Almost Continuity

1 Preliminaries.

1.1 Notations.

Let us establish some of terminology to be used in whole paper. Symbols X, Y will denote topological spaces. \Re denotes the real line (or the one dimensional Euclidean space), I denotes the unit interval $[0,1]$. The symbols N and Q denote the sets of all positive integers and all rationals, respectively.

We use standard topological denotations (see e.g. [19]). If A is a subset of a topological space X then $\operatorname{int}(A)$ (or $\operatorname{int}_{X}(A)$) and $\operatorname{fr}(A)$ (or $f r_{X}(A)$) denote the interior of A and the boundary of A, respectively. The closure of A is denoted by $c l(A), c l_{X}(A)$ or \bar{A}. If X is a metric space, $x \in X$ and $\varepsilon>0$, then $B_{X}(x, \varepsilon)$ (or simply, $B(x, \varepsilon)$) denotes the open ball centered at x and with the radius ε.

For a subset A of $X \times Y$ we denote by $\operatorname{dom}(A)$ and $\operatorname{rng}(A)$ the x-projection and y-projection of $A ; \operatorname{dom}(A)=\{x: \exists y \in Y(x, y) \in A\}, \operatorname{rng}(A)=\{y:$ $\exists x \in X(x, y) \in A\}$. If B is a subset of X then $A \mid B$ denotes the set $A \cap(B \times Y)$. Moreover, if $x \in X$ and $y \in Y$ are fixed, then A_{x} and A^{y} denote sections of $A ; A_{x}=\{t \in Y:(x, t) \in A\}, A^{y}=\{t \in X:(t, y) \in A\}$.

We consider a function $f: X \longrightarrow Y$ and its graph (i.e. a subset of $X \times Y$) to be coincident. Symbols $\operatorname{Const}(X, Y), \mathcal{C}(X, Y)$ and Y^{X} denote the families of all constant functions, all continuous functions and all functions from X into Y, respectively. We will write $\mathcal{C o n s t}$ and \mathcal{C} instead of $\operatorname{Const}(X, Y)$ and $\mathcal{C}(X, Y)$ when X and Y are fixed. Symbol $C(f)$ denotes the set of all continuity points of f. If we consider a function f defined on \Re then the symbols $C^{-}(f, x)$ and $C^{+}(f, x)$ denote the left and the right cluster sets of f

[^0]at the point x. If f is a real function defined on X then the notation $[f>0$] means the set $\{x \in X: f(x)>0\}$. Likewise for $[f=0],[f \neq 0]$, etc.

If A is a set then by $\operatorname{card}(A)$ we shall denote the cardinality of A. Cardinals will be identified with initial ordinals.

We shall use the following set theoretical assumptions:
$A(c)$: the union of less than 2^{ω} many first category subsets of \Re is again of the first category.
$A(m)$: the union of less than 2^{ω} many subsets of measure zero of \Re is again of measure zero.

It is well-known that these conditions follow from Martin's Axiom and therefore also from the Continuum Hypothesis (see e.g. [56]). If not explicitly stated otherwise, we shall work in (ZFC) without further assumptions.

1.2 Basic definitions.

A function $f: X \longrightarrow Y$ is almost continuous in the sense of Stallings iff for any open set $U \subset X \times Y$ containing f, U contains a continuous function $g: X \longrightarrow Y$ [60]. The class of all almost continuous functions from X into Y is denoted by $\mathcal{A}(X, Y)$, or \mathcal{A} when X and Y are fixed.

Clearly any continuous function is almost continuous. There are, however, many almost continuous real functions which are not continuous. The following two examples of non-continuous, almost continuous functions are "classical".

Example 1.1 Let $f_{0}:[-1,1] \longrightarrow[-1,1]$ be defined by $f_{0}(x)=\sin (1 / x)$ for $x \neq 0$ and $f_{0}(0)=0$. It is easy to observe that f_{0} is almost continuous.

Example 1.2 Let $f: I \longrightarrow I$ be defined by $f(x)=\overline{\lim }_{n \rightarrow \infty}\left(a_{1}+\ldots a_{n}\right) / n$, where a_{i} are given by the unique nonterminating binary expansion of the number $x=\left(0 . a_{1} a_{2} \ldots\right)$. Then f is almost continuous [6].

Note that the last function is dense in I^{2}. Other examples of almost continuous, dense in I^{2} functions are constructed in [40], [21], [3]. One can construct such examples using the following notion of blocking sets. This notion was introduced by Kellum and Garret [40], and was used later in many papers, e.g. in [33], [34], [38], [39], [26] and [47], [48], [49] and [50].

Observe that if a function $f: X \longrightarrow Y$ is not almost continuous then there exists a closed set $F \subset X \times Y$ such that $F \cap f=\emptyset$ and $F \cap g \neq \emptyset$ for each continuous function $g: X \longrightarrow Y$. Every such set is called a blocking set for f in $X \times Y$. If no proper subset of F is a blocking set of f in $X \times Y$, F is said to be a minimal blocking set for f in $X \times Y$. If set F is a (minimal) blocking set of some function $f: X \longrightarrow Y$, then F is said to be a (minimal) blocking set in $X \times Y$.

Remark 1.1 A function $f: X \longrightarrow Y$ is almost continuous iff it intersects every blocking set in $X \times Y$.

We say that a topological space X has the fixed point property iff for any continuous function f from X into X there exists a point $x \in X$ such that $f(x)=x$. Stallings introduced the notion of almost continuity in order to prove a generalization of the Brower fixed point theorem. Note that for a non-degenerate Hausdorff space X with the fixed point property the diagonal $\{(x, x): x \in X\}$ is a blocking set in $X \times X$. Therefore we obtain the following property of almost continuous functions.

Theorem 1.1 If X is a Hausdorff space with the fixed point property then each almost continuous function $f: X \longrightarrow X$ has a fixed point [60].

Theorem 1.2 Suppose that X is a compact space and $f: X \longrightarrow Y$ is not almost continuous. Then
(1) there exists a minimal blocking set K of f in $X \times Y$, and
(2) $\operatorname{dom}(K)$ is contained in a component of X,
(3) if one of the following conditions holds:
(i) X is perfectly normal and Y is an interval in $\Re^{k},(k \in N)$,
(ii) X is an interval in \Re and Y is a convex subspace of $\Re^{k},(k \in N)$,
(iii) Y is an ε-absolute retract (see [37] for definitions),
then $\operatorname{dom}(K)$ is a non-degenerate connected set,
(4) $r n g(K)=Y$.

Proof. (1) is proved in [36].
(2) Suppose that K is a blocking set for f in $X \times Y$ and S_{1}, S_{2} are different components of X with $\operatorname{dom}(K) \cap S_{1} \neq \emptyset \neq \operatorname{dom}(K) \cap S_{2}$. Since X is compact, there exists a clopen set $A_{1} \subset X$ such that $S_{1} \subset A_{1}$ and $S_{2} \subset A_{2}=X \backslash A_{1}$ (see e.g. [19], Theorem 8, p. 431). Since $K \mid A_{i}(i=1,2)$ are not blocking for f, there exist continuous functions $g_{i}: X \longrightarrow Y$ such that $g_{i} \cap\left(K \mid A_{i}\right)=\emptyset$. Thus $\left(g_{1} \mid A_{1}\right) \cup\left(g_{2} \mid A_{2}\right)$ is continuous and disjoint from K, a contradiction.
(3.i) Suppose that $\operatorname{dom}(K)$ is not connected. Let $\left(A_{1}, A_{2}\right)$ be a partition of $\operatorname{dom}(K)$ into disjoint, non-empty sets which are clopen in $\operatorname{dom}(K)$. Let $g_{1}, g_{2}: X \longrightarrow Y$ be continuous and such that $g_{i} \cap\left(K \mid A_{i}\right)=\emptyset$ for $i=1,2$. Let $C=f r_{X}\left(A_{1}\right)$. Since X is perfectly normal, there exists a decreasing sequence of open sets $\left(U_{n}\right)_{n}$ such that $C=\bigcap_{n=1}^{\infty} U_{n}$. Since g_{1}, g_{2} are bounded, there exists a cube $J_{0} \subset Y$ such that $r n g\left(g_{i}\right) \subset J_{0}$ for $i=1,2$. For each $n \in N$ let $h_{n}: X \longrightarrow J_{0}$ be a continuous extension of the function $\left(g_{1} \mid\left(\overline{A_{1}} \backslash U_{n}\right)\right) \cup$ $\left(g_{2} \mid\left(\overline{A_{2}} \backslash U_{n}\right)\right)$. Since K is blocking, there exists $x_{n} \in U_{n} \cap \operatorname{dom}(K)$ such that $\left(x_{n}, h_{n}\left(x_{n}\right)\right) \in K$. Let (x, y) be a limit point of the sequence $\left(x_{n}, h_{n}\left(x_{n}\right)\right)_{n}$. Then $x \in C \cap \operatorname{dom}(K)=f r_{\operatorname{dom}(K)}\left(A_{1}\right)$, which is impossible.

Proofs of the statements (3.ii) and (4) are the same as in [34] (when $X=Y=\Re)$. (3.iii) is proved in [37], Theorem 5.2.
Q.E.D.

Corollary 1.1 If $f: \Re \longrightarrow \Re^{k}$ is not almost continuous then there exists a blocking set $K \subset \Re \times \Re^{k}$ for f such that dom (K) is a non-degenerate interval (cf. [34]).

Now we try to shed some light on the problem suggested in Remark 3 of [36].

Theorem 1.3 (on homogeneity of minimal blocking sets.) Assume that $K \subset$ $I \times \Re^{k}$ is a minimal blocking set, $U_{1}=\left(a_{1}, a_{2}\right) \subset I, U_{2}$ is an open interval in \Re^{k} and $U_{1} \times U_{2} \cap K \neq \emptyset$. Then:
(1) $\operatorname{int}\left(\operatorname{dom}\left(K \cap\left(U_{1} \times U_{2}\right)\right)\right) \neq \emptyset$ or K intersects every $f \in \mathcal{C}\left(U_{1}, U_{2}\right)$,
(2) $\operatorname{dom}\left(K \cap\left(U_{1} \times U_{2}\right)\right)$ is dense in itself or $\overline{U_{2}} \subset K_{x}$ for some $x \in U_{1}$.

Proof. (1) Suppose that $f: U_{1} \longrightarrow U_{2}$ is continuous and $f \cap K=\emptyset$. It follows from minimality of K that $h \cap\left(K \backslash\left(U_{1} \times U_{2}\right)\right)=\emptyset$ for some continuous function $h: I \longrightarrow \Re^{k}$. Since K is blocking, $h \cap K \cap\left(U_{1} \times U_{2}\right) \neq \emptyset$. Since
$h \cap K$ is compact and $\operatorname{dom}(h \cap K) \subset U_{1}$, we can choose reals b_{1}, b_{2} such that $a_{1}<b_{1}<m_{1}=\min (\operatorname{dom}(h \cap K)) \leq m_{2}=\max (\operatorname{dom}(h \cap K))<b_{2}<a_{2}$. Since $A=r n g\left(f \mid\left[b_{1}, b_{2}\right]\right) \cup r n g(h \cap K)$ is a compact subset of U_{2}, there exists a closed interval $J \subset U_{2}$ such that $A \subset \operatorname{int}(J)$. Note that $h \cap K \subset$ $\left(b_{1}, b_{2}\right) \times \operatorname{int}(J)$.

Suppose that $\operatorname{int}\left(\operatorname{dom}\left(K \cap\left(U_{1} \times U_{2}\right)\right)\right)=\emptyset$. Since $K_{0}=K \cap\left(\left[b_{1}, b_{2}\right] \times J\right)$ is compact, $\operatorname{dom}\left(K_{0}\right)$ is nowhere dense and we can choose intervals $\left[t_{1}, t_{2}\right] \subset$ $\left(b_{1}, m_{1}\right) \backslash \operatorname{dom}\left(K_{0}\right)$ and $\left[v_{1}, v_{2}\right] \subset\left(m_{2}, a_{2}\right) \backslash \operatorname{dom}\left(K_{0}\right)$ such that $r n g\left(h \mid\left[t_{1}, t_{2}\right]\right) \cup$ $r n g\left(h \mid\left[v_{1}, v_{2}\right]\right) \subset J$. Then $a_{1}<t_{1}<t_{2}<m_{1} \leq m_{2}<v_{1}<v_{2}<a_{2}$. Let g_{1}, g_{2} be segments in $I \times J$ with end-points $\left(t_{1}, h\left(t_{1}\right)\right),\left(t_{2}, f\left(t_{2}\right)\right)$ and $\left(v_{1}, f\left(v_{1}\right)\right)$, $\left(v_{2}, h\left(v_{2}\right)\right)$, respectively. Then the function $g=h \mid\left(I \backslash\left(t_{1}, v_{2}\right)\right) \cup g_{1} \cup g_{2} \cup$ $f \mid\left(t_{2}, v_{1}\right)$ is continuous and disjoint with K, a contradiction.
(2) Suppose that x is isolated in $\operatorname{dom}\left(K \cap\left(U_{1} \times U_{2}\right)\right)$. Let $V \subset U_{1}$ be an interval such that $\{x\}=V \cap \operatorname{dom}\left(K \cap\left(U_{1} \times U_{2}\right)\right)$. Then, by (1), $r n g\left(K \cap\left(V \times U_{2}\right)\right)=U_{2}$ and therefore $\overline{U_{2}} \subset K_{x}$.
Q.E.D.

Theorem 1.4 Let $f: \Re \longrightarrow \Re$ be a function such that $f \cap c l(u) \neq \emptyset$ for any upper semi-continuous function u, defined on non-degenerate interval. Then f is almost continuous [38].

A pair of topological spaces X, Y will be called a (K, G) pair (KellumGarret pair) iff there exists a family \mathcal{F} of blocking sets in $X \times Y$ such that
(1) if $f \notin \mathcal{A}(X, Y)$ then in \mathcal{F} there exists a blocking set for f,
(2) $\operatorname{card}(\operatorname{dom}(F)) \geq \operatorname{card}(\mathcal{F})$ for any $F \in \mathcal{F}$.

A family which satisfies the conditions (1) and (2) will be called a blocking family for the pair (X, Y).

Proposition 1.1 The following pairs (X, Y) are of (K, G) type.
(1) X is compact, perfectly normal and Y is a non-degenerate interval in \Re^{k},
(2) X is a compact interval in \Re and Y is a convex subspace of \Re^{k},
(3) X is an interval in \Re and Y is a convex subspace of \Re^{k}.

Proof. In the cases (1) and (2) we can take the families of minimal blocking sets in $X \times Y$ as the blocking families for (X, Y) (cf. Theorem 1.2). In the case (3), X can be decomposed into a countable sequence $\left(I_{n}\right)_{n}$ of closed intervals such that $I_{n} \cap I_{n+1} \neq \emptyset$ for $n \in N$. One can prove that if $f \notin \mathcal{A}(X, Y)$ then $f \mid I_{n} \notin \mathcal{A}\left(I_{n}, Y\right)$ for some $n \in N$ (see Lemma 2.3 below). Let \mathcal{F}_{n} be a blocking family for $\left(I_{n}, Y\right)$. Then the union of all $\mathcal{F}_{n}, n \in N$, is a blocking family for the pair (X, Y).
Q.E.D.

Proposition $1.2\left(\Re^{k}, \Re^{m}\right)$ is a (K, G) pair for all $k, m \in N$.
Proof. Obviously $\operatorname{card}(\mathcal{K}) \leq 2^{\omega}$ for every blocking family \mathcal{K} in $\Re^{k} \times \Re^{m}$ (in fact it is easy to see that $\operatorname{card}(\mathcal{K})=2^{\omega}$). Thus it is sufficient to prove that $\operatorname{card}(\operatorname{dom}(K))=2^{\omega}$ for every blocking set K in $\Re^{k} \times \Re^{m}$. Suppose that $\operatorname{card}\left(\operatorname{dom}\left(K^{\prime}\right)\right)<2^{\omega}$. Then there exists an increasing sequence $\left(r_{n}\right)_{n}$ of positive reals such that $\lim _{n \rightarrow \infty} r_{n}=\infty$ and $S_{n} \cap \operatorname{dom}(K)=\emptyset$, where S_{n} denotes the $(k-1)$-dimensional sphere in \Re^{k} centered at 0 and with radius r_{n}. Fix $n \in N$ and put $A_{n}=\overline{B\left(0, r_{n}\right)} \backslash B\left(0, r_{n-1}\right)$. Then for each $i \in N, K_{n, i}=\operatorname{dom}\left(K \cap\left(A_{n} \cap[-i, i]^{m}\right)\right)$ is compact and $\operatorname{card}\left(K_{n, i}\right)<2^{\omega}$. Hence $K \cap\left(A_{n} \cap[-i, i]^{m}\right)$ is not blocking in $A_{n} \cap[-i, i]^{m}$, so either there exists a continuous function $f: A_{n} \longrightarrow[-i, i]^{m}$ such that $f \cap K=\emptyset$ or $\{x\} \times[-i, i]^{m} \subset K$ for some $x \in A_{n}$. Note that there exist i_{n} and a continuous function $f_{n}: A_{n} \longrightarrow\left[-i_{n}, i_{n}\right]^{m}$ such that $f_{n} \cap K=\emptyset$. Indeed, suppose that for each $i \in N$ there exists $x_{i} \in A_{n}$ such that $\left\{x_{i}\right\} \times[-i, i]^{m} \subset K$. Let x_{0} be a limit point of the sequence $\left(x_{i}\right)_{i}$. Since K is closed $\left\{x_{0}\right\} \times \Re^{m} \subset K$, which contradicts the assumption that K is blocking.

Since $K_{n, i_{n}}$ is compact, $\operatorname{dist}\left(K_{n, i_{n}}, S_{n-1} \cup S_{n}\right)>0$, so we can assume that $f_{n} \mid\left(S_{n-1} \cup S_{n}\right) \equiv 0$. Then $f=\bigcup_{n=1}^{\infty} f_{n}$ is continuous and disjoint with K, a contradiction.
Q.E.D.

1.3 Collation with other classes of functions.

1.3.1 Almost continuity and continuity.

T. Husain [28] has introduced another notion of almost continuity. A function $f: X \longrightarrow Y$ is almost continuous in the sense of Husain (H-almost continuous) iff for each $x \in X$, if $V \subset Y$ is a neighbourhood of $f(x)$ then
$f^{-1}(V)$ is dense in a some neighbourhood of x. Relationships between continuity, almost continuity (in the sense of Stallings) and H-almost continuity are studied in [20], [44], [58], [59]. A function $f: X \longrightarrow Y$ is of Cesaro type iff there exist non-empty open sets $U \subset X$ and $V \subset Y$, such that $f^{-1}(y)$ is dense in U for each $y \in V$ (cf. [59]). The class of all functions of Cesaro type for which $U=X$ and $V=Y$ will be denoted by $\mathcal{D}^{*}(X, Y)$ (or \mathcal{D}^{*} when X and Y are fixed). Now let (Y, ρ) be a metric space. A function $f: X \longrightarrow Y$ is called cliquish iff for each $\varepsilon>0$, every non-empty open set $U \subset X$ contains a non-empty open set V such that $\rho(f(x), f(y))<\varepsilon$ whenever $x, y \in V$.

Theorem 1.5 Let X be a regular locally connected Baire space. Then for every real function f, f is continuous iff f is almost continuous, H-almost continuous, and not of Cesaro type [58] (and [60] for $X=\Re$).

Example 1.3 There exists an almost continuous and H-almost continuous function $f: I \longrightarrow \Re^{2}$ which is not of Cesaro type and not continuous.

Indeed, let $f_{1}=i d_{I}, f_{2}: I \longrightarrow \Re$ be almost continuous, $f_{2} \in \mathcal{D}^{*}$ and let $f=\left(f_{1}, f_{2}\right)$. Then f is almost continuous (see Theorem 4.4 below), H-almost continuous injection (so it is not of Cesaro type) and it is not continuous.

Theorem 1.6 Let X be a regular locally connected Baire space. If a real function defined on X is almost continuous and not of the Cesaro type then it is cliquish [58].

Note that there exist almost continuous real functions defined on I which are of Cesaro type (see e.g. Example 1.2). Clearly such functions have no points of continuity. Moreover, J. Ceder gave an example (under CH) of an almost continuous function $f: I \longrightarrow \Re$ such that $f \mid A$ is discontinuous whenever A is uncountable ([15], see also [38]).

1.3.2 Almost continuity, connectivity and other Darboux-like properties.

Theorem 1.7 If X is a connected T_{1} space, Y is a hereditarily normal Hausdorff space and $f: X \longrightarrow Y$ is almost continuous, then $r n g(f)$ is connected.

Proof. Suppose that $r n g(f)$ is not connected. Since Y is hereditarily normal, there exist disjoint open sets $U, V \subset Y$ such that $r n g(f) \subset U \cup V$
and $r n g(f) \cap U \neq \emptyset \neq r n g(f) \cap V$ (see e.g. [19], Theorem 6, p. 96). Fix $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right) \in U$ and $f\left(x_{2}\right) \in V$. Then $G=X \times(U \cup$ $V) \backslash\left(\left(\left\{x_{1}\right\} \times(Y \backslash U)\right) \cup\left(\left\{x_{2}\right\} \times(Y \backslash V)\right)\right)$ is an open neighbourhood of f and it includes a continuous function $g: X \longrightarrow Y$. Since $g\left(x_{1}\right) \in U$ and $g\left(x_{2}\right) \in V, r n g(g) \cap U \neq \emptyset \neq r n g(g) \cap V$. Hence $r n g(g)$ is not connected, which contradicts the continuity of g. Q.E.D.

