathfrak{R}) \subset Conn(\mathfrak{R}, \mathfrak{R}) \subset \mathcal{D}(\mathfrak{R}, \mathfrak{R})$, the condition (3) before Theorem 8.1 and the equalities $D(\mathcal{DB}_1) = D(\mathcal{D}) = \{\mathfrak{R}\}$ [14]. For k > 1 this is a consequence of the inclusions $D(\mathcal{A}(\mathfrak{R}, \mathfrak{R}^k)) \subset D(\mathcal{A}(\mathfrak{R}, \mathfrak{R}))$ and $D(Conn(\mathfrak{R}, \mathfrak{R}^k)) \subset D(Conn(\mathfrak{R}, \mathfrak{R}))$.

Q.E.D.

The following equalities are easy consequences of Theorems 8.1 and 8.2 and the conditions before Theorem 8.1 (cf. [9], Theorem 2.1, p. 207).

Corollary 8.3 In the class of real functions defined on \Re the following equalities hold:

- (1) $E \in \mathbf{R}(\mathcal{C}, \mathcal{X})$ iff $card(\mathfrak{R} \setminus E) < 2^{\omega}$, for $\mathcal{X} \in \{\mathcal{A}, \mathcal{C}onn, \mathcal{D}\}$,
- (2) $\mathbf{R}(Conn, \mathcal{D}) = \mathbf{R}(\mathcal{A}, \mathcal{D}) = \mathbf{R}(\mathcal{A}, Conn) = \{\Re\}.$

Assume that g is an arbitrary function and \mathcal{F} is a family of functions from X into Y. We say that $A \subset X$ is (g, \mathcal{F}) -negligible if every function $f: X \longrightarrow Y$ which coincides with g on $X \setminus A$ belongs to \mathcal{F} (see [4] and [38]).

Theorem 8.3 Let M be a subset of I. There exists an almost continuous function g such that M is a $(g, \mathcal{A}(I, \Re))$ -negligible iff $I \setminus M$ is c-dense in I [38].

Theorem 8.4 Assume that g is an almost continuous real function defined on I. Then the following statements are equivalent:

(i)
$$g \in \mathcal{D}^*(I, \Re)$$
,

(ii) every nowhere dense subset of I is $(g, \mathcal{A}(I, \Re))$ -negligible,

(iii) there exists a dense subset of I which is $(g, \mathcal{A}(I, \Re))$ -negligible [38].

Example 8.1 There exists an almost continuous function $g: I \longrightarrow \Re$ such that all subsets of I which are small in the sense of cardinality (i.e. with the cardinality less than 2^{ω}) or of measure (i.e. of measure zero) or of category (i.e. of the first category) are $(g, \mathcal{A}(I, \Re))$ -negligible.

Indeed, as in the proof of Lemma 6.1 one can construct a function $g \in \mathcal{A}(I, \mathfrak{R})$ such that $card(P \cap dom(K \cap g)) = 2^{\omega}$ for each minimal blocking set K and every non-empty perfect set $P \subset dom(K)$. Then g is OK.

Theorem 8.5 Suppose that $f, g \in \mathcal{D}^*(I, I)$ and there exists a finite subset A of I such that $f^{-1}(y) = g^{-1}(y)$ for all $y \in I \setminus A$. Then f and g are both almost continuous or both not almost continuous [38].

Recall that a class \mathcal{F} of real functions is said to be characterizable by associated sets if there exists a family of sets \mathcal{P} so that $f \in \mathcal{F}$ iff for all $y \in \Re$ the sets [f < y] and [f > y] belong to \mathcal{P} [8].

Corollary 8.4 The class $\mathcal{A}(I, \Re)$ is not characterizable by associated sets [38].

Acknowledgement. I would like to thank to Z. Grande for many stimulating conversations and to J. M. Jędrzejewski for his active interest in the publication of this text. I am especially grateful to A. Maliszewski for his valuable remarks which allowed me to correct many mistakes in the first version of the paper.