Theorem 1.8 If $X \times Y$ is a hereditarily normal Hausdorff space, X is connected and $f: X \longrightarrow Y$ is almost continuous, then f is a connected subset of $X \times Y$ [60].

Corollary 1.2 If X is a connected hereditarily normal Hausdorff space and Y is a discrete space then $\mathcal{A}(X, Y)=\operatorname{Const}(X, Y)$.

Example 1.4 There exists a connected space X and an almost continuous bijection $f: X \longrightarrow X$ such that $f=f^{-1}$ and f is not connected in $X \times X$ (thus f is not continuous).

Indeed, let X be the unit interval with the topology $\tau=\{U \subset I: 0 \in$ $U\} \cup\{\emptyset\}$ and let $f: X \longrightarrow X$ be the function given by $f(x)=x$ for $x \in(0,1)$ and $f(x)=1-x$ for $x \in\{0,1\}$. Then f is almost continuous. In fact, if G is a neighbourhood of f in $X \times X$ then $(x, 0) \in G$ for each $x \in I$ and consequently, G includes a constant function $g \equiv 0$. Since $\{(0,1)\}$ is clopen in f, f is not connected.

Theorem 1.9 Assume that $f: X \longrightarrow Y$. Then
(1) if Y_{0} is a subspace of $Y, \operatorname{rng}(f) \subset Y_{0}$ and $f \in \mathcal{A}\left(X, Y_{0}\right)$, then $f \in$ $\mathcal{A}(X, Y)$,
(2) for any function $f: X \longrightarrow Y$ there exists an extension Y^{\prime} of Y for which $f \in \mathcal{A}\left(X, Y^{\prime}\right)$ [36].
(3) if J is an interval in $\Re, f \in \mathcal{A}(X, \Re)$ and $r n g(f) \subset J$, then $f \in$ $\mathcal{A}(X, J)$. (Hence $f \in \mathcal{A}(X, \Re)$ iff $f \in \mathcal{A}(X, r n g(f))$ for each realvalued function f defined on X.)

Proof. (1) is obvious. To prove(3) assume that $f \in \mathcal{A}(X, \Re), r n g(f) \subset J$ and J is an interval in \Re, e.g. of the form $(a, b \mid$. Let $G \subset X \times J$ be an open neighbourhood of f in $X \times J$. Then $G_{1}=G \cup(X \times(b, \infty))$ is a neighbourhood of f in $X \times \Re$. Let $g_{1}: X \longrightarrow \Re$ be a continuous function contained in $X \times \Re$. Then $g=\min \left(g_{1}, b\right)$ is continuous and contained in G. Finally note that $r n g(f)$ is an interval (see Theorem 1.7) and therefore $f \in \mathcal{A}(X, \Re)$ iff $f \in \mathcal{A}(X, r n g(f))$.
Q.E.D.

Example 1.5 There exist Y and $f \in \mathcal{A}(I, Y) \backslash \mathcal{A}(I, r n g(f))$ [36].
Indeed, let Y be the space X defined in Example 1.4 and let $f: I \longrightarrow Y$ be given by $f(x)=x$ for $x \neq 0$ and $f(x)=1$ for $x=0$. As in Example 1.4 one can verify that $f \in \mathcal{A}(I, Y)$. Moreover, $r n g(f)$ is a discrete space (of cardinality 2^{ω}), and therefore only constant functions belong to the family $\mathcal{A}(I, r n g(f))$.

Note that it follows from the above example that there are almost continuous functions defined on connected spaces whose images are not connected.

Almost continuous retractions of cubes $[-1,1]^{n}$ are described in [35], [36].
Now we shall consider the following classes of functions from X into Y :
$\mathcal{D}(X, Y)$ - the family of all Darboux functions. f is a Darboux function iff $f(C)$ is connected whenever C is connected in X.
$\mathcal{C o n n}(X, Y)$ - the family of all connectivity functions. f is a connectivity function iff $f \mid C$ is a connected subset of $X \times Y$ whenever C is connected in X.
$\mathcal{E} x t(X, Y)$ - the class of all extendable functions. f is extendable iff there exists $g \in \mathcal{C o n n}(X \times I, Y)$ such that $f(x)=g(x, 0)$ for each $x \in X$.

We shall write \mathcal{D}, \mathcal{C} onn and $\mathcal{E} x t$, respectively, when X and Y are fixed. Now let $X=I, Y=\Re$ and
\mathcal{L} - the class of Lebesgue measurable functions from I into \Re.
\mathcal{B} - the class of Borel measurable functions from I into \Re.
\mathcal{J}_{1} - the class of pointwise limits of sequences of functions from I into \Re which have only discontinuities of the first kind.
\mathcal{R}_{1} - the class of pointwise limits of sequences of functions from I into \Re which are continuous from the right.
\mathcal{B}_{1} - the first class of Baire of functions from I into \Re.
Note that $\mathcal{B}_{1} \subset \mathcal{R}_{1} \subset \mathcal{J}_{1} \subset \mathcal{B} \subset \mathcal{L}$ [52].
Theorem 1.10 In the class of all real functions defined on I the following relations hold:
(1) $\mathcal{E} x t \subset \mathcal{A} \subset \mathcal{C o n n} \subset \mathcal{D}[60]$.
(2) $\mathcal{A} \neq \operatorname{Conn}($ see [9] and [18], [32], [53] and [60] for examples).
(3) $\mathcal{L} \cap \mathcal{E} x t \neq \mathcal{L} \cap \mathcal{A}$ and $\mathcal{B}_{1} \cap \mathcal{E} x t=\mathcal{B}_{1} \cap \mathcal{A}$ [7].
(4) $\mathcal{B}_{1} \cap \mathcal{A}=\mathcal{B}_{1} \cap \mathcal{C o n n}$ and $\mathcal{R}_{1} \cap \mathcal{A} \neq \mathcal{R}_{1} \cap \mathcal{C o n n}$ [5].

Problem 1.1 For which $\mathcal{X} \in\left\{\mathcal{B}, \mathcal{J}_{1}, \mathcal{R}_{1}\right\}$ is it true that $\mathcal{X} \cap \mathcal{E} x t=\mathcal{X} \cap \mathcal{A}$? [7]

Note that the inclusion $\operatorname{Conn}(X, Y) \subset \mathcal{D}(X, Y)$ holds for each pair of topological spaces X, Y. However this is not true for all inclusions (1) from 1.10, even for real functions defined on cubes.

Theorem 1.11 If $k>1$ then $\mathcal{C o n n}\left(I^{k}, I\right) \subset \mathcal{A}\left(I^{k}, I\right)$ [60].
Example 1.6 There exists $f \in \mathcal{A}\left(I^{2}, I\right) \backslash \mathcal{D}\left(I^{2}, I\right)$.
Indeed, let A_{0} be a closed segment with end-points $(0,1)$ and $(1,1)$, and for each $n \in N$ let A_{n} be a closed segment with end-points $(1 / n, 0)$ and $(1 / n, 1)$. Let $A=\bigcup_{n=0}^{\infty} A_{n}$ and $B=A \cup\{(0,0)\}$. Observe that B is connected and for each non-degenerate continuum $C \in I^{2}$ either $C \subset A$ or $\operatorname{card}(C \backslash$ $B)=2^{\omega}$. In fact, let us assume that C is a non-degenerate continuum and $C \backslash A \neq \emptyset$. If $\operatorname{dom}(C \backslash A) \cap(0,1 \mid \neq \emptyset$ or $C \subset\{0\} \times I$ then the assertion is obvious. Otherwise, $\operatorname{dom}(C)$ is a non-degenerate interval and there exists $\delta>0$ such that $(0, \delta) \times\{1\} \subset C$. Let $y<1$ be such that $x=(0, y) \in C$. If $B(x, r) \cap(0,1 \mid \times I=\emptyset$ for some $r>0$ then $\{0\} \times J \subset C$ for some closed nondegenerate interval J. Otherwise there exist an increasing sequence $\left(k_{n}\right)_{n}$ and
$z \in(y, 1)$ such that and $\left\{1 / k_{n}\right\} \times[z, 1] \subset C$ for each $n \in N$ and therefore, $\{0\} \times[z, 1] \subset C$ and $\operatorname{card}(C \backslash B)=2^{\omega}$.

Let $\left(K_{\alpha}\right)_{\alpha<2 \omega}$ be a sequence of all minimal blocking sets K in $I^{2} \times I$ such that $\operatorname{dom}(K) \backslash A \neq \emptyset$. Let $\left(x_{\alpha}, y_{\alpha}\right)_{\alpha<2^{\omega}}$ be a sequence of points such that $\left(x_{\alpha}, y_{\alpha}\right) \in K_{\alpha}, x_{\alpha} \in \operatorname{dom}\left(K_{\alpha}\right) \backslash B$ and $x_{\alpha} \neq x_{\beta}$ for $\alpha \neq \beta$. Define $f: I^{2} \longrightarrow I$ by $f(x)=1$ for $x=(0,0), f\left(x_{\alpha}\right)=y_{\alpha}$ for $\alpha<2^{\omega}$ and $f(x)=0$ otherwise. Observe that f intersects each blocking set in $I^{2} \times I$. In fact, let F be a blocking set and let $K \subset F$ be a minimal blocking set. If $K=K_{\alpha}$ for some $\alpha<2^{\omega}$ then $\left(x_{\alpha}, y_{\alpha}\right) \in f \cap K$. If $K \neq K_{\alpha}$ for each $\alpha<2^{\omega}$ then $f(x)=0$ for each $x \in \operatorname{dom}(K)$. Since $\operatorname{rng}(K)=I,(x, 0) \in f \cap K$ for some $x \in \operatorname{dom}(K)$. Thus $f \in \mathcal{A}\left(I^{2}, I\right)$. Since $f(B)=\{0,1\}, f \notin \mathcal{D}\left(I^{2}, I\right)$.

Let $\mathcal{D}_{P}(X, Y)$ denote the family of all Darboux functions in the sense of Pawlak [51], i.e. functions $f: X \longrightarrow Y$ such that $f(L)$ is connected whenever L is an arc in X.

Theorem 1.12 If Y is hereditarily normal, then $\mathcal{A}(X, Y) \subset \mathcal{D}_{\mathcal{P}}(X, Y)$.
Proof. Let L be an arc in X and let $f: X \longrightarrow Y$ be almost continuous. It will be shown in Theorem 2.1, that $f \mid L \in \mathcal{A}(L, Y)$. By Theorem 1.7, $r n g(f \mid L)$ is connected.
Q.E.D.

In connection with the condition (3) of Theorem 1.10 we have the following Lipiński's example.
Example 1.7 Let $X=[-1,1] \times \Re$ and $Y=[-1,1]$. Then $\mathcal{B}_{1}(X, Y) \cap$ $(\mathcal{D}(X, Y) \backslash \mathcal{A}(X, Y) \neq \emptyset$ [42].

Let $f:[-1,1] \times \Re \longrightarrow[-1,1]$ be given by $f(x, y)=f_{0}(x)$, where f_{0} is the function defined in Example 1.1. Then f has required properties [42].

More information about relationships between almost continuity and other Darboux-like classes one can found in Gibson's papers, e.g. [23], [24], [55].

1.4 The local characterization.

Many authors have considered the local property of Darboux (i.e. the intermediate value property) [10] or local connectivity of a real function [22] and the sets of those points at which a real function of a real variable has the local Darboux property [43] or local connectivity property [54]. The local characterization of almost continuity is given in [31] and in that paper one can find proofs of the next three theorems.

We say that a function f from \Re into \Re is almost continuous at a point $x \in \Re$ from the right iff
(1) $f(x) \in C^{+}(f, x)$,
(2) there is a positive ε such that for any neighbourhood G of $f \mid[x, \infty)$, arbitrary $y \in\left(\underline{\lim }_{t \rightarrow x^{+}} f(t), \widetilde{\lim }_{t \rightarrow x^{+}} f(t)\right)$, arbitrary neighbourhood U of the point (x, y) and arbitrary $t \in(x, x+\varepsilon)$ there exists a continuous function $g:[x, x+\varepsilon] \longrightarrow \Re$ such that $g \subset G \cup U, g(x)=y$ and $g(t)=f(t)$.

Analogously we define the notion of almost continuity at a point from the left. If f is almost continuous at a point x from both sides then we say that f is almost continuous at x or that x is a point of almost continuity of f.

Theorem 1.13 A function $f: \Re \longrightarrow \Re$ is almost continuous iff f is almost continuous at every point x of \Re.

For arbitrary function $f: \Re \longrightarrow \Re$ let $A(f), \operatorname{Conn}(f)$ and $D(f)$ denote the sets of all points at which f is almost continuous, connectivity and has the Darboux property, respectively.

Theorem 1.14 For every function $f: \Re \longrightarrow \Re$,

$$
(C(f), A(f), C o n n(f), D(f))
$$

is an increasing sequence of G_{δ}-sets.
Theorem 1.15 For every G_{δ}-set $A \subset \Re$ there exists a function $f: \Re \longrightarrow \Re$ such that $A(f)=A$.

Problem 1.2 Find necessary and sufficient conditions for a sequence (A, B, $C, D)$ of subsets of \Re to exist a function $f: \Re \longrightarrow \Re$ such that $(A, B, C, D)=$ $(C(f), A(f), C o n n(f), D(f))$.

2 Restrictions and extensions.

Theorem 2.1 If X_{0} is a closed subspace of X and $f \in \mathcal{A}(X, Y)$, then $f \mid X_{0} \in$ $\mathcal{A}\left(X_{0}, Y\right)$ [60].

The following example is a bounded version of Lipiński's function from Example 1.7 and shows that the assumption about X_{0} is important.

Example 2.1 There exists an almost continuous function from $[-1,1] \times$ $[-1,1]$ into $[-1,1]$ for which the restriction $f(-1,1) \times(-1,1)$ is not almost continuous.

Indeed, let $f:[-1,1] \times[-1,1] \longrightarrow[-1,1]$ be defined by $f(x, y)=f_{0}(x)$, where $f_{0}:[-1,1] \longrightarrow[-1,1]$ is the function defined in Example 1.1. It will be proved in Corollary 4.2 that f is almost continuous. We shall verify that $f \mid A$ is not almost continuous for $A=(-1,1) \times(-1,1)$. Let h : $(-1,1) \longrightarrow \Re$ be an increasing homeomorphism. Put $B_{0}=\{(x, y, z):|x|<$ $e^{-h^{2}(y)} / 10$ and $\left.|z|<e^{-h^{2}(y)} / 10\right\}$ and $B_{1}=\{(x, y, z): x \neq 0$ and $\mid z-$ $\sin (1 / x) \mid<1 / 10\}$. Clearly B_{0} and B_{1} are open and $f \mid A \subset B_{0} \cup B_{1}$. Suppose that there exists a continuous function $g: A \longrightarrow[-1,1]$ contained in $B_{0} \cup B_{1}$. Then $(0,0, g(0,0)) \in B_{0}$ and $|g(0,0)|<1 / 10$ and therefore there is a positive δ such that $|g(x, 0)|<1 / 10$ for $x \in(-\delta, \delta)$. Fix $x_{0} \in(0, \delta)$ such that $\sin \left(1 / x_{0}\right)=1$ and $y_{0} \in(0,1)$ for which $x_{0}>e^{-h^{2}\left(y_{0}\right)} / 10$. Then $\left(x_{0}, y_{0}, g\left(x_{0}, y_{0}\right)\right) \in B_{1}$, so $g\left(x_{0}, y_{0}\right)>9 / 10$. Observe that the x_{0}-section $g_{x_{0}}$ of g (given by $g_{x_{0}}(y)=g\left(x_{0}, y\right)$ for $y \in(-1,1)$) is continuous, $g_{x_{0}}(0)<1 / 10$ and $g_{x_{0}}\left(y_{0}\right)>9 / 10$. Moreover, $\left|g_{x_{0}}(y)\right|<1 / 10$ for $\left(x_{0}, y, g\left(x_{0}, y\right)\right) \in B_{0}$ and $\left|g_{x_{0}}(y)\right|>9 / 10$ if $\left(x_{0}, y, g\left(x_{0}, y\right)\right) \in B_{1}$. Since $g_{x_{0}} \subset\left(B_{0} \cup B_{1}\right)_{x_{0}}, g_{x_{0}}$ does not have the Darboux property, which contradicts the continuity of $g_{x_{0}}$.
Lemma 2.1 If X is a second countable zero-dimensional space then each function defined on X is almost continuous.

Proof. Fix $f: X \longrightarrow Y$ and an open neighbourhood $G \subset X \times Y$ of f. Then $G=\bigcup_{n=1}^{\infty} U_{n} \times V_{n}$, where the sets U_{n} are clopen in X, the sets V_{n} are open in Y and U_{n}, V_{n} are non-empty. For any $n \in N$ choose $y_{n} \in V_{n}$. Then $g=\bigcup_{n=1}^{\infty}\left(U_{n} \backslash \bigcup_{i<n} U_{i}\right) \times\left\{y_{n}\right\}$ is a continuous function defined on X and contained in G.
Q.E.D.

Corollary 2.1 Every function defined on a boundary subset of \Re is almost continuous (see [40] for real functions defined on compact subsets of I).

Lemma 2.2 Let A be a subset of I and let $f: A \longrightarrow \Re^{k}$ be a function such that $f \mid c l_{A}(J) \in \mathcal{A}\left(c l_{A}(J), \Re^{k}\right)$ for every component J of int (A). Then f is almost continuous.

Proof. Let $G \subset A \times \Re^{k}$ be a neighbourhood of f. For every component J of $\operatorname{int}(A)$ choose an open interval $U_{J} \subset I$ such that $c l_{A}(J) \subset U_{J}$ and:
(i) U_{J} is clopen in A,
(ii) if a is a left (right) end-point of J and $a \notin A$ then $\inf \left(U_{J}\right)=a$ $\left(\sup \left(U_{J}\right)=a\right)$,
(iii) if a is a left (right) end-point of J and $a \in A$ then there exists a neighbourhood V_{a} of $f(a)$ such that $\left(\inf \left(U_{J}\right), a\right) \times V_{a} \subset G\left(\left(a, \sup \left(U_{J}\right)\right) \times\right.$ $V_{a} \subset G$),
(iv) if J_{1}, J_{2} are components of $\operatorname{int}(A)$ then $U_{J_{1}} \cap U_{J_{2}}=\emptyset$ or $U_{J_{1}} \subset U_{J_{2}}$ or $U_{J_{2}} \subset U_{J_{1}}$.
Put $B=A \backslash \bigcup_{J} U_{J}$. Then there exist open sets $U_{i}, V_{i}, i \in N$ such that
(v) $B \subset \bigcup_{i=1}^{\infty} U_{i}$,
(vi) $\bigcup_{i=1}^{\infty} U_{i} \times V_{i} \subset G$,
(vii) U_{i} are pairwise disjoint and clopen in A,
(viii) for any component J of $\operatorname{int}(A)$ and for each $i \in N$ either $U_{J} \cap U_{i}=\emptyset$ or $U_{J} \subset U_{i}$.

Fix an arbitrary component J of $\operatorname{int}(A)$. Since $f \mid c l_{A}(J)$ is almost continuous, there exists a continuous function $g_{J}: c l_{A}(J) \longrightarrow \Re^{k}$ such that $g_{J} \subset G$ and $g_{J}\left|f r_{A}(J)=f\right| F r_{A}(J)$. Let $g_{J}^{*}: U_{J} \longrightarrow \Re^{k}$ be an extension of g_{J} given by $g_{J}^{*}=\left(\inf \left(U_{J}\right), \inf (J) \mid \times\{f(\inf (J))\} \cup g_{J} \cup\left[\sup (J), \sup \left(U_{J}\right)\right) \times\{f(\sup (J))\}\right.$.

Observe that $A=\bigcup_{i=1}^{\infty} U_{i} \cup \bigcup_{J \not \subset \bigcup_{i} U_{i}} U_{J}$. For each $n \in N$ choose $y_{n} \in V_{n}$. Then $g=\bigcup_{i=1}^{\infty} U_{i} \times\left\{y_{i}\right\} \cup \bigcup_{J \not \subset \bigcup_{i} U_{i}} g_{J}^{*}$ is a continuous function defined on A and contained in G.
Q.E.D.

The following lemma is proved in [30] for real functions defined on the real line.

Lemma 2.3 Let an interval $J \subset \Re$ be a union of countably many of closed intervals I_{n} such that $\operatorname{int}\left(I_{n}\right) \cap \operatorname{int}\left(I_{m}\right)=\emptyset$ for $m \neq n$ and $I_{n} \cap I_{n+1} \neq \emptyset$ for $n \in N$, and let Y be a convex subspace of \Re^{k}. For any function $f: J \longrightarrow Y$ if $f \mid I_{n}$ is almost continuous for each n then f is almost continuous, too.

Proof. This proof is analogous to the corresponding proof in [30].
Corollary 2.2 A function $f: \Re \longrightarrow \Re$ is almost continuous iff $f \mid[k, k+1]$ is almost continuous for each integer k [34].

Note that the analogous result does not hold for functions of two variables. Indeed, if $f:[-1,1] \times \Re \longrightarrow[-1,1]$ is Lipiński's function from Example 1.7 then $f \mid[-1,1] \times[k, k+1]$ is almost continuous for any integer k (see Theorem 4.6 below) but f is not almost continuous.

Theorem 2.2 If $f: I \longrightarrow \Re^{k}$ is almost continuous and A is a subset of I then $f \mid A$ is almost continuous.

Proof. By Lemma 2.2 it is sufficient to prove that $f \mid c l_{A}(J)$ is almost continuous for any component J of $\operatorname{int}(A)$. If $c l_{A}(J)$ is compact then, by Theorem 2.1, $f \mid c l_{A}(J)$ is almost continuous. Otherwise, $c l_{A}(J)$ can be represented as a union of countably many of compact intervals satisfying the assumptions of Lemma 2.3. Thus, almost continuity of $f \mid c l_{A}(J)$ follows from that lemma.
Q.E.D.

On the other hand it is easy to find a set $A \subset I$ and a continuous function $f: A \longrightarrow \Re$ which cannot be extended to an almost continuous real function defined on the entire interval I.

Theorem 2.3 For any non-void subset A of I and positive integer k the following conditions are equivalent:
(i) each almost continuous function $f: A \longrightarrow \Re^{k}$ can be extended to an almost continuous function $f^{*}: I \longrightarrow \Re^{k}$,
(ii) each continuous function $f: A \longrightarrow \Re^{k}$ can be extended to an almost continuous function $f^{*}: I \longrightarrow \Re^{k}$,
(iii) the set $I \backslash A$ is bilaterally c-dense in itself,
(iv) there exists a function $g: I \backslash A \longrightarrow \Re^{k}$ such that $f \cup g$ is almost continuous for each almost continuous function $f: A \longrightarrow \Re^{k}$.

Proof. Obviously only two implications need to be proved.
$(i i) \Longrightarrow(i i i)$. Assume that x_{0} is a point of $I \backslash A$ and $\operatorname{card}\left(\left(x_{0}, x_{0}+\right.\right.$ $\varepsilon) \backslash A)<2^{\omega}$ for some positive ε. We define a function $f: A \longrightarrow \Re^{k}$ by $f(x)=(0,0, \ldots, 0)$ for $x<x_{0}$ and $f(x)=\left(1 /\left(x-x_{0}\right), 0, \ldots, 0\right)$ for $x>x_{0}$. Then f is continuous and it has no Darboux extension on whole interval I.
$(i i i) \Longrightarrow(i v)$. Let $\left(J_{n}\right)_{n}$ be a sequence of all components of $\operatorname{int}(A)$. Note that $\overline{J_{n}} \subset A$ for each $n \in N$. Let $\left(F_{\alpha}\right)_{\alpha<2 \omega}$ be a sequence of all minimal blocking sets $F \subset I \times \Re^{k}$ such that $\operatorname{dom}\left(F_{\alpha}\right) \subset \overline{J_{n}}$ for no $n \in N$. Then $\operatorname{card}\left(\operatorname{dom}\left(F_{\alpha}\right) \backslash A\right)=2^{\omega}$ for every $\alpha<2^{\omega}$. We choose $\left(x_{\alpha}, y_{\alpha}\right) \in F_{\alpha}$ such that $x_{\alpha} \neq x_{\beta}$ for $\alpha \neq \beta$. Put $g(x)=y_{\alpha}$ if $x=x_{\alpha}, \alpha<2^{\omega}$ and $g(x)=0$ for other $x \in I \backslash A$.

Let $f: A \longrightarrow \Re^{k}$ be an arbitrary almost continuous function. Then $f \cup g$ is almost continuous, too. Indeed, let F be a minimal blocking set in $I \times \Re^{k}$. Then either $\operatorname{dom}\left(F_{\alpha}\right) \subset \overline{J_{n}}$ for some $n \in N$ or $F=F_{\alpha}$ for some $\alpha<2^{\omega}$. In the first case F is blocking in $\overline{J_{n}} \times \Re^{k}$ and therefore $f \cap F \neq \emptyset$. Otherwise $\left(x_{\alpha}, y_{\alpha}\right) \in F \cap g$. Thus $F \cap(f \cup g) \neq \emptyset$ and consequently $f \cup g$ is almost continuous.
Q.E.D.

The following simple but useful fact is proved in [30] (for $k=1$).
Theorem 2.4 Assume that $h:(a, b) \longrightarrow \Re^{k}$ is almost continuous and $y, z \in$ $\Re^{k}, h_{1}=h \cup\{(a, y)\}, h_{2}=h \cup\{(b, z)\}$ and $h_{3}=h_{1} \cup h_{2}$. Then h_{1}, h_{2}, h_{3} are almost continuous iff $y \in C^{+}(h, a), z \in C^{-}(h, b)$ and $y \in C^{+}(h, a)$, $z \in C^{-}(h, b)$ respectively.

Theorem 2.5 For any non-empty subset A of I and positive integer k the following conditions are equivalent:
(i) each bounded almost continuous function $f: A \longrightarrow \Re^{k}$ can be extended to an almost continuous function $f^{*}: I \longrightarrow \Re^{k}$,
(ii) any bounded continuous function $f: A \longrightarrow \Re^{k}$ can be extended to an almost continuous function $f^{*}: I \longrightarrow \Re^{k}$,
(iii) the set $I \backslash A$ is c-dense in itself.

Proof. $(i i) \Longrightarrow(i i i)$. Assume that $x_{0} \in I \backslash A$ and $\operatorname{card}\left(\left(x_{0}-\varepsilon, x_{0}+\right.\right.$ $\varepsilon) \backslash A)<2^{\omega}$ for some positive ε. Then the function $g: A \longrightarrow \Re^{k}$ given by
$g(x)=(0, \ldots, 0)$ for $x<x_{0}$ and $g(x)=(1,0, \ldots, 0)$ for $x>x_{0}$ is continuous and it has no Darboux extension on whole I.
(iii) $\Longrightarrow(i)$. Let $f: A \longrightarrow \Re^{k}$ be a bounded almost continuous function and J be a k-dimensional closed cube containing $f(A) \cup\{0\}$. Fix $t \in J$. Let $\left(J_{n}\right)_{n}$ be a sequence of all components of $\operatorname{int}(A)$. It follows from Theorem 2.4 that for each $n \in N$ the function $f \mid J_{n}$ can be extended to an almost continuous function $f_{n}^{*}: \overline{J_{n}} \longrightarrow J$. Let $\left(F_{\alpha}\right)_{\alpha<2^{\omega}}$ be a sequence of all minimal blocking sets in $I \times J$. As in the proof of Theorem 2.5 we choose a sequence of points $\left(x_{\alpha}, y_{\alpha}\right)_{\alpha<2 \omega}$ such that $\left(x_{\alpha}, y_{\alpha}\right) \in F_{\alpha}$ for each α and $\left\{\left(x_{\alpha}, y_{\alpha}\right): \alpha<2^{\omega}\right\}$ is a function which agrees with f on the set A. Put $f^{*}(x)=f_{n}^{*}(x)$ for $x \in \overline{J_{n}}$ and $n \in N, f^{*}\left(x_{\alpha}\right)=y_{\alpha}$ for $x=x_{\alpha}, \alpha<2^{\omega}$ and $f^{*}(x)=0$ otherwise. Then $f^{*} \mid A=f$ and $f^{*} \in \mathcal{A}(I, J)$. From Theorem 1.9,(1) we obtain that $f^{*} \in \mathcal{A}\left(I, \Re^{k}\right)$.

The implication $(i) \Longrightarrow(i i)$ is obvious.

> Q.E.D.

3 Compositions.

Obviously the class $\mathcal{D}(\Re, \Re)$ of all functions having the Darboux property is closed under compositions. Thus the following fact follows from Theorem 1.10,(1).

Theorem 3.1 The composition $g \circ f$ of almost continuous functions f, g : $\Re \longrightarrow \Re$ has Darboux property.

On the other hand, there exists a function $f \in \mathcal{A}(I, I)$ such that $f \circ f$ has no fixed point and consequently is not almost continuous [39] (see also [33], where for arbitrary positive integers n, m almost continuous functions $f: I^{n} \longrightarrow I^{m}, g: I^{m} \longrightarrow I^{n}$ are constructed such that the composition $g \circ f$ has no fixed point). The foregoing suggests also the following question.

Problem 3.1 Is any Darboux function from \Re into \Re a composition of (two) almost continuous functions? [39], [49]

Theorem 3.2 Assume $A(c)$. Then any function from the class $\mathcal{D}^{*}(\Re, \Re)$ is the composition of two almost continuous functions [49].

Now we shall prove a similar result concerning (K, G) pairs of topological spaces.

Proposition 3.1 Suppose that X is a T_{1} space, (X, Y) and (Y, Z) are (K, G) pairs with blocking families \mathcal{F} and \mathcal{K}, respectively. If $\operatorname{card}(\mathcal{F})=\operatorname{card}(\mathcal{K})=$ $\operatorname{card}(X)=\operatorname{card}(Y)=\kappa$ and any $F \in \mathcal{F}$ satisfies the following condition:
(1) the set dom (F) cannot be decomposed into less than κ subsets which are nowhere dense in $\operatorname{dom}(F)$,
then every function $f: X \longrightarrow Z$ such that
(2) $\operatorname{card}\left(G \cap f^{-1}(z)\right)=\kappa$ for any $F \in \mathcal{F}, z \in Z$ and any non-empty set G open in $\operatorname{dom}(F)$,
can be expressed as a composition of two almost continuous functions $f_{1} \in$ $\mathcal{A}(X, Y)$ and $f_{2} \in \mathcal{A}(Y, Z)$.

Proof. Let $\left(x_{\alpha}\right)_{\alpha<\kappa},\left(F_{\alpha}\right)_{\alpha<\kappa}$ and $\left(K_{\alpha}\right)_{\alpha<\kappa}$ be sequences of all points of X, and all sets from \mathcal{F} and \mathcal{K}, respectively. We choose for each $\alpha<\kappa$ points $\left(a_{\alpha}, a_{\alpha}^{\prime}\right) \in F_{\alpha},\left(b_{\alpha}, b_{\alpha}^{\prime}\right) \in K_{\alpha}$ and $c_{\alpha} \in Y$ such that
(i) $a_{\alpha} \neq a_{\beta}, b_{\alpha} \neq b_{\beta}$ and $c_{\alpha} \neq c_{\beta}$ for $\alpha \neq \beta$,
(ii) if $a_{\alpha}^{\prime}=a_{\beta}^{\prime}$ for $\alpha, \beta<\kappa$, then $f\left(a_{\alpha}\right)=f\left(a_{\beta}\right)$,
(iii) if $a_{\alpha}^{\prime}=b_{\beta}$ for $\alpha, \beta<\kappa$, then $f\left(a_{\alpha}\right)=b_{\beta}^{\prime}$,
(iv) if $a_{\alpha}^{\prime}=c_{\beta}$ for $\alpha, \beta<\kappa$, then $f\left(a_{\alpha}\right)=f\left(x_{\beta}\right)$,
(v) $b_{\alpha} \neq c_{\beta}$ for $\alpha, \beta<\kappa$.

We shall verify that it is possible to choose such points. Assume that $\alpha<\kappa$ and $\left(a_{\beta}, a_{\beta}^{\prime}\right),\left(b_{\beta}, b_{\beta}^{\prime}\right), c_{\beta}$ are chosen for $\beta<\alpha$. Fix for each $x \in \operatorname{dom}\left(F_{\alpha}\right)$ a point $y(x)$ such that $(x, y(x)) \in F_{\alpha}$. Put $A_{\beta}=\left\{x \in \operatorname{dom}\left(F_{\alpha}\right): y(x)=a_{\beta}^{\prime}\right\}$, $B_{\beta}=\left\{x \in \operatorname{dom}\left(F_{\alpha}\right): y(x)=b_{\beta}\right\}, C_{\beta}=\left\{x \in \operatorname{dom}\left(F_{\alpha}\right): y(x)=c_{\beta}\right\}$ for $\beta<\alpha$. Now, if $D=\operatorname{dom}\left(F_{\alpha}\right) \backslash \cup_{\beta<\alpha}\left(A_{\beta} \cup B_{\beta} \cup C_{\beta} \cup\left\{a_{\beta}\right\}\right)$ has cardinality κ, we choose any $a_{\alpha} \in D$ and put $a_{\alpha}^{\prime}=y\left(a_{\alpha}\right)$. Otherwise, $i n t_{\text {dom }\left(F_{\alpha}\right)}\left(c l_{\text {dom }\left(F_{\alpha}\right)}\left(A_{\beta} \cup\right.\right.$ $\left.B_{\beta} \cup C_{\beta}\right)$) is non-void for some $\beta<\alpha$. Let, e.g., $G=\operatorname{int}_{\text {dom }\left(F_{\alpha}\right)}\left(c l_{\text {dom }\left(F_{\alpha}\right)} A_{\beta}\right) \neq$ \emptyset. Then $G \times\left\{a_{\beta}^{\prime}\right\} \subset F_{\alpha}$, so $G \subset A_{\beta}$. Choose $a_{\alpha} \in G \cap f^{-1}\left(f\left(a_{\beta}\right)\right) \backslash\left\{a_{\gamma}: \gamma<\right.$
$\alpha\}$ and put $a_{\alpha}^{\prime}=a_{\beta}^{\prime}$. Next we choose $b_{\alpha} \in \operatorname{dom}\left(K_{\alpha}\right) \backslash\left(\left\{b_{\beta}, a_{\beta}^{\prime}: \beta<\alpha\right\} \cup\left\{a_{\alpha}^{\prime}\right\}\right)$ and $c_{\alpha} \in Y \backslash\left(\left\{b_{\beta}, a_{\beta}^{\prime}, c_{\beta}: \beta<\alpha\right\} \cup\left\{a_{\alpha}^{\prime}, b_{\alpha}\right\}\right)$. Let f_{1}, f_{2} be defined by

$$
\begin{gathered}
f_{1}(x)= \begin{cases}a_{\alpha}^{\prime} & \text { for } x=a_{\alpha}, \alpha<\kappa, \\
c_{\alpha} & \text { for } x=x_{\alpha} \text { and } x \notin\left\{a_{\beta}: \beta<\kappa\right\}\end{cases} \\
f_{2}(y)= \begin{cases}f\left(a_{\alpha}\right) & \text { for } y=a_{\alpha}^{\prime}, \alpha<\kappa \\
b_{\alpha}^{\prime} & \text { for } y=b_{\alpha}, \alpha<\kappa \\
f\left(x_{\beta}\right) & \text { for } y=c_{\beta}, \beta<\kappa \\
f\left(x_{0}\right) & \text { otherwise. }\end{cases}
\end{gathered}
$$

Then $f_{1} \in \mathcal{A}(X, Y), f_{2} \in \mathcal{A}(Y, Z)$ and $f=f_{2} \circ f_{1}$.
Q.E.D.

Now we shall consider under which conditions for f_{1} and f_{2} the composed $\operatorname{map} f_{2} \circ f_{1}$ is almost continuous.

Theorem 3.3 For each $f \in \mathcal{A}(X, Y)$ and $g \in \mathcal{C}(Y, Z)$ the composed map $g \circ f$ is almost continuous [60].

Theorem 3.4 If $h: X \longrightarrow Y$ is a homeomorphism and $f: Y \longrightarrow Z$ is almost continuous then the composition $f \circ h$ is almost continuous [27].
$\mathbf{P r o o f . L e t} G \subset X \times Z$ be an open neighbourhood of $f \circ h$. Then $G_{0}=\{(h(x), z):(x, z) \in G\}$ is an open neighbourhood of the function f in $Y \times Z$. Let $g: Y \longrightarrow Z$ be a continuous function contained in G_{0}. Then $g \circ h: X \longrightarrow Z$ is a continuous function contained in G.
Q.E.D.

Corollary 3.1 Suppose that h is a homeomorphic injection from X into Y such that $r n g(h)$ is closed in Y. Then $f \circ h \in \mathcal{A}(X, Z)$ for any $f \in \mathcal{A}(Y, Z)$. $\mathbf{P} \mathbf{r} \mathbf{o}$ of. It follows from Theorem 2.1 that $f \mid r n g(h) \in \mathcal{A}(r n g(h), Z)$. Since h is a homeomorphism between X and $r n g(h), f \circ h=(f \mid r n g(h)) \circ h \in$ $\mathcal{A}(X, Z)$.
Q.E.D.

Theorem 3.5 If a space X is compact, Y is a Hausdorff space, $g \in \mathcal{C}(X, Y)$ and $f \in \mathcal{A}(Y, Z)$, then $f \circ g \in \mathcal{A}(X, Z)$.

Proof. This theorem is proved in [60]. We give here only the sketch of the proof which is based on the notion of blocking sets. Suppose that $f \circ g$ is not almost continuous. Let K be a blocking set for $f \circ g$ in $X \times Z$. Then $\{(g(x), z):(x, z) \in K\}$ is a blocking set for $f \mid r n g(g)$, which contradicts Theorem 2.1.
Q.E.D.

Note that the assumption about X is important. Indeed, let $f:[-1,1] \times$ $\Re \rightarrow[-1,1]$ be Lipiński's function from Example 1.7 and let $g:[-1,1] \times$ $\Re \rightarrow[-1,1] \times\{0\}$ be a continuous function given by $g(x, y)=(x, 0)$. Then f is not almost continuous, $f \mid([-1,1] \times\{0\})$ is almost continuous (by Corollary 3.1) and $f=(f \mid[-1,1] \times\{0\}) \circ g$.

Theorem 3.6 If A is a subspace of $\Re, f \in \mathcal{C}(A, \Re)$ and $g \in \mathcal{A}\left(\Re, \Re^{k}\right)$ then $g \circ f \in \mathcal{A}\left(A, \Re^{k}\right)$.

Proof. This is a consequence of Theorem 3.5 if A is a compact interval, of Lemma 2.3 if A is an interval and, finally, of Lemma 2.2 for arbitrary subset A of \Re.
Q.E.D.

Lemma 3.1 Suppose that C is a closed, dense in itself and nowhere dense subset of I and $f: I \longrightarrow \Re$ satisfies the following conditions:
(1) $r n g(f)$ is an interval,
(2) $f \mid J$ is almost continuous for any component J of the complement of C,
(3) both unilateral cluster sets of the function f at the end-points of components of the set $I \backslash C$ equal rng (f).

Then, f is almost continuous.
$\mathbf{P r o o f . S u p p o s e ~ t h a t ~} f$ is not almost continuous. Let K be a minimal blocking set for f in $I \times r n g(f)$. Conditions (2) and (3) and Theorem 2.4 imply that $f \mid \bar{J}$ is almost continuous, for arbitrary component J of $I \backslash C$. Therefore, $\operatorname{dom}(K)$ is contained in the closure of no component of $I \backslash C$ and consequently there exists a component J contained in $\operatorname{dom}(K)$. Suppose $J=(s, t)$. Since $(K \mid[0, s])$ and $(K \mid[t, 1])$ are not blocking in $I \times r n g(f)$, there are continuous functions $g, h: I \longrightarrow r n g(f)$ such that $(g \mid[0, s]) \cap$
$K=\emptyset=(h \mid[t, 1]) \cap K$. Finally it is easy to observe that the function $k=g|[0, s] \cup f|(s, t) \cup h \mid[t, 1]$ is almost continuous and disjoint from K, a contradiction.
Q.E.D.

Theorem 3.7 Let $f_{1} \in \mathcal{A}(I, \Re), f_{2} \in \mathcal{A}(\Re, \Re)$, the set D of all points at which f_{1} is not continuous is nowhere dense and adequate unilateral cluster sets of the function f_{1} at the end-points of components of the set $I \backslash \bar{D}$ coincide with rng $\left(f_{1}\right)$. Then $f_{2} \circ f_{1}$ is almost continuous.

Proof. By Theorem 3.6 we obtain that $\left(f_{2} \circ f_{1}\right) \mid J \in \mathcal{A}(J, \Re)$ for any component J of $I \backslash \bar{D}$. Since $f_{2} \circ f_{1}$ has the Darboux property, $r n g\left(f_{2} \circ f_{1}\right)$ is an interval. Note that unilateral cluster sets of the function $f_{2} \circ f_{1}$ at the end-points of components of the set $I \backslash \bar{D}$ equal $r n g\left(f_{2} \circ f_{1}\right)$. Almost continuity of the composition $f_{2} \circ f_{1}$ now follows from Lemmas 3.1 and 2.3.
Q.E.D.