Contents

1	Preliminaries.	462
	1.1 Notations	462
	1.2 Basic definitions	463
	1.3 Collation with other classes of functions	467
	1.3.1 Almost continuity and continuity	467
	1.3.2 Almost continuity, connectivity and other Darboux-	
	like properties.	468
	1.4 The local characterization	472
2	Restrictions and extensions.	473
3	Compositions.	478
4	Cartesian products and diagonals.	484
5	Limits of sequences.	489
6	Operations.	494
	6.1 Sums	49 4
	6.2 Products	498
	6.3 Maxima and minima	505
7	Insertions of functions.	509
8	Stationary and determining sets.	511

References

- V. N. Akis, Fixed points theorems and almost continuity, Fund. Math. 121(1984), 133-142.
- [2] N. Boboc and S. Marcus, Sur la détermination d'une fonction par les valeurs prises sur un certain ensemble, Ann. Sci. École Norm. Sup. 76(1959), 151–159.
- [3] J.B. Brown, Connectivity, semi-continuity and the Darboux property, Duke Math. J. 36(1969), 559-562.
- [4] J. B. Brown, Negligible sets for real connectivity functions, Proc. Amer. Math. Soc. 24(1970), 263-269.
- [5] J. B. Brown, Almost continuous Darboux functions and Reed's pointwise convergence criteria, Fund. Math. 86(1974), 1-7.
- [6] J. B. Brown, Almost continuity of the Cesaro-Vietoris function, Proc. Amer. Math. Soc. 49(1975), 185-188.
- [7] J. B. Brown, P. Humke and M. Laczkovich, Measurable Darboux functions, Proc. Amer. Math. Soc. 102(1988), 603-612.
- [8] A. M. Bruckner, On characterizing classes of functions in terms of associated sets, Canad. Math. Bull. 10(1967), 227-231.
- [9] A. M. Bruckner, Differentiation of Real Functions, Springer-Verlag 1978.
- [10] A. M. Bruckner and J. G. Ceder, Darboux continuity, Jber. Deut. Math. Ver. 67(1965), 93-117.
- [11] A. M. Bruckner and J. G. Ceder, On jumping functions by connected sets, Czech. Math. J. 22(1972), 435-448.
- [12] A. M. Bruckner, J. G. Ceder and T. L. Pearson, On Darboux functions, Rev. Roum. Math. Pures et. Appl. 19(1974), 977-988.
- [13] A. M. Bruckner, J. G. Ceder and M. Weiss, On uniform limits of Darboux functions, Colloq. Math. 15(1966), 65-77.

- [14] A. M. Bruckner and J. Leonard, Stationary sets and determining sets for certain classes of Darboux functions, Proc. Amer. Math. Soc. 16(1965), 935-940.
- [15] J. G. Ceder, Some examples on continuous restrictions, Real Analysis Exchange 7(1981-1982), 155-162.
- [16] J. G. Ceder, On factoring a function into a product of Darboux functions, Rend. Circ. Mat. Palermo 31(1982), 16-22.
- [17] J. G. Ceder, On composition with connected functions, Real Analysis Exchange 11(1985-86), 380-390.
- [18] J. L. Cornette, Connectivity functions and images on Peano continua, Fund. Math. 58(1966), 183-192.
- [19] R. Engelking, General Topology, Warszawa 1976.
- [20] R. J. Fleissner, An almost continuous function, Proc. Amer. Math. Soc. 45(1974), 346-348.
- [21] R. J. Fleissner, A note on Baire 1 Darboux functions, Real Analysis Exchange 3(1977-78), 104-106.
- [22] B. D. Garret, D. Nelms and K. R. Kellum, Characterization of connected functions, Jber.Deut. Math. Ver. 73(1971), 131-137.
- [23] R. G. Gibson, *Darboux like functions*, a manuscript.
- [24] R. G. Gibson and F. Roush, The Cantor intermediate value property, Topology Proc. 7(1982), 55-62.
- [25] R. G. Gibson and F. Roush, The uniform limit of connectivity functions, Real Analysis Exchange 11(1985-86), 254-259.
- [26] Z. Grande, Quelques remarques sur les fonctions presque continues, Probl. Mat. 10(1988), 59-70.
- [27] H. B. Hoyle, III, Connectivity maps and almost continuous functions, Duke Math. J. 37(1970), 671-680.