Lemma 3.2 Let $\mathcal{F}_{0}, \mathcal{K}_{0}$ be families of subsets of X and Y respectively such that $\max \left(\operatorname{card}\left(\mathcal{F}_{0}\right), \operatorname{card}\left(\mathcal{K}_{0}\right)\right) \leq \kappa$ and $\operatorname{card}(M) \geq \kappa \geq \omega$ for all $M \in$ $\mathcal{F}_{0} \cup \mathcal{K}_{0}$. Then for every injection $f: X \longrightarrow Y$ there exist sets $A, C \subset X$ and $D \subset Y$ such that:
(1) A, C and $f^{-1}(D)$ are pairwise disjoint,,
(2) $\operatorname{card}(A \cap F)=\kappa$ for each $F \in \mathcal{F}_{0}$ and $\operatorname{card}(K \backslash(f(A) \cup f(C) \cup D)) \geq \kappa$ for each $K \in \mathcal{K}_{0}$,
(3) $\operatorname{card}(C)=\kappa$ and $\operatorname{card}(D)=\kappa$.

Proof. Let $\left(F_{\alpha}\right)_{\alpha<\kappa},\left(K_{\alpha}\right)_{\alpha<\kappa}$ be sequences of sets from classes \mathcal{F}_{0} and \mathcal{K}_{0} respectively, such that $\operatorname{card}\left(\left\{\alpha: F_{\alpha}=F\right\}\right)=\kappa$ for each $F \in \mathcal{F}_{0}$ and $\operatorname{card}\left(\left\{\alpha: K_{\alpha}=K\right\}\right)=\kappa$ for each $K \in \mathcal{K}_{0}$. Choose sequences $\left(a_{\alpha}\right)_{\alpha<\kappa}$, $\left(b_{\alpha}\right)_{\alpha<\kappa},\left(c_{\alpha}\right)_{\alpha<\kappa}$ and $\left(d_{\alpha}\right)_{\alpha<\kappa}$ of points such that the following conditions hold for each $\alpha<\kappa$:
(i) $a_{\alpha}, c_{\alpha} \in F_{\alpha} \backslash\left(\left\{a_{\beta}, c_{\beta}\right\} \cup f^{-1}\left(\left\{b_{\beta}, d_{\beta}: \beta<\alpha\right\}\right)\right)$ and $a_{\alpha} \neq c_{\alpha}$,
(ii) $b_{\alpha}, d_{\alpha} \in K_{\alpha} \backslash\left(\left\{b_{\beta}, d_{\beta}: \beta<\alpha\right\} \cup\left\{f\left(a_{\beta}\right), f\left(c_{\beta}\right): \beta \leq \alpha\right\}\right)$ and $b_{\alpha} \neq d_{\alpha}$.

Put $A=\left\{a_{\alpha}: \alpha<\kappa\right\}, B=\left\{b_{\alpha}: \alpha<\kappa\right\}, C=\left\{c_{\alpha}: \alpha<\kappa\right\}$ and $D=\left\{d_{\alpha}: \alpha<\kappa\right\}$. Then the conditions (1) and (3) are obvious. Since $\left\{a_{\alpha}: F_{\alpha}=F\right\} \subset A \cap F, \operatorname{card}(A \cap F)=\kappa$ for all $F \in \mathcal{F}_{0}$. Similarly, for each $K \in \mathcal{K}_{0}$ we have $\left\{b_{\alpha}: K_{\alpha}=K\right\} \subset K \backslash(f(A) \cup f(C) \cup D)$ and therefore $\operatorname{card}(K \backslash(f(A) \cup f(C) \cup D)) \geq \kappa$.
Q.E.D.

Proposition 3.2 Suppose that (X, Y) and (Y, Z) are (K, G) pairs with blocking families \mathcal{F} and \mathcal{K}, respectively, $\operatorname{card}(Y)=\operatorname{card}(\mathcal{F})=\operatorname{card}(\mathcal{K})=\kappa \geq \omega$ and card $(Z) \leq \kappa$. If a function $f: X \longrightarrow Y$ satisfies the following condition: $\operatorname{card}(f(\operatorname{dom}(F)))=\kappa$ for each $F \in \mathcal{F}$, then for every surjection $g: Y \longrightarrow Z$ there exist almost continuous surjections $h_{1}: Y \longrightarrow Z$ and $h_{2}: X \longrightarrow Y$ such that $h_{1} \circ f=g \circ h_{2}$.
Proof. Let $\left(F_{\alpha}\right)_{\alpha<\kappa}$ and $\left(K_{\alpha}\right)_{\alpha<\kappa}$ be sequences of all sets from the classes \mathcal{F} and \mathcal{K}, respectively. Let $\left(y_{\alpha}\right)_{\alpha<\kappa}$ and $\left(z_{\alpha}\right)_{\alpha<\kappa}$ be sequences of all points of Y and Z, respectively (the sequence $\left(z_{\alpha}\right)_{\alpha}$ may not be one-to-one). Let \sim be the equivalence relation in X induced by f, i.e. $x_{1} \sim x_{2}$ iff $f\left(x_{1}\right)=f\left(x_{2}\right)$. The equivalence class of x with respect to relation \sim is denoted by $[x]$. For $A \subset X$ let $A^{\sim}=\{[x]: x \in A\}$ and let $f^{\sim}: X^{\sim} \longrightarrow Y$ be defined by $f^{\sim}([x])=f(x)$. Let $\mathcal{F}_{0}=\left\{(\operatorname{dom}(F))^{\sim}: F \in \mathcal{F}\right\}$ and $\mathcal{K}_{0}=\{\operatorname{dom}(K): K \in \mathcal{K}\}$. Note that all assumptions of Lemma 3.2 are satisfied for $f^{\sim}, \mathcal{F}_{0}$ and \mathcal{K}_{0}. Let $A, C \subset X^{\sim}$ and D be as in that lemma. Moreover, let $\left\{A_{\alpha}: \alpha<\kappa\right\}$ and $\left\{B_{\alpha}: \alpha<\kappa\right\}$ be partitions of the sets A and $B=Y \backslash\left(f^{\sim}(A \cup C) \cup D\right)$ into subsets which intersect each set from \mathcal{F}_{0} and \mathcal{K}_{0}, respectively and let $h_{C}: C \longrightarrow Y$ and $h_{D}: D \longrightarrow Z$ be arbitrary surjections. Now we define surjections $h_{1}: Y \longrightarrow Z$ and $h_{2}: X^{\sim} \longrightarrow Y$ such that $h_{1} \circ f^{\sim}=g \circ h_{2}^{\sim}$.
(a) $h_{2}^{\sim} \mid C=h_{C}$ and $h_{1} \mid D=h_{D}$.
(b) Let $[x] \in A$. Then $[x] \in A_{\alpha}$ for some $\alpha<\kappa$. If $[x] \in A_{\alpha} \cap\left(\operatorname{dom}\left(F_{\alpha}\right)\right)^{\sim}$, then we choose $y \in Y$ such that $(s, y) \in F_{\alpha}$ for some $s \in[x]$ and define $h_{2}^{\sim}([x])=y$. If $[x] \in A_{\alpha} \backslash\left(\operatorname{dom}\left(F_{\alpha}\right)\right)^{\sim}$, we put $h_{2}^{\sim}([x])=y_{\alpha}$.
(c) Let $y \in B$. Then $y \in B_{\alpha}$ for some $\alpha<\kappa$. If $y \in B_{\alpha} \cap \operatorname{dom}\left(K_{\alpha}\right)$, we choose $z \in Z$ such that $(y, z) \in K_{\alpha}$ and define $h_{1}(y)=z$. If $y \in B_{\alpha} \backslash \operatorname{dom}\left(K_{\alpha}\right)$, put $h_{1}(y)=z_{\alpha}$.
(d) If $[x] \notin A \cup C$ then $f^{\sim}([x]) \in(B \cup D)$. Since g is a surjection, there exists $y \in Y$ such that $g(y)=h_{1}\left(f^{\sim}([x])\right)$ and we define $h_{2}^{\sim}([x])=y$.
(e) If $y \in f^{\sim}(A \cup C)$ then $y=f^{\sim}([x])$ for exactly one $x \in A \cup C$ and we put $h_{1}(y)=g\left(h_{2}^{\sim}([x])\right)$.

One can verify that the definition of and h_{2}^{\sim} is correct and $h_{1} \circ f^{\sim}=g \circ h_{2}^{\sim}$. Now define $h_{2}: X \longrightarrow Y$ by $h_{2}(x)=h_{2}^{\sim}([x])$. Then h_{2} is a surjection and $h_{1} \circ f=g \circ h_{2}$. Moreover, h_{2} and h_{1} intersect all blocking sets from \mathcal{F} and \mathcal{K}, respectively, so they are almost continuous.
Q.E.D.

Corollary 3.2 For any bijection $b: I^{n} \longrightarrow I^{m}$ there exist almost continuous surjections $h: I^{m} \longrightarrow I^{m}$ and $k: I^{n} \longrightarrow I^{n}$ for which the compositions $b \circ k$ and $h \circ b$ are almost continuous.

Proof. Using Proposition 3.2 for $f=b$ and $g=i d_{I^{m}}$ we obtain almost continuous surjections $h: I^{m} \longrightarrow I^{m}$ and $h_{2}: I^{n} \longrightarrow I^{m}$ such that $h_{2}=h \circ b$. Similarly, for $f=i d_{I^{n}}$ and $g=b$ there exist almost continuous surjections $h_{1}: I^{n} \longrightarrow I^{m}$ and $k: I^{n} \longrightarrow I^{n}$ such that $h_{1}=b \circ k$. The functions h and k have the required properties.
Q.E.D.

For a given family \mathcal{F} of functions from X into X we define two classes:
$\mathcal{M}_{i}(\mathcal{F})$ - the class of all function $f: X \longrightarrow X$ such that $g \circ f \in \mathcal{F}$ for any g from \mathcal{F},
$\mathcal{M}_{o}(\mathcal{F})$ - the class of all function $f: X \longrightarrow X$ such that $f \circ g \in \mathcal{F}$ for any g from \mathcal{F}.

Problem 3.2 Characterize the classes $\mathcal{M}_{o}(\mathcal{A}(I, I))$ and $\mathcal{M}_{i}(\mathcal{A}(I, I))$.
Finally remark that there exist a continuous surjection f from I onto I and $g \notin \mathcal{A}(I, I)$ such that $g \circ f \in \mathcal{A}(I, I)[41]$.

4 Cartesian products and diagonals.

Theorem 4.1 Assume that X_{2} is a compact space, $f_{1} \in \mathcal{A}\left(X_{1}, Y_{1}\right)$ and $f_{2} \in$ $\mathcal{C}\left(X_{2}, Y_{2}\right)$. Then the cartesian product $h=\left(f_{1}, f_{2}\right): X_{1} \times X_{2} \longrightarrow Y_{1} \times Y_{2}$ of f_{1} and f_{2} (given by $h\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right.$)) is almost continuous (cf. [1] if all $X_{1}, X_{2}, Y_{1}, Y_{2}$ are compact).
$\mathbf{P r} \mathbf{r} \circ \mathbf{f}$. Suppose that $K \subset X_{1} \times X_{2} \times Y_{1} \times Y_{2}$ is a blocking set for h. We shall verify that $F=\left\{\left(x_{1}, y_{1}\right) \in X_{1} \times Y_{1}:\left(x_{1}, x_{2}, y_{1}, f_{2}\left(x_{2}\right)\right) \in\right.$ K for some $\left.x_{2} \in X_{2}\right\}$ is blocking for f_{1} in $X_{1} \times Y_{1}$.
(1) F is closed. Indeed, fix $\left(x_{1}, y_{1}\right) \in X_{1} \times Y_{1} \backslash F$. Then for each $x_{2} \in X_{2}$, $\left(x_{1}, x_{2}, y_{1}, f_{2}\left(x_{2}\right)\right) \notin K$. For every $x_{2} \in X_{2}$ choose open neighbourhoods $U_{1}\left(x_{2}\right)$ of $x_{1}, U_{2}\left(x_{2}\right)$ of $x_{2}, V_{1}\left(x_{2}\right)$ of y_{1} and $V_{2}\left(x_{2}\right)$ of $f\left(x_{2}\right)$ such that $U_{1}\left(x_{2}\right) \times$ $U_{2}\left(x_{2}\right) \times V_{1}\left(x_{2}\right) \times V_{2}\left(x_{2}\right)$ is disjoint with K. Let $W\left(x_{2}\right)=U_{2}\left(x_{2}\right) \cap f_{2}^{-1}\left(V_{2}\left(x_{2}\right)\right)$. Then $U_{1}\left(x_{2}\right) \times W\left(x_{2}\right) \times V_{1}\left(x_{2}\right) \times V_{2}\left(x_{2}\right) \subset X_{1} \times X_{2} \times Y_{1} \times Y_{2} \backslash K$ is an open neighbourhood of the point $\left(x_{1}, x_{2}, y_{1}, f\left(x_{2}\right)\right)$. Let $W\left(t_{1}\right), \ldots, W\left(t_{n}\right)$ be a finite subcovering of X_{2} chosen from the covering $\left\{W\left(x_{2}\right): x_{2} \in\right.$ $\left.X_{2}\right\}$. Denote $U=\bigcap_{i=1}^{n} U_{1}\left(t_{i}\right)$ and $V=\bigcap_{i=1}^{n} V_{1}\left(t_{i}\right)$. Then $U \times V$ is an open neighbourhood of $\left(x_{1}, y_{1}\right)$ disjoint with F.
(2) Since K and h are disjoint, F is disjoint with f_{1}.
(3). If $g: X_{1} \longrightarrow Y_{1}$ is continuous then $\left(g, f_{2}\right): X_{1} \times X_{2} \longrightarrow Y_{1} \times Y_{2}$ is continuous, too. Since K is blocking, $\left(x_{1}, x_{2}, g\left(x_{1}\right), f_{2}\left(x_{2}\right)\right) \in K$ for some $x_{1} \in X_{1}, x_{2} \in X_{2}$, and therefore $\left(x_{1}, g\left(x_{1}\right)\right) \in F$.

> Q.E.D.

Note that the assumption about X_{2} is important. Indeed, let $X_{1}=Y_{1}=$ $Y_{2}=[-1,1], X_{2}=\Re, f_{0}:[-1,1] \longrightarrow[-1,1]$ be the function from Example $1.1, f$ be Lipiński's function from Example 1.7 and $f_{1} \equiv 0$. Suppose that $h=\left(f_{0}, f_{1}\right)$ is almost continuous. Since f is a composition of h and the projection π_{1} from $[-1,1] \times[-1,1]$ into $[-1,1]$, Theorem 3.1 implies almost continuity of f, a contradiction.

Theorem 4.2 Let $\mathcal{M}_{p}(\mathcal{A}(I, I))$ be the class of all functions from I into \Re such that $(f, g) \in \mathcal{A}(I \times I, \Re \times \Re)$ when $g \in \mathcal{A}(I, \Re)$. Then $\mathcal{M}_{p}(\mathcal{A}(I, I))=$ $\mathcal{C}(I, \Re)$.

Proof. The inclusion " \supset " follows from Theorem 4.1. Now assume that $f: I \longrightarrow \Re$ is not almost continuous. It will be proved in Theorem 6.2 that there exists $g \in \mathcal{A}(I, \Re)$ such that $f+g \notin \mathcal{A}(I, \Re)$. Suppose that $(f, g) \in$ $\mathcal{A}\left(I \times I, \Re^{2}\right)$. Then $f+g$, as the composition (f, g) with the "addition" map is almost continuous, a contradiction.
Q.E.D.

Now we shall consider functions f, g defined on the same space. Assume that $f: X \longrightarrow Y$ and $g: X \longrightarrow Z$. The map $f \Delta g: X \longrightarrow Y \times Z$ defined by $f \Delta g(x)=(f(x), g(x))$ for any $x \in X$ is called a diagonal of f and g. It
is obvious that $f \triangle g=(f, g) \circ d$, where $d: X \longrightarrow\{(x, x): x \in X\}$ is given by $d(x)=(x, x)$. The following fact follows from Corollary 3.1.

Theorem 4.3 If X is a Hausdorff space and $(f, g) \in \mathcal{A}(X \times X, Y \times Z)$ then $f \Delta g \in \mathcal{A}(X, Y \times Z)$.

Theorem 4.4 If $f \in \mathcal{A}(X, Y)$ and $g \in \mathcal{C}(X, Z)$ then $f \Delta g \in \mathcal{A}(X, Y \times Z)$ [30].

Proof. If X is compact, this theorem follows from Theorems 4.1 and 4.3. In the case of metric spaces X, Y and Z it is proved in [48] (see also [1] for X, Y, Z metric and compact).

In the general case assume that $f \Delta g$ is not almost continuous. Let K be a blocking set for $f \triangle g$ in $X \times(Y \times Z)$. It is easy to verify that $F=\{(x, y)$: $(x, y, g(x)) \in K\}$ is blocking for f in $X \times Y$.
Q.E.D.

For arbitrary topological spaces X, Y, Z let $\mathcal{M}_{d}(\mathcal{A}(X, Y \times Z)$ be the family of all functions from X into Y such that $f \Delta g$ is almost continuous provided $g: X \longrightarrow Z$ is almost continuous. As in Theorem 4.2 one can prove the following equality.

Corollary $4.1 \mathcal{M}_{d}(\mathcal{A}(\Re, \Re \times \Re))=\mathcal{C}(\Re, \Re)$
Lemma 4.1 Suppose that D is a closed and nowhere dense subset of $I,\left(I_{n}\right)_{n}$ is a sequence of all components of the complement of D and $f: I \longrightarrow \Re^{k}$ satisfies the following conditions:
(1) $f \mid \overline{I_{n}}$ is almost continuous for every $n \in N$,
(2) $f \mid D$ is continuous.

Then f is almost continuous.
Proof. We can assume that $0,1 \in D$. Let G be an open neighbourhood of f in $I \times \Re^{k}$. For each $x \in D$ we choose open intervals U_{x}, V_{x} such that:
(a) $(x, f(x)) \in U_{x} \times V_{x} \subset \overline{U_{x}} \times \overline{V_{x}} \subset G$,
(b) $f \mid\left(D \cap \overline{U_{x}}\right) \subset \overline{U_{x}} \times V_{x}$,
(c) $\inf \left(U_{x}\right)<\inf \left(D \cap \overline{U_{x}}\right) \leq \sup \left(D \cap \overline{U_{x}}\right)<\sup \left(U_{x}\right)$ (this condition must be interpreted unilaterally at the points 0 and 1).

Since $f \mid D$ is compact, there are points $x_{1}, \ldots, x_{n} \in D$ such that $f \mid D \subset$ $\bigcup_{i=1}^{n}\left(U_{x_{i}} \times V_{x_{i}}\right)$. We can assume that $0 \in U_{x_{1}}, 1 \in U_{x_{n}}$ and $\inf \left(U_{x_{i}}\right)<$ $\inf \left(U_{x_{j}}\right)$ for $i<j$. If $U_{x_{i}} \cap U_{x_{i+1}} \neq \emptyset$ then there exists a continuous function g defined on $W=U_{x_{i}} \cup U_{x_{i+1}}$ such that $g \subset G$ and $g(x)=f(x)$ for $x \in$ $\{\inf (D \cap W), \sup (D \cap W)\}$. Let W_{1}, \ldots, W_{m} be components of the union $\bigcup_{i=1}^{n} U_{x_{i}}$. For every $i=1, \ldots, m$ there exists a continuous function $g_{2 i-1}$ defined on W_{i} such that $g_{2 i-1} \subset G$ and $g(x)=f(x)$ for $x \in\{\inf (D \cap$ $\left.\left.W_{i}\right), \sup \left(D \cap W_{i}\right)\right\}$. Additionally, for $i<m$ there exists n_{i} such that $I_{n_{i}}=$ $\left(\sup \left(D \cap W_{i}\right), \inf \left(D \cap W_{i+1}\right)\right)$. Since $f \mid \overline{I_{n_{i}}}$ is almost continuous, there exists a continuous function $g_{2 i}: \overline{I_{n_{i}}} \longrightarrow \Re^{k}$ such that $g_{2 i} \subset G$, and $g_{2 i}(x)=f(x)$ for $x \in\left\{\inf \left(I_{n_{i}}\right), \sup \left(I_{n_{i}}\right)\right\}$. Then $\bigcup_{i=1}^{2 m-1} g_{i}$ is a continuous function defined on all of I and contained in G.
Q.E.D.

Theorem 4.5 Suppose that f_{1}, f_{2} are almost continuous real functions defined on I and D is the set of points at which f_{1} is discontinuous. If $f_{1} \mid \bar{D}$ is continuous and $\bar{D} \subset C\left(f_{2}\right)$, then $f_{1} \triangle f_{2}$ is almost continuous.
$\mathbf{P r o o f .}$ This is a consequence of Lemma 4.1 and Theorem 4.4.
Note that the assumption " $\bar{D} \subset C\left(f_{2}\right)$ " is important. Indeed, let f_{1}, f_{2} : $[-1,1] \longrightarrow[-1,1]$ be defined by $f_{i}(x)=(-1)^{i} \sin (1 / x)$ for $x \neq 0, i=1,2$ and $f_{1}(x)=f_{2}(x)=1$. Suppose that $f_{1} \Delta f_{2} \in \mathcal{A}\left([-1,1],[-1,1]^{2}\right)$. Then, as in Theorem 4.2, $f_{1}+f_{2} \in \mathcal{A}([-1,1],[-1,1])$, but this is impossible because $f_{1}+f_{2}$ does not have the Darboux property.

Theorem 4.6 Suppose that X_{2} is compact, $f_{1} \in \mathcal{A}\left(X_{1}, Y\right), f_{2} \in \mathcal{C}\left(X_{2}, Y\right)$, and $F \in \mathcal{C}(Y \times Y, Y)$. Then the function $F\left(f_{1}, f_{2}\right): X_{1} \times X_{2} \longrightarrow Y$ defined by $F\left(f_{1}, f_{2}\right)\left(x_{1}, x_{2}\right)=F\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$ for $\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}$ is almost continuous.

Proof. The function $\left(f_{1}, f_{2}\right): X_{1} \times X_{2} \longrightarrow Y \times Y$ is almost continuous by Theorem 4.1. Hence $F\left(f_{1}, f_{2}\right)$ is almost continuous by Theorem 3.1.
Q.E.D.

Corollary 4.2 If X_{2} is compact, $f_{1} \in \mathcal{A}\left(X_{1}, Y\right)$ and $f_{2} \in \mathcal{C}\left(X_{2}, Y\right)$, then
(1) $F: X_{1} \times X_{2} \longrightarrow Y$ given by $F\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right)$ is almost continuous,
(2) if $Y=\Re$ then $F_{1}\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right), F_{2}\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$, $F_{3}\left(x_{1}, x_{2}\right)=\max \left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$ and $F_{4}\left(x_{1}, x_{2}\right)=\min \left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$ are almost continuous.

Note that the assumption about X_{2} in the last results is important (see e.g. Lipiński's function from Example 1.7). As it was remarked by Grande [26], continuity of all sections of $f: I \times I \longrightarrow I$ does not imply almost continuity of f.

Example 4.1 There exists a function $f: I \times I \longrightarrow I$ such that f_{x}, f^{y} are continuous for each $x, y \in I$ but f is not almost continuous.
Indeed, let $f: I \times I \longrightarrow I$ be defined by $f(x, y)=2 x y /\left(x^{2}+y^{2}\right)$ if $(x, y) \neq(0,0)$ and $f(0,0)=0$. Then all sections of f are continuous but for a connected set $D=\{(x, x): x \in I\}$ we have $f(D)=\{0,1\}$. Thus the function f_{0} from I into I given by $f_{0}(x)=f(x, x)$ does not have Darboux property. Suppose that f is almost continuous. Then $f \mid D$ is almost continuous, in contradiction with Corollary 3.1.

Lemma 4.2 Assume that $m \in N, F \in \mathcal{C}\left(\Re^{2}, \Re\right), f \in \mathcal{A}\left(\Re^{m}, \Re\right), g \in$ $\mathcal{C}(\Re, \Re)$ and $h: \Re^{m+1} \longrightarrow \Re$ is defined by

$$
h\left(x_{1}, \ldots, x_{m}, x_{m+1}\right)=F\left(f\left(x_{1}, \ldots x_{m}\right), g\left(x_{m+1}\right)\right)
$$

If there exists a compact subset K of \Re such that $[h \neq 0] \subset \Re^{m} \times K$ then h is almost continuous.

Proof. Fix reals a, b such that $K \subset(a, b)$ and an open neighbourhood $G \subset \Re^{m+2}$ of h. Let $\left(S_{k}\right)_{k}$ be a sequence of all m-dimensional cubes of the form $\prod_{i=1}^{m}\left[k_{i}, k_{i}+1\right]$, where k_{1}, \ldots, k_{m} are integers. For each $k \in N$ choose positive reals r_{k}, q_{k} such that $S_{k} \times\left[a-r_{k}, a+r_{k}\right] \times\left[-r_{k}, r_{k}\right] \subset G$ and $S_{k} \times\left[b-q_{k}, b+q_{k}\right] \times\left[-q_{k}, q_{k}\right] \subset G$. By Theorem 4.6, $h \mid \Re^{m} \times[a, b]$ is almost continuous and therefore there exists a continuous function t : $\Re^{m} \times[a, b] \longrightarrow \Re$ contained in $G \backslash \bigcup_{k=1}^{\infty}\left(S_{k} \times\{a\} \times\left(\left(-\infty,-r_{k} \mid \cup\left[r_{k}, \infty\right)\right) \cup\right.\right.$ $\left.S_{k} \times\{b\} \times\left(\left(-\infty,-q_{k}\right] \cup\left[q_{k}, \infty\right)\right)\right)$. Let t_{a} be a surface consisting of all closed segments in \Re^{m+2} with end-points $(x, a, t(x, a))$ and $(x, a-|t(x, a)|, 0)$ for all $x \in \Re^{m}$. Analogously, let t_{b} be a surface consisting of all closed segments in \Re^{m+2} with end-points $(x, b, t(x, b))$ and $(x, b+|t(x, b)|, 0)$ for all $x \in \Re^{m}$. Then one can easily see that $t \cup t_{a} \cup t_{b} \cup\left(\Re^{m+1} \backslash \operatorname{dom}\left(t \cup t_{a} \cup t_{b}\right)\right) \times\{0\}$ is a continuous function contained in G.
Q.E.D.

Corollary 4.3 If $f \in \mathcal{A}\left(\Re^{m}, \Re\right), g \in \mathcal{C}(\Re, \Re)$ and the support of g is bounded then the function $h: \Re^{m+1} \longrightarrow \Re$, defined by

$$
h\left(x_{1}, \ldots x_{m+1}\right)=f\left(x_{1}, \ldots x_{m}\right) \cdot g\left(x_{m+1}\right)
$$

is almost continuous.
Theorem 4.7 Each almost continuous function $f: \Re^{k} \longrightarrow \Re$ can be extended to almost continuous function $f^{*}: \Re^{k+1} \longrightarrow \Re$ such that $f^{*}(x, 0)=$ $f(x)$ for all $x \in \Re^{k}$ (cf. [37], Theorem 5.6.).

Proof. Put $g(x)=\max (1-|x|, 0)$ for $x \in \Re$ and $f^{*}\left(x_{1}, \ldots, x_{k+1}\right)=$ $f\left(x_{1}, \ldots, x_{k}\right) \cdot g\left(x_{k+1}\right)$. The almost continuity of f^{*} follows from Corollary 4.3. Moreover, $f^{*}(x, 0)=f(x)$ for all $x \in \Re^{k}$.
Q.E.D.

Corollary 4.4 Assume that k, m are positive integers and $k<m$. Then each almost continuous function $f: \Re^{k} \longrightarrow \Re$ can be extended to an almost continuous function $f^{*}: \Re^{m} \longrightarrow \Re$ such that $f^{*}\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)=$ $f\left(x_{1}, \ldots x_{k}\right)$ for $\left(x_{1}, \ldots, x_{k}\right) \in \Re^{k}$.

5 Limits of sequences.

Lemma 5.1 Suppose that (X, Y) is a (K, G) pair, \mathcal{F} is a blocking family for (X, Y) and $\max (\omega, \kappa) \leq \lambda=\operatorname{card}(\mathcal{F})$. Then there exists a partition of X into κ many sets $X_{\alpha}(\alpha<\kappa)$, such that card $\left(\operatorname{dom}(F) \cap X_{\alpha}\right) \geq \lambda$ for each $\alpha<\kappa$ and $F \in \mathcal{F}$.
$\mathbf{P} \mathbf{r} \mathbf{o} \mathbf{f}$. Let $\left(F_{\alpha}\right)_{\alpha<\lambda}$ be a sequence of all sets from the family \mathcal{F}, let $\varphi: \lambda \longrightarrow \kappa \times \lambda \times \lambda, \varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ be an arbitrary bijection. For each $\alpha<\lambda$ we choose $x_{\alpha} \in \operatorname{dom}\left(F_{\varphi_{3}(\alpha)}\right) \backslash\left\{x_{\beta}: \beta<\alpha\right\}$. Then the sets $X_{\alpha}=\left\{x_{\beta}: \beta<\lambda, \varphi_{1}(\beta)=\alpha\right\}$ for $0<\alpha<\kappa$ and $X_{0}=X \backslash \bigcup_{0<\alpha<\kappa} X_{\alpha}$ form the required partition.
Q.E.D.

Recall that a function $f: X \longrightarrow Y$ is a discrete limit of a net $\left(f_{\sigma}\right)_{\sigma \in \Sigma}$, where (Σ, \leq) is a directed set, iff for each $x \in X$ there exists $\sigma_{0} \in \Sigma$ such that $f_{\sigma}(x)=f(x)$ whenever $\sigma_{0} \leq \sigma$.

Proposition 5.1 Suppose that (X, Y) is (K, G) pair, \mathcal{F} is a blocking family for (X, Y) and (Σ, \leq) is a directed set such that $\operatorname{card}(\mathcal{F}) \geq \operatorname{card}(\Sigma) \geq \omega$. Then each function $f: X \longrightarrow Y$ is a discrete limit of a net of almost continuous functions from X into Y.

Proof. Let $\operatorname{card}(\mathcal{F})=\lambda$ and $\mathcal{F}=\left\{F_{\alpha}: \alpha<\lambda\right\}$. By Lemma 5.1 there is a partition $\left\{X_{\sigma}: \sigma \in \Sigma\right\}$ of X such that $\operatorname{card}\left(\operatorname{dom}(F) \cap X_{\sigma}\right) \geq \lambda$ for every $\sigma \in \Sigma$ and $F \in \mathcal{F}$. For each $\sigma \in \Sigma$ and $\alpha<\lambda$ choose $\left(x_{\sigma, \alpha}, y_{\sigma, \alpha}\right) \in F_{\alpha}$ such that $x_{\sigma, \alpha} \in X_{\sigma} \backslash\left\{x_{\sigma, \beta}: \beta<\alpha\right\}$. Let f_{σ} be defined by $f_{\sigma}\left(x_{\sigma, \alpha}\right)=y_{\sigma, \alpha}$ for $\alpha<\lambda$ and $f_{\sigma}(x)=f(x)$ for $X \backslash\left\{x_{\sigma, \alpha}: \alpha<\lambda\right\}$. Then any f_{σ} is almost continuous and for every $x \in X$ there exists $\sigma_{0} \in \Sigma$ such that $f_{\sigma}(x)=f(x)$ for all $\sigma \geq \sigma_{0}$.

> Q.E.D.

Corollary 5.1 Suppose that (X, Y) is (K, G) pair with an infinite blocking family \mathcal{F}. Then each function $f: X \longrightarrow Y$ is a discrete limit of a sequence of almost continuous functions in $X \times Y$.

In particular each function $f: \Re \longrightarrow \Re$ is a discrete limit of a sequence of almost continuous functions $\left(f_{n}\right)_{n}$ [34].

Remark 5.1 If $f: \Re \longrightarrow \Re$ is Lebesgue measurable (has the Baire property), then f is a discrete limit of a sequence of measurable functions (with the Baire property) from the class $\mathcal{A}(\Re, \Re)$ [26].

Recall the following notion. A sequence $\left(f_{\alpha}\right)_{\alpha<\omega_{1}}$ of functions from X into Y converges to a function $f: X \longrightarrow Y$ if for each $x \in X$ and each neighbourhood U of $f(x)$ there exists $\alpha<\omega_{1}$ such that $f_{\beta}(x) \in U$ for all $\alpha<\beta<\omega_{1}$ [57].

Corollary 5.2 Suppose that (X, Y) is (K, G) pair and \mathcal{F} is an uncountable blocking family for (X, Y). Then each function $f: X \longrightarrow Y$ is a limit of a transfinite sequence $\left(f_{\alpha}\right)_{\alpha<\omega_{1}}$ of almost continuous functions in $X \times Y$.

In particular every function $f: \Re \longrightarrow \Re$ is a limit of a transfinite sequence $\left(f_{\alpha}\right)_{\alpha<\omega_{1}}$ of almost continuous functions.

Remark 5.2 Suppose $A(c)(A(m)$). If $f: \Re \longrightarrow \Re$ is measurable (has the Baire property) then it is a transfinite limit of a sequence of measurable functions (with the Baire property) from the class $\mathcal{A}(\Re, \Re)$ (see [26]).

Suppose that Y is a metric space and \mathcal{F} is an arbitrary family of functions from X into Y. The class of all limits of uniformly convergent sequences of functions from \mathcal{F} will be denoted by $\overline{\mathcal{F}}$. Note that:
(1) The class $\mathcal{A}(\Re, \Re)$ is not closed with respect to uniform limits [34], [38].
(2) $\overline{\mathcal{A}(\Re, \Re)} \subset \overline{\mathcal{D}(\Re, \Re)}=\mathcal{U}$, where the class \mathcal{U} is defined in [13].
(3) There exists a connectivity function f from I into I which is not a limit of uniformly convergent sequence of almost continuous functions [29]. Thus $\mathcal{U} \backslash \overline{\mathcal{A}(\Re, \Re)} \neq \emptyset$.

Suppose that (X, Y) is a (K, G) pair with a blocking family $\mathcal{F},\left(Y, \rho_{Y}\right)$ is a metric space and κ_{Y} is the least cardinal for which there exists a family of κ_{Y} many sets of the first category in Y which union is of the second category (or $\kappa_{Y}=0$ if Y is of the first category on itself). For arbitrary $f: X \longrightarrow Y$ and positive ε we define an ε-hull $S(f, \varepsilon)$ of f in $X \times Y$ as $S(f, \varepsilon)=\left\{(x, y) \in X \times Y: \rho_{Y}(f(x), y)<\varepsilon\right\}$. We define two conditions for f :
(α) for sufficiently small $\varepsilon>0$ and for every blocking set $K \in \mathcal{F}$ either $\operatorname{card}(\operatorname{dom}(K \cap S(f, \varepsilon))) \geq \operatorname{card}(\mathcal{F})$ or $B_{Y}(f(x), \varepsilon) \subset K_{x}$ for some $x \in$ X,
(β) for each $\varepsilon>0$ and for every blocking set $K \in \mathcal{F}$ either $\operatorname{card}(\operatorname{dom}(K \cap$ $S(f, \varepsilon))) \geq \kappa_{Y}$ or $\operatorname{int}_{Y}\left(K^{\prime} \cap S(f, \varepsilon)\right)_{x} \neq \emptyset$ for some $x \in X$.

Under the assumptions and denotations above the following implications hold.

Proposition 5.2

(1) For every function f from X into Y we have:

$$
(\alpha) \Longrightarrow f \in \overline{\mathcal{A}(X, Y)}
$$

(2) Moreover, if $(Y,+)$ is a topological group and it is a Baire space then

$$
f \in \overline{\mathcal{A}(X, Y)} \Longrightarrow(\beta)
$$

$\mathbf{P} \mathbf{r} \mathbf{o}$ of. (1) For sufficiently small positive ε we shall find an almost continuous function g from X into Y contained in $S(f, \varepsilon)$. Let $\operatorname{card}(\mathcal{F})=\lambda$ and let $\left(K_{\alpha}\right)_{\alpha<\lambda}$ be a sequence of all blocking sets from \mathcal{F}. For each $\alpha<\lambda$ we can choose a point $\left(x_{\alpha}, y_{\alpha}\right) \in K_{\alpha} \cap S(f, \varepsilon)$ such that for $\alpha, \beta<\lambda$ the condition $x_{\alpha}=x_{\beta}$ implies $y_{\alpha}=y_{\beta}$. Indeed, assume that $\left(x_{\beta}, y_{\beta}\right)$ are chosen for $\beta<\alpha$. There are two possible cases. If $\operatorname{card}\left(\operatorname{dom}\left(K_{\alpha} \cap S(f, \varepsilon)\right)\right) \geq \lambda$ then we choose $\left(x_{\alpha}, y_{\alpha}\right) \in K_{\alpha} \cap S(f, \varepsilon)$ such that $x_{\alpha} \neq x_{\beta}$ for all $\beta<\alpha$. In the other case, $B_{Y}(f(x), \varepsilon) \subset\left(K_{\alpha}\right)_{x}$ for some $x \in X$ and we put $x_{\alpha}=x$ and $y_{\alpha}=y_{\beta}$ whenever $x=x_{\beta}$ for some $\beta<\alpha$ or $y_{\alpha}=f(x)$ otherwise. It is easy to verify that the function $g: X \longrightarrow Y$ defined by $g\left(x_{\alpha}\right)=y_{\alpha}$ for $\alpha<\lambda$ and $g(x)=f(x)$ for other x is almost continuous and $g \subset S(f, \varepsilon)$.
(2) Suppose that $\left(f_{n}\right)_{n}$ is a uniformly convergent sequence of almost continuous functions and f is the limit of $\left(f_{n}\right)_{n}$. Fix $K \in \mathcal{F}$, a positive ε and suppose that $\operatorname{card}(\operatorname{dom}(K \cap S(f, \varepsilon)))<\kappa_{Y}$. Then $f_{n} \subset S(f, \varepsilon / 2)$ for some positive integer n. Additionally there exists a positive δ such that $f_{n}+y \subset S(f, \varepsilon)$ whenever $y \in B_{Y}(0, \delta)$. By Theorems 4.4 and $3.3, f_{n}+y \in \mathcal{A}(X, Y)$ for any $y \in B_{Y}(0, \delta)$. Thus $f_{n}+y$ intersects K, i.e.

$$
\forall y \in B_{Y}(0, \delta) \quad \exists\left(x_{y}, t_{y}\right) \in K \cap\left(f_{n}+y\right) \subset S(f, \varepsilon)
$$

Since $\operatorname{card}(\operatorname{dom}(K \cap S(f, \varepsilon)))<\kappa_{Y}$, the set $A=\left\{y \in B_{Y}(0, \delta): x_{y}=x\right\}$ is of the second category in $B_{Y}(0, \delta)$ for some $x \in X$. Then $\left(x, t_{y}\right) \in f_{n}+y$ for $y \in A$ and therefore, $t_{y}=f_{n}(x)+y$. Thus the set $\left\{t_{y}: y \in A\right\}$ is of the second category in $f_{n}(x)+B_{Y}(0, \delta)$ and consequently there exists a non-empty open set $U \subset B_{Y}(0, \delta)$ such that $f_{n}(x)+U \subset \operatorname{cl}\left(\left\{t_{y}: y \in A\right\}\right)$. Since K is closed, $f_{n}(x)+U \subset K_{x}$ and we obtain (β).
Q.E.D.

Corollary 5.3

(1) If for sufficiently small positive ε and for every blocking set K in \Re^{2} either $\operatorname{card}(\operatorname{dom}(K \cap S(f, \varepsilon)))=2^{\omega}$ or $(f(x)-\varepsilon, f(x)+\varepsilon) \subset K_{x}$ for some $x \in \Re$ then $f \in \mathcal{A}(\Re, \Re)$.
(2) Assume $A(c)$. If $f \in \overline{\mathcal{A}(\Re, \Re)}$ then for each positive ε and blocking set K in \Re^{2} either $\operatorname{card}(\operatorname{dom}(K \cap S(f, \varepsilon)))=2^{\omega}$ or $\operatorname{int}\left((K \cap S(f, \varepsilon))_{x}\right) \neq \emptyset$ for some $x \in X$.

Corollary 5.4 Every function $f: I \longrightarrow \Re$ which satisfies the condition:
(*) $\operatorname{card}(\{x \in J:|f(x)-q| \leq \varepsilon\})=2^{\omega}$ for each subinterval $J \subset I$, rational q and positive ε,
is a limit of uniformly convergent sequence of almost continuous functions. In particular, $\mathcal{D}^{*} \subset \overline{\mathcal{A}(I, \Re)}$.

Proof. By Proposition 5.2 it is sufficient to verify that f satisfies condition (α). We shall prove that $\operatorname{card}(\operatorname{dom}(S(f, \varepsilon)))=2^{\omega}$ for every blocking set $F \subset I \times \Re$, positive ε and f satisfying the condition (*). Indeed, fix $n \in N$ such that $2 / n<\varepsilon$. For every integer k define $F_{k}=\{x \in I: \exists y \in \Re(x, y) \in$ F and $|y-(2 k-1) / n| \leq 1 / n\}=\operatorname{dom}(F \cap(I \times[(2 k-2) / n, 2 k / n]))$. Note that each F_{k} is closed and the interior of the set $\bigcup_{k \in Z} F_{k}=\operatorname{dom}(F)$ is nonempty (see Theorem 1.2 (3)). Hence there exists a non-degenerate interval J which is contained in $F_{k_{0}}$ for some integer k_{0}. Put $m=2 k_{0}-1$ and $A=\{x \in J:|f(x)-m / n| \leq 1 / n\}$. By $(*), \operatorname{card}(A)=2^{\omega}$. Moreover, for each $x \in A$ there exists y_{x} such that $\left(x, y_{x}\right) \in F$ and $\left|y_{x}-m / n\right| \leq 1 / n$. Hence $\left|f(x)-y_{x}\right| \leq 2 / n<\varepsilon$ for $x \in A$ and the condition (α) holds.
Q.E.D.

Problem 5.1 Characterize the class of all uniform limits of almost continuous functions from I^{k} into I [34].

Note that the analogous problem is open for the class $\operatorname{Conn}(I, I)$ [11]. For $k>1$ the class $\operatorname{Conn}\left(I^{k}, I\right)$ is closed under this operation [25]. This is not true for the class $\mathcal{A}\left(I^{k}, I\right)$.