- [28] T. Husain, Almost continuous mappings, Prace Mat. 10(1966), 1-7.
- [29] J. M. Jastrzębski, An answer to a question of R. Gibson and F. Roush, Real Analysis Exchange 15(1989-90), 340-342.
- [30] J. M. Jastrzębski, J. M. Jędrzejewski and T. Natkaniec, On some subclasses of Darboux functions, Fund. Math. 138(1991), 165-173.
- [31] J. M. Jastrzębski, J. M. Jędrzejewski and T. Natkaniec, Points of almost continuity of real functions, Real Analysis Exchange 16(1990-1991), 415-421.
- [32] F. B. Jones and E. S. Thomas, Jr., Connected G_{δ} -graphs, Duke Math. J. 33(1966), 341-345.
- [33] K. R. Kellum, Almost continuous functions on Iⁿ, Fund. Math. 79(1973), 213-215.
- [34] K. R. Kellum, Sums and limits of almost continuous functions, Colloq. Math. 31(1974), 125-128.
- [35] K. R. Kellum, On a question of Borsuk concerning non-continuous retracts I, Fund. Math. 87(1975), 89-92.
- [36] K. R. Kellum, On a question of Borsuk concerning non-continuous retracts II, Fund. Math. 92(1976), 135-140.
- [37] K. R. Kellum, The equivalence of absolute almost continuous retracts and ε -absolute retracts, Fund. Math. 96(1977), 229-235.
- [38] K. R. Kellum, Almost continuity and connectivity—sometimes it's as easy to prove a stronger result, Real Analysis Exchange 8(1982-83), 244-252.
- [39] K. R. Kellum, Iterates of almost continuous functions and Sarkovskii's Theorem, Real Analysis Exchange 14(1988-89), 420-423.
- [40] K. R. Kellum and B. D. Garret, Almost continuous real functions, Proc. Amer. Math. Soc. 33(1972), 181-184.

- [41] K. R. Kellum and H. Rosen, Compositions of continuous functions and connected functions, a preprint.
- [42] J. S. Lipiński, On a problem concerning the almost continuity, Zeszyty Naukowe Uniwersytetu Gdańskiego 4(1979), 61.
- [43] J. S. Lipiński, On Darboux points, Bull. Pol. Ac. Sci. 26(1978), 869-873.
- [44] P. E. Long and E. E. Mc Gehee Jr., Properties of almost continuous functions, Proc. Amer. Math. Soc. 24(1970), 175-180.
- [45] S. Marcus, Sur la représentation d'une fonction arbitraire par des fonctions jouissant de la propriété de Darboux, Trans. Amer. Math. Soc. 35(1966), 484-494.
- [46] S. A. Naimpally and C. M. Pareek, Graph topologies for functions spaces, II, Comm. Math. 13(1970), 221–231.
- [47] T. Natkaniec, On lattices generated by Darboux functions, Bull. Pol. Ac. Sci. 35(1987), 549-552.
- [48] T. Natkaniec, Two remarks on almost continuous functions, Probl. Mat. 10(1988), 71-78.
- [49] T. Natkaniec, On compositions and products of almost continuous functions, Fund. Math., 139(1991), 59-74.
- [50] T. Natkaniec, Products of Darboux functions, to appear.
- [51] R. J. Pawlak, Darboux Transformations, Thesis, Łódź, 1985.
- [52] C. S. Reed, Pointwise limits of sequences of functions, Fund. Math. 67(1970), 183-193.
- [53] J. H. Roberts, Zero-dimensional sets blocking connectivity functions, Fund. Math. 57(1965), 173–179.
- [54] H. Rosen, Connectivity points and Darboux points of real functions, Fund. Math. 89(1975), 265-269.

- [55] H. Rosen, R. G. Gibson and F. Roush, *Extendable functions and almost continuous functions with a perfect road*, Real Analysis Exchange 17, to appear.
- [56] J. Shoenfield, Martin's axiom, Amer. Math. Monthly 82(1975), 610-617.
- [57] W. Sierpiński, Sur les suites transfinies convergentes de fonctions de Baire, Fund. Math. 1(1920), 132-141.
- [58] J. Smital and E. Stanova, On almost continuous functions, Acta Math. Univ. Comen. 37(1980), 147–155.
- [59] B. D. Smith, An alternate characterization of continuity, Proc. Amer. Math. Soc. 39(1973), 318-320.
- [60] J. Stallings, Fixed point theorem for connectivity maps, Fund. Math. 47(1959), 249-263.