Example 5.1 For any k there exists a uniformly convergent sequence of almost continuous functions from I^{k} into I which limit is not almost continuous.

Indeed, let $\left(f_{n}\right)_{n}$ be a uniformly convergent sequence of almost continuous functions from I into I which limit f is not almost continuous. Let g_{n}, g be functions from I^{k} into I defined by $g_{n}\left(x_{1}, \ldots, x_{k}\right)=f_{n}\left(x_{1}\right)$ and $g\left(x_{1}, \ldots, x_{k}\right)=f\left(x_{1}\right)$. Then g is a uniform limit of g_{n}, by Corollary 4.2 all g_{n} are almost continuous and, by Theorem 2.1, g is not almost continuous.

Now we shall consider the notion of almost continuous approximation which was introduced in [1]. A sequence $\left(f_{n}\right)_{n}$ of functions from X into Y almost continuously approximates a function $f: X \longrightarrow Y$ if for every sequence $\left(x_{n}\right)_{n}$ of points from X, either there exists n such that $f_{n}\left(x_{n}\right)=$
$f\left(x_{n}\right)$ or there exists a subsequence $\left(x_{n_{i}}\right)$ of $\left(x_{n}\right)$ and $x \in X$ such that $x_{n_{i}} \longrightarrow$ x and $f_{n_{i}}\left(x_{n_{i}}\right) \longrightarrow f(x)$ (here X and Y are metric) [1].

Theorem 5.1 The sequence $\left(f_{n}\right)_{n}$ almost continuously approximates f iff for each open neighbourhood U of f there exists $n \in N$ such that $f_{n} \in U$ [1].
Corollary 5.5 If $\left(f_{n}\right)_{n}$ is a sequence of functions from the class $\mathcal{A}(X, Y)$ and $\left(f_{n}\right)_{n}$ almost continuously approximates f, then $f \in \mathcal{A}(X, Y)$ [1].

Theorem 5.2 Assume that X and Y are compact metric spaces. Then $f \in \mathcal{A}(X, Y)$ iff there exists a sequence $\left(f_{n}\right)_{n}$ of continuous functions which approximates almost continuously f [1].

6 Operations.

6.1 Sums.

Proposition 6.1 Suppose that $(Y,+)$ is a topological group, (X, Y) is a (K, G) pair, \mathcal{K} is a blocking family for (X, Y) and κ is a cardinal such that $\max (\omega, \kappa) \leq \lambda=\operatorname{card}(\mathcal{K})$. Then for any family \mathcal{F} of functions from X into Y with $\operatorname{card}(\mathcal{F})=\kappa$ the following condition holds:
$U_{a}(\mathcal{F}):$ there exists $g: X \longrightarrow Y$ such that $g+f \in \mathcal{A}(X, Y)$ for all $f \in \mathcal{F}$.
In particular, each function from X into Y can be expressed as a sum of two almost continuous functions in $X \times Y$.

Proof. Let $\left\{X_{\alpha}: \alpha<\kappa\right\}$ be a partition of the space X such that $\operatorname{card}\left(\operatorname{dom}(K) \cap X_{\alpha}\right) \geq \lambda$ for each $\alpha<\kappa$ and $K \in \mathcal{K}$ (such partition exists by Lemma 5.1). Let $\left(K_{\beta}\right)_{\beta<\lambda}$ be a sequence of all blocking sets from the family \mathcal{K}. For every $\alpha<\kappa$ and $\beta<\lambda$ choose $\left(x_{\alpha, \beta}, y_{\alpha, \beta}\right) \in K_{\beta}$ such that $x_{\alpha, \beta} \in X_{\alpha} \backslash\left\{x_{\alpha, \gamma}: \gamma<\beta\right\}$. Let $g: X \longrightarrow Y$ be defined by $g\left(x_{\alpha, \beta}\right)=$ $y_{\alpha, \beta}-f_{\alpha}\left(x_{\alpha, \beta}\right)$ for $\alpha<\kappa$ and $\beta<\lambda$ and $g(x)=0$ otherwise (0 denotes the neutral element of the group ($Y,+$)). Since $\left(x_{\alpha, \beta}, y_{\alpha, \beta}\right) \in\left(g+f_{\alpha}\right) \cap K_{\beta}$ for $\beta<\lambda, g+f_{\alpha} \in \mathcal{A}(X, Y)$.

Now assume that $f_{0} \equiv 0$. For an arbitrary function $f: X \longrightarrow Y$ and the family $\mathcal{F}=\left\{f, f_{0}\right\}$ let g be a function such that $h=g+f \in \mathcal{A}(X, Y)$ and $g+f_{0} \in \mathcal{A}(X, Y)$. Then $f=(-g)+h, g \in \mathcal{A}(X, Y)$ and by Theorem 3.3, $-g \in \mathcal{A}(X, Y)$.
Q.E.D.

Corollary 6.1 If \mathcal{F} is a family of functions from \Re into \Re and $\operatorname{card}(\mathcal{F}) \leq 2^{\omega}$ then $U_{a}(\mathcal{F})$ holds. In particular, any function ffrom \Re into \Re can be written a sum of two almost continuous functions f_{1}, f_{2} [34].

Remark 6.1 If a function $f: \Re \longrightarrow \Re$ is Lebesgue measurable (has the Baire property) then it can be represented as a sum of two almost continuous functions which are measurable (have the Baire property) [26].

The foregoing results suggest the question of how "big" can be families \mathcal{F} for which the condition $U_{a}(\mathcal{F})$ holds. For arbitrary topological space X and topological group $(Y,+)$ let $a(X, Y)$ denote the least cardinal κ for which there exists a family \mathcal{F} of functions from X into Y such that $\operatorname{card}(\mathcal{F})=\kappa$ and $U_{a}(\mathcal{F})$ is false (or $a(X, Y)=0$ if the condition $U_{a}\left(Y^{X}\right)$ holds). Note that Proposition 6.1 implies the inequality $a(X, Y)>\operatorname{card}(\mathcal{K})$ for any (K, G) pair (X, Y) with blocking family \mathcal{K}. In particular, $a(\Re, \Re)>2^{\omega}$. Additionally, it is easy to see that the condition $U_{a}\left(\Re^{\Re}\right)$ is false. Indeed, for every function $g: \Re \longrightarrow \Re$ there exists a function f such that $f+g$ does not have the Darboux property. Therefore $a(\Re, \Re) \neq 0$. Hence the assumption $\left(2^{\omega}\right)^{+}=$ $2^{2^{\omega}}$ (which is a consequence of the Generalized Continuum Hypothesis for example) implies the equality $a(\Re, \Re)=2^{2 \omega}$.

Problem 6.1 Can the equality $a(\Re, \Re)=2^{2^{\omega}}$ be proved in $Z F C$?
Now we shall prove the condition $U_{a}(\mathcal{F})$ for some families of real functions of the power $2^{2^{\omega}}$. Suppose that κ is a cardinal, \mathcal{I} is a fixed family of subsets of I and \mathcal{F} is a fixed family of real functions defined on I. We shall say that \mathcal{F} is (\mathcal{I}, κ) regular if there exists a subfamily \mathcal{F}_{0} of \mathcal{F} such that $\operatorname{card}\left(\mathcal{F}_{0}\right)=\kappa$ and for each $f \in \mathcal{F}$ there exists $f_{0} \in \mathcal{F}_{0}$ with $\left[f \neq f_{0}\right] \in \mathcal{I}$. A family \mathcal{I} of subsets of I has the property (B) if:
(1) if $A \in \mathcal{I}$ and $B \subset A$ then $B \in \mathcal{I}$,
(2) if $A \in \mathcal{I}$ then $J \backslash A$ includes a non-empty perfect set for every subinterval J of I.

Lemma 6.1 Assume that \mathcal{F} is a family of real functions defined on I and $\operatorname{card}(\mathcal{F})=2^{\omega}$. Then there exists a function g such that for each $f \in \mathcal{F}$ and minimal blocking set K, dom $(K \cap(f+g))$ intersects every non-empty perfect set contained in dom(K).

Proof. Let $\mathcal{F}=\left\{f_{\alpha}: \alpha<2^{\omega}\right\}$, let $\left\{K_{\beta}: \beta<2^{\omega}\right\}$ be the family of all minimal blocking sets in $I \times \Re$ and let $\varphi: 2^{\omega} \longrightarrow 2^{\omega} \times 2^{\omega} \times 2^{\omega}, \varphi=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ be an arbitrary bijection. For $\beta<2^{\omega}$ arrange all nonempty perfect subsets of $\operatorname{dom}\left(K_{\beta}^{\prime}\right)$ in a sequence $\left(F_{\beta, \gamma}\right)_{\gamma<2 \omega}$. For each $\alpha<2^{\omega}$ choose $\left(x_{\alpha}, y_{\alpha}\right) \in K_{\varphi_{2}(\alpha)}$ such that $x_{\alpha} \in F_{\left(\varphi_{2}(\alpha), \varphi_{3}(\alpha)\right)} \backslash\left\{x_{\gamma}: \gamma<\alpha\right\}$. Then the function g defined by $g\left(x_{\alpha}\right)=y_{\alpha}-f_{\varphi_{1}(\alpha)}\left(x_{\alpha}\right)$ for $\alpha<2^{\omega}$ and $g(x)=0$ for other x satisfies the conditions of the lemma.
Q.E.D.

Theorem 6.1 Assume that \mathcal{I} is a family of subsets of I with the property (B) and \mathcal{F} is an $\left(\mathcal{I}, 2^{\omega}\right)$ regular family of real functions defined on I. Then the condition $U_{a}(\mathcal{F})$ holds.
Proof. Let \mathcal{F}_{0} be a subfamily of \mathcal{F} such that $\operatorname{card}\left(\mathcal{F}_{0}\right)=2^{\omega}$ and for each $f \in \mathcal{F}$ there exists $f_{0} \in \mathcal{F}_{0}$ such that $\left[f \neq f_{0}\right] \in \mathcal{I}$. Fix $f \in \mathcal{F}$ and $f_{0} \in \mathcal{F}_{0}$ such that $\left[f \neq f_{0}\right] \in \mathcal{I}$. Let g be the function defined in Lemma 6.1 for the family \mathcal{F}_{0}. Then $(g+f) \cap K \neq \emptyset$ for any blocking K. Indeed, suppose that $(g+f) \cap K=\emptyset$. Then $C=\operatorname{dom}\left(\left(g+f_{0}\right) \cap K\right) \subset\left[f \neq f_{0}\right]$ and therefore $C \in \mathcal{I}$. Thus $\operatorname{dom}(K) \backslash C$ includes a non-empty perfect set, in contradiction with the choice of g.
Q.E.D.

Corollary 6.2 Let \mathcal{F} be the family of all Lebesgue measurable functions (all functions with the Baire property) from \Re into \Re, \mathcal{F}_{0} be the family of Borel measurable functions and \mathcal{I} be the ideal of measure zero (of the first category) subsets of \Re. Then there exists a function g from \Re into \Re such that $f+g \in$ $\mathcal{A}(\Re, \Re)$ for each $f \in \mathcal{F}$.

For arbitrary families \mathcal{X}, \mathcal{Y} of real functions defined on a topological space X let $\mathcal{M}_{a}(\mathcal{X}, \mathcal{Y})$ denote the maximal additive class of \mathcal{X} with respect to \mathcal{Y}, i.e.

$$
\mathcal{M}_{a}(\mathcal{X}, \mathcal{Y})=\{f \in \mathcal{X}: f+g \in \mathcal{Y} \text { for each } g \in \mathcal{X}\}
$$

We shall write $\mathcal{M}_{a}(\mathcal{X})$ instead of $\mathcal{M}_{a}(\mathcal{X}, \mathcal{X})$ and call this family the maximal additive class of \mathcal{X}.

Theorem 6.2

$$
\mathcal{M}_{a}(\mathcal{A}(\Re, \Re), \mathcal{Y})=\mathcal{C}(\Re, \Re)
$$

whenever $\mathcal{Y} \in\{\mathcal{A}(\Re, \Re), \mathcal{C o n n}(\Re, \Re), \mathcal{D}(\Re, \Re)\}$.

Proof. For $\mathcal{Y}=\mathcal{A}(\Re, \Re)$ see [30]. The same arguments work for other \mathcal{Y}.
Q.E.D.

Theorem 6.3 For any positive integer k we have

$$
\mathcal{M}_{a}\left(\mathcal{A}\left(\Re^{k}, \Re\right)\right)=\mathcal{C}\left(\Re^{k}, \Re\right)
$$

Proof. This equality follows for $k=1$ from Theorem 6.2. For any k the inclusion $\mathcal{C}\left(\Re^{k}, \Re\right) \subset \mathcal{M}_{a}\left(\mathcal{A}\left(\Re^{k}, \Re\right)\right)$ follows from Theorems 4.4 and 3.3. Now assume that a function $g: \Re^{k} \longrightarrow \Re$ is discontinuous at a point $x_{0} \in \Re^{k}$. Let h be a homeomorphic injection of \Re into \Re^{k} such that $r n g(h)$ is closed in $\Re^{k}, h(0)=x_{0}, g \circ h$ is discontinuous at 0 and there exists a homeomorphism $h_{1}: \Re^{k} \longrightarrow \Re^{k}$ such that $h_{1}(x, 0, \ldots, 0)=h(x)$ for $x \in \Re$. Let $f_{0}: \Re \longrightarrow \Re$ be an almost continuous function such that $f_{0}+g \circ h \notin \mathcal{A}(\Re, \Re)$. By Theorem 4.7, there exists an almost continuous extension $f_{1}: \Re^{k} \longrightarrow \Re$ of f_{0} such that $f_{1}(x, 0, \ldots, 0)=f_{0}(x)$ for any $x \in \Re$. By Theorem $3.4, f=f_{1} \circ h_{1}^{-1}$ is almost continuous. Suppose that $f+g$ is almost continuous. Then $(f+g) \mid h(\Re)$ is almost continuous (by Theorem 2.1), and therefore, $(f+g) \circ h \in \mathcal{A}(\Re, \Re)$. But $(f+g) \circ h=f \circ h+g \circ h=f_{0}+g \circ h$, a contradiction. Thus $g \notin \mathcal{M}_{a}\left(\mathcal{A}\left(\Re^{k}, \Re\right)\right)$.
Q.E.D.

Corollary 6.3 For any positive integers k and m,

$$
\mathcal{M}_{a}\left(\mathcal{A}\left(\Re^{k}, \Re^{m}\right)\right)=\mathcal{C}\left(\Re^{k}, \Re^{m}\right) .
$$

Proof. The inclusion $\mathcal{C}\left(\Re^{k}, \Re^{m}\right) \subset \mathcal{M}_{a}\left(\mathcal{A}\left(\Re^{k}, \Re^{m}\right)\right)$ follows from Theorems 4.4 and 3.3. Assume that a function $g: \Re^{k} \longrightarrow \Re^{m}, g=\left(g_{1}, \ldots, g_{m}\right)$, is discontinuous at a point $x_{0} \in \Re^{k}$. Then g_{i} is discontinuous at x_{0} for some $i \leq m$. By Theorem $6.3, f+g_{i}$ is not almost continuous for some almost continuous function f from \Re^{k} into \Re. By Theorem 4.4, the function $h=\left(h_{1}, \ldots, h_{m}\right): \Re^{k} \longrightarrow \Re^{m}$, where $h_{i}=f$ and $h_{j} \equiv 0$ for $j \neq i$, is almost continuous. Observe that $\pi_{i} \circ(h+g)=f+g_{i}$ (where π_{i} denotes the projection onto $i^{\text {th }}$ axis) is not almost continuous and, by Theorem 3.3, $h+g$ is not almost continuous.
Q.E.D.

6.2 Products.

Proposition 6.2 Suppose that F is a topological field, (X, F) is a (K, G) pair with an infinite blocking family \mathcal{K} and $k>1$. Then each function f : $X \longrightarrow F$ can be expressed as a scalar product of two almost continuous functions $f_{1}, f_{2}: X \longrightarrow F^{k}$ (i.e. $f=\sum_{i=1}^{k} f_{1, i} \cdot f_{2, i}$, where $f_{1}=\left(f_{1,1}, \ldots, f_{1, k}\right)$ and $\left.f_{2}=\left(f_{2,1}, \ldots, f_{2, k}\right)\right)$.

Proof. By Proposition $6.1 f: X \longrightarrow F$ can be expressed as a sum of almost continuous functions $g_{1}, g_{2}: X \longrightarrow F$. Now define $f_{1}, f_{2}: X \longrightarrow F^{k}$ in the following way: $f_{1}(x)=\left(g_{1}(x), 1,0, \ldots, 0\right)$ and $f_{2}(x)=\left(1, g_{2}(x), 0, \ldots, 0\right)$ for $x \in X$. By Theorem $4.4 f_{1}$ and f_{2} are almost continuous and, clearly, $f=f_{1} \cdot f_{2}$.
Q.E.D.

Corollary 6.4

(1) for each $m \in N, k>1$ and $f: I^{m} \longrightarrow \Re$ there exist $f_{1}, f_{2} \in \mathcal{A}\left(I^{m}, \Re^{k}\right)$ such that $f=f_{1} \cdot f_{2}$.
(2) for each $k>1$ and $f: \Re \longrightarrow \Re$ there exist $f_{1}, f_{2} \in \mathcal{A}\left(\Re, \Re^{k}\right)$ such that $f=f_{1} \cdot f_{2}$.
Note that the condition above is false for $k=1$. Indeed, it is well-known that a function $f: \Re \longrightarrow \Re$ may not be a product of Darboux functions [45] and therefore, of almost continuous functions. J. Ceder proved in [16] that a function $f: \Re \longrightarrow \Re$ is a product of two Darboux functions iff it possesses the following property:
$(J C): f$ has a zero in each subinterval in which it changes sign.
In particular, if $r n g(f) \subset(0, \infty)$ or $r n g(f) \subset(-\infty, 0)$ then f is a product of two Darboux functions.

Theorem 6.4 Suppose $A(c)$. A real function f defined on \Re is a product of two almost continuous functions iff it has the property (JC) [48].

Proposition 6.3 Suppose that (X, \Re) is a (K, G) pair, \mathcal{K} is a blocking family for (X, \Re) and κ is a cardinal such that $\max (\omega, \kappa) \leq \lambda=\operatorname{card}(\mathcal{K})$. If \mathcal{F} is a family of real functions defined on $X, \operatorname{card}(\mathcal{F})=\kappa$ and $\operatorname{rng}(f) \subset(-\infty, 0)$ or $r n g(f) \subset(0, \infty)$ for all $f \in \mathcal{F}$, then there exists a function $g: X \longrightarrow(0, \infty)$ such that $g \cdot f$ is almost continuous for each $f \in \mathcal{F}$.

Proof. By Proposition 6.1 there exists a function $g_{0}: X \longrightarrow \Re$ such that $g_{0}+h \in \mathcal{A}(X, \Re)$ for any $h \in\{\ln \circ|f|: f \in \mathcal{F}\}$. Put $g=\exp \left(g_{0}\right)$. Then $g(x)>0$ for each $x \in X$ and for every $f \in \mathcal{F}$ we have:
$g \cdot f=\operatorname{sgn}(f) \cdot \exp \left(g_{0}\right) \cdot \exp \circ \ln \circ|f|=\operatorname{sgn}(f) \cdot \exp \circ\left(g_{0}+\ln \circ|f|\right) \in \mathcal{A}(X, \Re)$.
Q.E.D.

Corollary 6.5 If (X, \Re) is a (K, G) pair with an infinite blocking family and f is an arbitrary function from X into $(0, \infty)$ then there exist almost continuous functions $f_{1}, f_{2}: X \longrightarrow(0, \infty)$ such that $f=f_{1} \cdot f_{2}$. In particular, every function $f: \Re \longrightarrow(0, \infty)$ can be expressed as a product of two almost continuous functions [26].

For an arbitrary family \mathcal{F} of real functions defined on a topological space X let us define the following condition:
$U_{m}(\mathcal{F}):$ there exists a non-zero function $g: X \longrightarrow \Re$ such that $f \cdot g \in$ $\mathcal{A}(X, \Re)$ whenever $f \in \mathcal{F}$.

Theorem 6.5 Suppose $A(c)$. Then every family \mathcal{F} of real functions defined on \Re with $\operatorname{card}(\mathcal{F})<2^{\omega}$ satisfies the condition $U_{m}(\mathcal{F})[50]$.

Example 6.1 Let \mathcal{F} be the family of all characteristic functions of singletons and $g: \Re \longrightarrow \Re$ be a function such that $f \cdot g \in \mathcal{A}(\Re, \Re)$ for all $f \in \mathcal{F}$. Then $g \equiv 0$ [50].

For an arbitrary topological space X let $m(X, \Re)$ denote the least cardinal κ for which there exists a family \mathcal{F} of real functions from X such that $\operatorname{card}(\mathcal{F})=\kappa$ and $U_{m}(\mathcal{F})$ is false (or $m(X, \Re)=0$ if $U_{m}\left(\Re^{X}\right)$ holds).

Corollary 6.6 $A(c)$ implies the equality $m(\Re, \Re)=2^{\omega}$.
Problem 6.2 Can the equality $m(\Re, \Re)=2^{\omega}$ be proved in $Z F C$?
For arbitrary families \mathcal{X}, \mathcal{Y} of real functions defined on a topological space X let $\mathcal{M}_{m}(\mathcal{X}, \mathcal{Y})$ denote the maximal multiplicative class of \mathcal{X} with respect to \mathcal{Y}, i.e.

$$
\mathcal{M}_{m}(\mathcal{X}, \mathcal{Y})=\{f \in \mathcal{X}: f \cdot g \in \mathcal{Y} \text { for all } g \in \mathcal{X}\}
$$

We shall write $\mathcal{M}_{m}(\mathcal{X})$ instead of $\mathcal{M}_{m}(\mathcal{X}, \mathcal{X})$ and call this family the maximal multiplicative class of \mathcal{X}.

For arbitrary interval Y of \Re^{m} let us define the family $\mathcal{M}(I, Y)$ of all functions $f: I \longrightarrow Y$ having the following property: if x_{0} is a right-hand (left-hand) side point of discontinuity of f, then $f\left(x_{0}\right)=0$ and there is a sequence $\left(x_{n}\right)_{n}$ converging to x_{0} such that $x_{n}>x_{0}\left(x_{n}<x_{0}\right)$ and $f\left(x_{n}\right)=0$. If X is any space then $\mathcal{M}(X, Y)$ denotes the class of all functions $f: X \longrightarrow Y$ such that $f \circ h \in \mathcal{M}(I, Y)$ for any homeomorphic injection $h: I \longrightarrow X$. This class was introduced by Fleissner [21] (for $X=Y=\Re$).

Theorem 6.6

$$
\mathcal{M}_{m}(\mathcal{A}(\Re, Z), \mathcal{Y})=\mathcal{M}(\Re, Z)
$$

whenever $\mathcal{Y} \in\{\mathcal{A}(\Re, Z), \mathcal{C o n n}(\Re, Z), \mathcal{D}(\Re, Z)\}$ and $Z \in\{\Re,[0, \infty)\}$.
Proof. For $Z=\Re$ and $\mathcal{Y}=\mathcal{A}(\Re, \Re)$ see [30]. The proof is analogous for other Z and \mathcal{Y}.
Q.E.D.

The similar theorem can be considered for scalar products of functions with values in \Re^{k}.

Theorem 6.7

(1) Suppose that $Z \in\{\Re,[0, \infty)\}, g \in \mathcal{M}_{m}\left(\mathcal{A}\left(\Re^{k}, Z^{n}\right)\right)$ and $g=\left(g_{1}, \ldots, g_{n}\right)$. Then:
(1.1) $g_{i} \in \mathcal{M}_{m}\left(\mathcal{A}\left(\Re^{k}, Z\right)\right)$ for every $i=1, \ldots, n$,
(1.2) $C(g) \subset[g=0]$,
(1.3) if $n=1$ then $g \in \mathcal{M}\left(\Re^{k}, \Re\right)$.
(2) Moreover, if $Z=[0, \infty)$, then:
(2.1) $\mathcal{M}_{m}\left(\mathcal{A}\left(\Re^{k}, Z^{n}\right)\right) \subset \mathcal{M}\left(\Re^{k}, Z^{n}\right)$,
(2.2) $\mathcal{M}_{m}\left(\mathcal{A}\left(\Re, Z^{n}\right)\right)=\mathcal{M}\left(\Re, Z^{n}\right)$.
(3) If $Z=(0, \infty)$ then $\mathcal{M}_{m}\left(\mathcal{A}\left(\Re^{k}, Z^{n}\right)\right)=\mathcal{C}\left(\Re^{k}, Z^{n}\right)$.

Proof. (1.1) Suppose that $g_{i} \notin \mathcal{M}_{m}\left(\mathcal{A}\left(\Re^{k}, Z\right)\right)$ for some $i \leq m$. Then there exists $h \in \mathcal{A}\left(\Re^{k}, Z\right)$ such that $g_{i} \cdot h \notin \mathcal{A}\left(\Re^{k}, Z\right)$. By Theorem 4.4 the function $f: \Re^{k} \longrightarrow \Re^{n}, f=\left(f_{1}, \ldots, f_{n}\right)$, where $f_{i}=h$ and $f_{j} \equiv 0$ for $j \neq i$, is almost continuous and $f \cdot g=h \cdot g_{i}$ is not almost continuous, contrary to $g \in \mathcal{M}_{m}\left(\mathcal{A}\left(\Re^{k}, \Re^{n}\right)\right)$.
(1.2) Suppose that g is discontinuous at x_{0}. Then g_{t} is discontinuous at x_{0} for some $t \leq n$. By (1.1), $g_{i}\left(x_{0}\right)=0$ if g_{i} is discontinuous at x_{0}. Assume that $g_{i}\left(x_{0}\right) \neq 0$ for some $i \leq n$. Then g_{i} is continuous at x_{0}. Consequently $g_{t}+g_{i}$ is discontinuous at x_{0} and $\left(g_{t}+g_{i}\right)\left(x_{0}\right) \neq 0$. Therefore $g_{t}+g_{i} \notin \mathcal{M}_{m}\left(\mathcal{A}\left(\Re^{k}, \Re\right)\right)$ and $\left(g_{t}+g_{i}\right) \cdot h \notin \mathcal{A}\left(\Re^{k}, \Re\right)$ for some $h \in \mathcal{A}\left(\Re^{k}, \Re\right)$. By Theorems 4.4 and 3.3 the function $f: \Re^{k} \longrightarrow \Re^{n}, f=\left(f_{1}, \ldots, f_{n}\right)$ defined by $f_{t}=f_{i}=h$ and $f_{j} \equiv 0$ for $j \notin\{t, i\}$, is almost continuous and $g \cdot f=\left(g_{t}+g_{i}\right) \cdot h \notin \mathcal{A}\left(\Re^{k}, \Re\right)$, a contradiction.
(1.3) Assume that $n=1$ and $g \in \mathcal{M}_{m}\left(\mathcal{A}\left(\Re^{k}, Z\right)\right) \backslash \mathcal{M}\left(\Re^{k}, Z\right)$. Let $h:$ $\Re \longrightarrow \Re^{k}$ be a homeomorphic injection such that $g \circ h \notin \mathcal{M}(\Re, Z), r n g(h)$ is closed in \Re^{k} and there exists a homeomorphism $h_{1}: \Re^{k} \longrightarrow \Re^{k}$ such that $h_{1}(x, 0, \ldots, 0)=h(x)$ for $x \in \Re$. Then $f_{0} \cdot(g \circ h) \notin \mathcal{A}(\Re, \Re)$ for some $f_{0} \in \mathcal{A}(\Re, \Re)$. By Theorem 4.7, there exists an almost continuous extension $f_{1}: \Re^{k} \longrightarrow \Re$ of f_{0} such that $f_{1}(x, 0, \ldots, 0)=f_{0}(x)$ for any $x \in \Re$. By Theorem 3.4, $f=f_{1} \circ h_{1}^{-1}$ is almost continuous. Suppose that $f \cdot g$ is almost continuous. Then $(f \cdot g) \mid h(\Re)$ is almost continuous (by Theorem 2.1), and therefore, $(f \cdot g) \circ h \in \mathcal{A}(\Re, \Re)$. But $(f \cdot g) \circ h=(f \circ h) \cdot(g \circ h)=f_{0} \cdot(g \circ h)$, a contradiction.
(2.1) For $n=1$ see (1.3). Assume that $g=\left(g_{1}, \ldots, g_{n}\right) \in \mathcal{M}_{m}\left(\Re^{k}, Z^{n}\right)$. We shall verify that $g \in \mathcal{M}\left(\Re^{k}, Z^{n}\right)$. Let $h: I \longrightarrow \Re^{k}$ be a homeomorphic injection such that $g \circ h$ is discontinuous at 0 . We can assume that $g_{1} \circ h$ is discontinuous at 0 . Let $h(0)=x_{0}$. From (1.2) it follows that $g\left(x_{0}\right)=0$. Note that $\sum_{i=1}^{n} g_{i} \in \mathcal{M}_{m}\left(\mathcal{A}\left(\Re^{k}, Z\right)\right)$. Indeed, this follows from the fact that $f_{0}=$ (f, \ldots, f) is almost continuous for any $f \in \mathcal{A}(\Re,[0, \infty))$ (as the composition of f and continuous function d from \Re into \Re^{n} defined by $\left.d(x)=(x, \ldots, x)\right)$, and $\left(\sum_{i=1}^{n} g_{i}\right) \cdot f=g \cdot f_{0} \in \mathcal{A}\left(\Re^{k}, Z\right)$. Hence $\left(\sum_{i=1}^{n} g_{i}\right) \cdot h$ is almost continuous whenever so is h. Observe that the function $\left(\sum_{i=1}^{n} g_{i}\right) \circ h$ is discontinuous at 0 . Since $\left(\sum_{i=1}^{n} g_{i}\right) \circ h \in \mathcal{M}_{m}(\mathcal{A}(I, Z))$, there is a sequence $\left(x_{j}\right)_{j}$ converging to 0 such that $\left(\sum_{i=1}^{n} g_{i}\right)\left(h\left(x_{j}\right)\right)=0$ for each j. Since $g_{i} \geq 0$ for each $i \leq n$, $g_{i}\left(h\left(x_{j}\right)\right)=0$ for all $j \in N$ and $i \leq n$. Hence $g \circ h \in \mathcal{M}\left(I, Z^{n}\right)$.
(2.2) The inclusion $\mathcal{M}_{m}\left(\mathcal{A}\left(\Re, Z^{n}\right)\right) \subset \mathcal{M}\left(\Re, Z^{n}\right)$ follows from the condition (2.1). Now assume that $g \in \mathcal{M}\left(\Re,[0, \infty)^{n}\right)$. Then for arbitrary
$f \in \mathcal{A}\left(\Re, Z^{n}\right)$ the product $f \cdot g$ satisfies all assumptions of Lemma 4.1, so it is almost continuous. Therefore $g \in \mathcal{M}_{m}\left(\mathcal{A}\left(\Re, Z^{n}\right)\right)$.
(3) The inclusion $\mathcal{M}_{m}\left(\mathcal{A}\left(\Re^{k}, Z^{n}\right)\right) \supset \mathcal{C}\left(\Re^{k}, Z^{n}\right)$ follows from Theorems 4.4 and 3.3. Now suppose that $f=\left(f_{1}, \ldots, f_{m}\right) \in \mathcal{M}_{m}\left(\mathcal{A}\left(\Re^{k}, Z^{n}\right)\right)$. Fix $i \leq n$ and observe that $f_{0}=\ln \circ f_{i} \in \mathcal{M}_{a}\left(\mathcal{A}\left(\Re^{k}, \Re\right)\right)$. Indeed, if $g \in \mathcal{A}\left(\Re^{k}, \Re\right)$ then $g_{0}=\exp \circ g \in \mathcal{A}\left(\Re^{k}, Z\right)$ and consequently $h=\left(h_{1}, \ldots, h_{m}\right)$, where $h_{i}=g_{0}$ and $h_{j} \equiv 0$ for $j \neq i$, is almost continuous. Thus $f_{i} \cdot g_{0}=f \cdot h$ is almost continuous and therefore $f_{0}+g=\ln \left(f_{i} \cdot g_{0}\right)$ is almost continuous, too. Hence $f_{0} \in \mathcal{M}_{a}\left(\mathcal{A}\left(\Re^{k}, \Re\right)\right)$ and, by Theorem 6.3 , it is continuous and so is $f_{i}=\exp \circ f_{0}$. Thus f is continuous.
Q.E.D.

Lemma 6.2 Let F be a compact subset of a metric space $X, f \in \mathcal{A}\left(X, \Re^{k}\right)$ and $f \mid F$ be continuous. Then each open neighbourhood G of f in $X \times \Re^{k}$ includes a continuous function $g: X \longrightarrow \Re^{k}$ such that $g|F=f| F$.

Proof. First suppose that $f \mid F \equiv 0$ and G is a neighbourhood of f. Since $F \times\{0\}$ is compact, there exists a positive ε such that $B_{X}(x, \varepsilon) \times B_{\Re^{k}}(0, \varepsilon) \subset$ G for all $x \in F$. Since $f \subset G_{1}=G \backslash\left(F \times\left(\Re^{k} \backslash B_{\Re^{k}}(0, \varepsilon)\right)\right)$, there exists a continuous function $h: X \longrightarrow \Re^{k}$ contained in G_{1}. For every $x \in F$ choose δ_{x} such that $0<\delta_{x}<\varepsilon / 2$ and $\|h(z)\|<\varepsilon$ for $z \in B_{X}\left(x, \delta_{x}\right)$. Let δ be Lebesgue number of the covering $\left\{B_{X}\left(x, \delta_{x}\right): x \in F\right\}$ of F and let $A=\bigcup_{x \in F} B_{X}(x, \delta)$. Then $\|h(z)\|<\varepsilon$ for $z \in A, A \times B_{\Re^{k}}(0, \varepsilon) \subset G$ and the function $g(z)=\min (\delta, \operatorname{dist}(z, F)) \cdot h(z) / \delta$ is continuous, $g \subset G$ and $g(x)=0$ for $x \in F$.

Now we consider an arbitrary $f \in \mathcal{A}\left(X, \Re^{k}\right)$ such that $f \mid F$ is continuous. Let $G \subset X \times \Re^{k}$ be a neighbourhood of f and let f^{*} be a continuous extension of $f \mid F$ onto whole X. Then the function $h: X \times \Re^{k} \longrightarrow X \times \Re^{k}$ defined by $h(x, y)=\left(x, y-f^{*}(x)\right)$ is a homeomorphism. Therefore $G_{1}=h(G)$ is an open neighbourhood of an almost continuous function $f_{1}=f-f^{*}$ and, moreover, $f_{1} \mid F \equiv 0$. Thus there exists a continuous function $g_{1}: X \longrightarrow \Re^{k}$ such that $g_{1} \subset G_{1}$ and $g_{1} \mid F \equiv 0$. Then $g=h^{-1} \circ g_{1}=g_{1}+f^{*}$ is a continuous function contained in G and $g|F=f| F$.
Q.E.D.

Lemma 6.3 Suppose that X is a locally compact metric space, F is a compact subset of X and $f: X \longrightarrow \Re^{k}$ satisfies the following conditions:
(1) $f \mid F \equiv 0$,
(2) $f \mid \bar{U}$ is almost continuous for every component U of the set $X \backslash F$.

Then f is almost continuous.
Proof. Let G be an open neighbourhood of f and U be a component of $X \backslash F$. Then $f \mid \bar{U}$ is almost continuous, $f \mid f r(U) \equiv 0$ and $f r(U)$ is compact. By Lemma 6.2 there exists a continuous function $g_{U}: \bar{U} \longrightarrow \Re^{k}$ such that $g_{U} \subset G$ and $g_{U} \mid f r(U) \equiv 0$. Since $F \times\{0\}$ is compact, there exists a positive ε such that $V \times\{0\} \subset G$, where $V=\{x \in X: \operatorname{dist}(x, F)<\varepsilon\}$. Since X is locally compact, there exists an open set W such that $F \subset W \subset \bar{W} \subset V$ and \bar{W} is compact (cf. [19], Theorem 2, p. 193). Then $E=\bar{W} \backslash W$ is compact and $E \subset X \backslash F$. Let $\left\{U_{1}, \ldots, U_{n}\right\}$ be a finite subcovering of E chosen from the family of all components of $X \backslash F$. Note that for each component U of $X \backslash F$ one of the following cases holds: $U \subset X \backslash \bar{W}$ or $U=U_{i}$ for some $i \leq n$ or $U \subset W$. Hence the function $g: X \longrightarrow \Re^{k}$ given by

$$
g(x)= \begin{cases}g_{U}(x) & \text { if } x \in U \subset X \backslash \bar{W} \\ g_{U_{i}}(x) & \text { if } x \in U_{i}, 1 \leq i \leq n \\ 0 & \text { otherwise }\end{cases}
$$

is continuous. Clearly, $g \subset G$.
Q.E.D.

For any topological space X and $Y \subset \Re^{k}$ we shall denote by $\mathcal{M}^{*}(X, Y)$ the family of all functions $f: X \longrightarrow Y$ such that $[f=0$] is compact and $f \mid \bar{U}$ is continuous for each component of U of the set $[f \neq 0]$.

Theorem 6.8

(1) $\mathcal{M}^{*}\left(X, \Re^{m}\right) \subset \mathcal{A}\left(X, \Re^{m}\right) \cap \mathcal{M}\left(X, \Re^{m}\right)$ for each locally compact metric space X.
(2) $\mathcal{M}^{*}\left(I, \Re^{m}\right)=\mathcal{M}\left(I, \Re^{m}\right)$.
(3) $\mathcal{A}\left(I^{2}, \Re\right) \cap \mathcal{M}\left(I^{2}, \Re\right) \backslash \mathcal{M}^{*}\left(I^{2}, \Re\right) \neq \emptyset$.
(4) $\mathcal{M}\left(I^{2}, \Re\right) \backslash \mathcal{A}\left(I^{2}, \Re\right) \neq \emptyset$.

Proof. The inclusions $\mathcal{M}^{*}\left(X, \Re^{m}\right) \subset \mathcal{M}\left(X, \Re^{m}\right)$ (for any X) and $\mathcal{M}\left(I, \Re^{m}\right) \subset \mathcal{M}^{*}\left(I, \Re^{m}\right)$ are easy to observe. By Lemma $6.3, \mathcal{M}^{*}\left(X, \Re^{m}\right) \subset$ $\mathcal{A}\left(X, \Re^{m}\right)$ for any locally compact metric space X.
(3) For $n \in N$ put $J_{n}=\{1 / n\} \times I$ and define the continuous function $f_{n}: J_{n} \longrightarrow I$ such that:
(i) if n is even then $f_{n} \mid J_{n} \equiv 1$,
(ii) if $n \equiv 1 \quad(\bmod 4)$ then $\left[f_{n}=0\right]=\{1 / n\} \times[0,1-1 / n]$ and $\operatorname{rng}\left(f_{n}\right)=$ $[0,1 / n]$,
(iii) if $n \equiv 3(\bmod 4)$ then $\left[f_{n}=0\right]=\{1 / n\} \times[1 / n, 1]$ and $\operatorname{rng}\left(f_{n}\right)=$ $[0,1 / n]$.

Moreover let $f_{0}:\{0\} \times I \longrightarrow I$ be the function defined by $f_{0} \equiv 0$. Let $g:(0,1] \times I \longrightarrow I$ be a continuous extension of the function $\bigcup_{n=1}^{\infty} f_{n}$ such that $[g=0]=\bigcup_{n=1}^{\infty}\left[f_{n}=0\right]$ and let $f=f_{0} \cup g$. Then $f \in \mathcal{A}\left(I^{2}, I\right) \cap$ $\mathcal{M}\left(I^{2}, I\right) \backslash \mathcal{M}^{*}\left(I^{2}, I\right)$.
(4) Let $f_{0}: I \times[-2,2] \longrightarrow \Re$ be defined by:

$$
f_{0}(x, y)= \begin{cases}1-|y-\sin (1 / x)| & \text { if } x>0 \text { and }|y-\sin (1 / x)| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Obviously $f_{0} \in \mathcal{M}(I \times[-2,2], \Re)$. Suppose that $f_{0} \in \mathcal{A}(I \times[-2,2], \Re)$. Then $A=\{(x, y): x=0$ or $(x>0$ and $y=\sin (1 / x))\}$ is a continuum, $f_{0} \mid A$ is almost continuous and $\operatorname{rng}\left(f_{0} \mid A\right)=\{0,1\}$, contrary to Theorem 1.7. Thus $f_{0} \in \mathcal{M}(I \times[-2,2], \Re) \backslash \mathcal{A}(I \times[-2,2], \Re)$. Now let $h: I^{2} \longrightarrow I \times[-2,2]$ be a homeomorphism and $f=f_{0} \circ h$. Then $f \in \mathcal{M}\left(I^{2}, \Re\right) \backslash \mathcal{A}\left(I^{2}, \Re\right)$.
Q.E.D.

Theorem 6.9

(1) $\mathcal{M}^{*}(X, \Re) \subset \mathcal{M}_{m}(X, \Re)$ for any locally connected metric space X.
(2) $\mathcal{M}^{*}\left(I^{k}, \Re\right) \subset \mathcal{M}_{m}\left(I^{k}, \Re\right) \subset \mathcal{M}\left(I^{k}, \Re\right)$.

Proof. (1) Assume that $f \in \mathcal{M}^{*}(X, \Re), g \in \mathcal{A}(X, \Re)$ and put $F=[f=$ $0]$. Then $F \subset[f \cdot g=0]$ and, by Theorems 4.4 and $3.3,(f \cdot g) \mid \bar{U}$ is almost continuous for each component U of the set $X \backslash F$. By Lemma $6.3 f \cdot g$ is almost continuous.
(2) We need only to prove the second inclusion. Suppose that $g \in$ $\mathcal{M}_{m}\left(\mathcal{A}\left(I^{k}, \Re\right)\right) \backslash \mathcal{M}\left(I^{k}, \Re\right)$ and $h: I \longrightarrow I^{k}$ is a homeomorphic injection such that $g \circ h \notin \mathcal{M}(I, \Re)$. Let $h_{1}: I^{k} \longrightarrow h(I)$ be a retraction. Since $g \circ h \notin \mathcal{M}(I, \Re)$, there exists $f_{0} \in \mathcal{A}(I, \Re)$ such that $f_{0} \cdot(g \circ h) \notin \mathcal{A}(I, \Re)$. Then $f_{1}=f_{0} \circ h^{-1} \circ h_{1} \in \mathcal{A}\left(I^{k}, \Re\right)$ and therefore $f_{1} \cdot g \in \mathcal{A}\left(I^{k}, \Re\right)$. Hence $\left(f_{1} \cdot g\right) \mid h(I) \in \mathcal{A}(h(I), \Re)$ and $\left(f_{1} \cdot g\right) \circ h \in \mathcal{A}(I, \Re)$, but $\left(f_{1} \cdot g\right) \circ h=$ $\left(f_{1} \circ h\right) \cdot(g \circ h)=f_{0} \cdot(g \circ h) \notin \mathcal{A}(I, \Re)$, a contradiction.
Q.E.D.

Problem 6.3 Charactcrize classes $\mathcal{M}_{m}\left(\mathcal{A}\left(\Re^{k} a n d \Re^{n}\right)\right), \mathcal{M}_{m}\left(\mathcal{A}\left(I^{k}, \Re^{n}\right)\right)$ for positive integers k, n.

6.3 Maxima and minima.

Suppose that Y is a lattice. If \mathcal{F} is a family of functions from X into Y then the symbol $\mathcal{L}(\mathcal{F})$ denotes the lattice generated by \mathcal{F}, i.e. the smallest lattice of functions containing \mathcal{F}.

Proposition 6.4 Suppose that (X, Y) is a (K, G) pair with infinite blocking family \mathcal{K} and Y is a lattice. Then $\mathcal{L}(\mathcal{A}(X, Y))=Y^{X}$.

More precisely, any function from X into Y can be expressed as

$$
\min \left(\max \left(f_{1}, f_{2}\right), \max \left(f_{3}, f_{4}\right)\right)
$$

where $f_{1}, f_{2}, f_{3}, f_{4}$ are almost continuous.
$\mathbf{P r o o f}$. Assume that $\operatorname{card}(\mathcal{K})=\lambda$ and $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ is a partition of X such that $\operatorname{card}\left(X_{i} \cap K\right) \geq \lambda$ for each $K \in \mathcal{K}$ and $i=1,2,3,4$ (such a partition exists by Lemma 5.1). Fix $f: X \longrightarrow Y$ and $i \in\{1,2,3,4\}$. For each $\alpha<\lambda$ choose $\left(x_{i, \alpha}, y_{i, \alpha}\right) \in K_{\alpha}$ such that $x_{i, \alpha} \in X_{i}$ and $x_{i, \alpha} \neq x_{i, \beta}$ for $\alpha \neq \beta$ and $\beta<\lambda$. Now we define the function f_{i} by $f_{i}\left(x_{i, \alpha}\right)=y_{i, \alpha}$ for $\alpha<\lambda$ and $f_{i}(x)=f(x)$ for other x. One can easily verify that all f_{i} are almost continuous and $f=\min \left(\max \left(f_{1}, f_{2}\right), \max \left(f_{3}, f_{4}\right)\right)$.
Q.E.D.

Remark 6.2 If f_{1}, f_{2}, f_{3} are defined as above, then $f=\max \left(h_{1}, h_{2}\right)$, where $h_{1}=\min \left(\max \left(f_{1}, f_{2}\right), f_{3}\right)$ and $h_{1}=\min \left(\max \left(f_{1}, f_{3}\right), f_{2}\right)$.

Corollary 6.7 Each function $f: \Re \longrightarrow \Re$ can be expressed as

$$
\min \left(\max \left(f_{1}, f_{2}\right), \max \left(f_{3}, f_{4}\right)\right)
$$

where $f_{1}, f_{2}, f_{3}, f_{4}$ are almost continuous [47].
Remark 6.3 If $f: \Re \longrightarrow \Re$ is measurable (has the Baire property), then the functions $f_{1}, f_{2}, f_{3}, f_{4}$ from Corollary 6.7 may be chosen measurable (with the Baire property).

For arbitrary topological space X and lattice Y we shall denote by $\ell(X, Y)$ the order of the lattice $\mathcal{L}(\mathcal{A}(X, Y))$, i.e. the least positive integer k such that for any $f \in \mathcal{L}(\mathcal{A}(X, Y))$ there exists a subset $\mathcal{F}_{0} \subset \mathcal{A}(X, Y)$ such that $\operatorname{card}\left(\mathcal{F}_{0}\right)=k$ and $f \in \mathcal{L}\left(\mathcal{F}_{0}\right)$.

Corollary $6.8 \ell(\Re, \Re)=3$.
Proof. By Remark 6.2, $\ell(X, Y) \leq 3$ for any (K, G) pair with an infinite blocking family. On the other hand, the function $f: \Re \longrightarrow \Re$ defined by $f(x)=x$ for $x \in\{-1,1\}$ and $f(x)=0$ for $x \notin\{-1,1\}$ cannot be expressed as the minimum or the maximum of two Darboux functions, so $\ell(\Re, \Re)>2$.

> Q.E.D.

Proposition 6.5 Suppose that (X, Y) is a (K, G) pair with an infinite blocking family \mathcal{K} and \leq is a partial order in Y. If a function $f: X \longrightarrow Y$ satisfies the condition:
$(*) \operatorname{card}\left(\left\{x \in X: f(x) \geq y\right.\right.$ for some $\left.\left.y \in K_{x}\right\}\right) \geq \operatorname{card}(\mathcal{K})$ for every $K \in \mathcal{K}$, then f can be represented as a maximum of two almost continuous functions.

Proof. Let $\operatorname{card}(\mathcal{K})=\lambda$. Note that the condition (*) implies the existence of two disjoint subsets A, B of X such that $\operatorname{card}(\{x \in A:(x, y) \in$ K and $f(x) \geq y$ for some $y \in Y\}) \geq \lambda$ and $\operatorname{card}(\{x \in B:(x, y) \in$ K and $f(x) \geq y$ for some $y \in Y\}) \geq \lambda$ for each $K \in \mathcal{K}$. Let $\left(K_{\alpha}\right)_{\alpha<\lambda}$ be a sequence of all blocking sets from the family \mathcal{K}. For every $\alpha<\lambda$ choose points $\left(a_{\alpha}, a_{\alpha}^{\prime}\right),\left(b_{\alpha}, b_{\alpha}^{\prime}\right) \in K_{\alpha}$ such that:
(1) $a_{\alpha} \in A \backslash\left\{a_{\beta}: \beta<\alpha\right\}$ and $f\left(a_{\alpha}\right) \geq a_{\alpha}^{\prime}$,
(2) $b_{\alpha} \in B \backslash\left\{b_{\beta}: \beta<\alpha\right\}$ and $f\left(b_{\alpha}\right) \geq b_{\alpha}^{\prime}$.

Define f_{1}, f_{2} in the following way: $f_{1}\left(a_{\alpha}\right)=a_{\alpha}^{\prime}$ for $\alpha<\lambda$ and $f_{1}(x)=f(x)$ for other x. Similarly, $f_{2}\left(b_{\alpha}\right)=b_{\alpha}^{\prime}$ for $\alpha<\lambda$ and $f_{2}(x)=f(x)$ otherwise. Since f_{1}, f_{2} meet all blocking sets from the family \mathcal{K}, they are almost continuous. Moreover, $f=\max \left(f_{1}, f_{2}\right)$.
Q.E.D.

Theorem 6.10 Each function $f: I \longrightarrow \Re$ satisfying the following condition

$$
[f \geq n] \text { is } c \text {-dense in I for any positive integer } n
$$

can be represented as a maximum of two almost continuous functions f_{1}, f_{2}. Moreover, if f is measurable or has the Baire property, then f_{1}, f_{2} may be chosen measurable or with the Baire property as well.
$\mathbf{P r}$ o of. Suppose that $f: I \longrightarrow \Re$ satisfies the condition (@). Let \mathcal{K} be the family of all minimal blocking sets in $I \times \Re$. It is sufficient to verify that the condition $(*)$ from Proposition 6.5 is satisfied. Fix $K \in \mathcal{K}$. Since $\operatorname{dom}(K)=\bigcup_{n=1}^{\infty} K_{n}$, where $K_{n}=\operatorname{dom}(K \cap(I \times[-n, n])), K_{n_{0}}$ is of the second category for some positive integer n_{0}. Since $K_{n_{0}}$ is closed, it has non-empty interior. Let J be a non-empty open interval contained in $K_{n_{0}}$. By (\&), $\operatorname{card}\left(\left\{x \in J: f(x) \geq n_{0}\right\}\right)=2^{\omega}$. Since for each $x \in J$ there exists $y \in\left[-n_{0}, n_{0}\right]$ such that $(x, y) \in K, J \subset\{x \in I:(x, y) \in K$ and $f(x) \geq$ y for some $y \in \Re\}$ and therefore, (*) holds.

Finally, remark that if f is measurable (has the Baire property), then we can choose disjoint sets of measure zero (of the first category) A, B such that for any real r the sets $A \cap[f \geq r]$ and $B \cap[f \geq r]$ are c-dense in I. Now we can choose elements a_{α}, b_{α} (as in the proof of Proposition 6.5) from such sets A and B. Then f_{1}, f_{2} will be measurable (have the Baire property).
Q.E.D.

Corollary 6.9 Every $f \in \mathcal{D}^{*}$ can be represented as a maximum of two almost continuous functions.

For arbitrary function $f: \Re \longrightarrow \Re$ and $x \in \Re$ let $K_{c}^{+}(f, x)$ denote the right hand c-cluster set of f at x, i.e. $K_{c}^{+}(f, x)=\bigcap\left\{C^{+}(f \mid \Re \backslash B, x)\right.$: $\left.\operatorname{card}(B)<2^{\omega}\right\}$. Similarly we define the left hand c-cluster set of f at x (denoted by $K_{c}^{-}(f, x)$). It is known that a function $f: \Re \longrightarrow \Re$ is a maximum of two Darboux functions iff it satisfies the following condition:
(\&) $\quad f(x) \leq \min \left(\max \left(K_{c}^{+}(f, x)\right), \max \left(K_{c}^{-}(f, x)\right)\right)$ for each $x \in \Re[12]$.

Problem 6.4 Is every function $f: \Re \longrightarrow \Re$ satisfying ($\boldsymbol{(}$) a maximum of two almost continuous functions?

Let X be a topological space and \mathcal{X}, \mathcal{Y} be arbitrary families of real functions defined on X. We define the following classes of functions:
$\mathcal{M}_{\max }(\mathcal{X}, \mathcal{Y})=\{f \in \mathcal{X}: \max (f, g) \in \mathcal{Y}$ for all $g \in \mathcal{X}\}$,
$\mathcal{M}_{\text {min }}(\mathcal{X}, \mathcal{Y})=\{f \in \mathcal{X}: \min (f, g) \in \mathcal{Y}$ for all $g \in \mathcal{X}\}$,
$\mathcal{M}_{l}(\mathcal{X}, \mathcal{Y})=\{f \in \mathcal{X}: \max (f, g), \min (f, g) \in \mathcal{Y}$ for all $g \in \mathcal{X}\}$.
Clearly, $\mathcal{M}_{l}(\mathcal{X}, \mathcal{Y})=\mathcal{M}_{\max }(\mathcal{X}, \mathcal{Y}) \cap \mathcal{M}_{\min }(\mathcal{X}, \mathcal{Y})$. We shall write $\mathcal{M}_{\max }(\mathcal{X})$, $\mathcal{M}_{\min }(\mathcal{X})$ and $\mathcal{M}_{l}(\mathcal{X})$ instead of $\mathcal{M}_{\max }(\mathcal{X}, \mathcal{X}), \mathcal{M}_{\min }(\mathcal{X}, \mathcal{X})$ and $\mathcal{M}_{l}(\mathcal{X}, \mathcal{X})$, respectively. The last family is called the maximal lattice class for \mathcal{X}.

Theorem 6.11 If $\mathcal{X} \in\{\mathcal{A}(\Re, \Re)$, $\mathcal{C o n n}(\Re, \Re), \mathcal{D}(\Re, \Re)\}$ then
(1) $\mathcal{C}(\Re, \Re) \subset \mathcal{M}_{\max }(\mathcal{A}(\Re, \Re), \mathcal{X}) \subset \mathcal{D} u s c(\Re, \Re)$,
(2) $\mathcal{C}(\Re, \Re) \subset \mathcal{M}_{\min }(\mathcal{A}(\Re, \Re), \mathcal{X}) \subset \mathcal{D} l s c(\Re, \Re)$,
(3) $\mathcal{M}_{l}(\mathcal{A}(\Re, \Re), \mathcal{X})=\mathcal{C}(\Re, \Re)$

Proof. Those relations are proved in [30] for $\mathcal{X}=\mathcal{A}(\Re, \Re)$. The proof is analogous for other \mathcal{X}.
Q.E.D.

Arguments similar to those used in the proofs of Theorem 6.3 and Corollary 6.3 imply the following theorem.

Theorem 6.12 The equality $\mathcal{M}_{l}\left(\mathcal{A}\left(\Re^{k}, \Re^{m}\right)\right)=\mathcal{C}\left(\Re^{k}, \Re^{m}\right)$ holds for all positive integers k, m.

Problem 6.5 Describe the classes $\mathcal{M}_{\max }\left(\mathcal{A}\left(\Re^{k}, \Re^{m}\right)\right)$ and $\mathcal{M}_{\min }\left(\mathcal{A}\left(\Re^{k}, \Re^{m}\right)\right)$ for positive integers k, m.

7 Insertions of functions.

Example 7.1 There exist almost continuous, measurable functions f, g : $\Re \longrightarrow \Re$ with the Baire property such that $f<g$ and f, g admit no Darboux function between them.

Indeed, let $\left(K_{\alpha}\right)_{\alpha<2 \omega}$ be the sequence of all blocking sets in $\Re \times \Re$. Let Z_{0}, Z_{1}, Z_{2} be pairwise disjoint, c-dense subsets of \Re of measure zero and of the first category. Choose sequences $\left(x_{i, \alpha}, y_{i, \alpha}\right)_{\alpha<2 \omega}$ for $i=1,2$ such that $\left(x_{i, \alpha}, y_{i, \alpha}\right) \in K_{\alpha}$ and $x_{i, \alpha} \in Z_{i} \backslash\left\{x_{i, \beta}: \beta<\alpha\right\}$ for $i=1,2$ and $\alpha<2^{\omega}$. Define the functions f, g in the following way:

$$
\begin{aligned}
& f(x)= \begin{cases}y_{1, \alpha} & \text { if } x=x_{1, \alpha}, \alpha<2^{\omega} \\
y_{2, \alpha}-1 & \text { if } x=x_{2, \alpha}, y_{2, \alpha} \leq 0, \alpha<2^{\omega} \\
y_{2, \alpha} / 2 & \text { if } x=x_{2, \alpha}, y_{2, \alpha}>0, \alpha<2^{\omega} \\
-2 & \text { if } x \in Z_{0} \\
1 & \text { otherwise }\end{cases} \\
& g(x)= \begin{cases}y_{2, \alpha} & \text { if } x=x_{2, \alpha}, \alpha<2^{\omega} \\
y_{1, \alpha}+1 & \text { if } x=x_{1, \alpha}, y_{1, \alpha} \geq 0, \alpha<2^{\omega} \\
y_{1, \alpha} 2 & \text { if } x=x_{1, \alpha}, y_{1, \alpha}<0, \alpha<2^{\omega} \\
-1 & \text { if } x \in Z_{0} \\
2 & \text { otherwise }\end{cases}
\end{aligned}
$$

Then f and g are almost continuous, $f<g$ and there is no Darboux function h between them (cf. [12]). Indeed, if h is a function such that $f<h<g$ then $h(x)<0$ for $x \in Z_{0}, h(x)>0$ for $x \in \Re \backslash\left(Z_{0} \cup Z_{1} \cup Z_{2}\right)$ and $h(x) \neq 0$ for all $x \in \Re$.

Theorem 7.1 Assume that $f, g \in \mathcal{A}(X, \Re), f<g$ and at least one of f, g is continuous. Then there exists an almost continuous h between f and g.
Proof. Obviously the function $h=(f+g) / 2$ has the required property.
Proposition 7.1 Assume that (X, Y) is a (K, G) pair with infinite blocking family \mathcal{K} and (Y, \leq) is a partially ordered set. If \mathcal{F} is a family of functions from X into Y satisfying the following conditions:
(1) functions from \mathcal{F} are commonly bounded, i.e.

$$
\forall x \in X \quad \exists l(x) \quad \exists u(x) \quad \forall f \in \mathcal{F} \quad l(x) \leq f(x) \leq u(x),
$$

(2) for each $K \in \mathcal{K}$ we have:

- $\operatorname{card}(\{x \in X: \exists y \in Y \quad \forall f \in \mathcal{F} \quad(x, y) \in K$ and $f(x) \geq y\}) \geq$ $\operatorname{card}(\mathcal{K})$,
and
- $\operatorname{card}(\{x \in X: \exists y \in Y \quad \forall f \in \mathcal{F}(x, y) \in K$ and $f(x) \leq y\}) \geq$ $\operatorname{card}(\mathcal{K})$,
then there exist almost continuous functions $g_{l}, g_{u}: X \longrightarrow Y$ such that $g_{l} \leq$ $f \leq g_{u}$ for all $f \in \mathcal{F}$.

Proof. Let $\operatorname{card}(\mathcal{K})=\lambda$. Let $\left(K_{\alpha}\right)_{\alpha<\lambda}$ be a sequence of all sets from \mathcal{K}. By (2) we can choose disjoint sets $A_{1}, A_{2} \subset X$ such that $\operatorname{card}(\{x \in$ $A_{1}: \exists y \in Y \forall f \in \mathcal{F}(x, y) \in K$ and $\left.\left.f(x) \geq y\right\}\right) \geq \lambda$ and $\operatorname{card}\left(\left\{x \in A_{2}:\right.\right.$ $\exists y \in Y \forall f \in \mathcal{F}(x, y) \in K$ and $f(x) \leq y\}) \geq \lambda$ for each $K \in \mathcal{K}$. Let $\left(a_{\alpha}, a_{\alpha}^{\prime}\right)_{\alpha<\lambda},\left(b_{\alpha}, b_{\alpha}^{\prime}\right)_{\alpha<\lambda}$ be sequences of points such that $\left(a_{\alpha}, a_{\alpha}^{\prime}\right),\left(b_{\alpha}, b_{\alpha}^{\prime}\right) \in$ $K_{\alpha}, a_{\alpha}^{\prime} \leq f(x), f\left(b_{\alpha}\right) \leq b_{\alpha}^{\prime}$ for each $f \in \mathcal{F}$ and $\alpha<\lambda$, and moreover, $a_{\alpha} \neq a_{\beta}$, $b_{\alpha} \neq b_{\beta}$ whenever $\alpha \neq \beta$. Then the functions g_{l}, g_{u} defined by $g_{l}\left(a_{\alpha}\right)=a_{\alpha}^{\prime}$, $g_{u}\left(b_{\alpha}\right)=b_{\alpha}^{\prime}$ for $\alpha<\lambda$ and $g_{l}(x)=l(x), g_{u}(x)=u(x)$ for other x, have the required properties.

> Q.E.D.

Theorem 7.2 For each function $f: I \longrightarrow \Re$ for which $\{-\infty, \infty\} \subset K_{c}(f, x)$ for each $x \in I$ there exist almost continuous functions g, h such that $g<h$ and $f=(g+h) / 2$ (hence $g<f<h$). Moreover, if f is measurable (has the Baire property), then g and h can be taken measurable (with the Baire property).

Proof. Let $\left(F_{\alpha}\right)_{\alpha<2^{\omega}}$ be the sequence of all minimal blocking sets in $I \times \Re$. For each ordinal $\alpha<2^{\omega}$ there exist a positive integer n_{α} and a nondegenerate interval J_{α} such that $J_{\alpha} \subset \operatorname{dom}\left(F_{\alpha} \cap\left(I \times\left[-n_{\alpha}, n_{\alpha}\right]\right)\right)$. For every $\alpha<2^{\omega}$ choose subsets $A_{\alpha} \subset J_{\alpha} \cap\left[f<-n_{\alpha}\right], B_{\alpha} \subset J_{\alpha} \cap\left[f>n_{\alpha}\right]$ such that $\operatorname{card}\left(A_{\alpha}\right)=\operatorname{card}\left(B_{\alpha}\right)=2^{\omega}$. Note that $A_{\alpha} \cap B_{\beta}=\emptyset$ for $\alpha, \beta<2^{\omega}$. Let $\left(a_{\alpha}, a_{\alpha}^{\prime}\right)_{\alpha<2 \omega},\left(b_{\alpha}, b_{\alpha}^{\prime}\right)_{\alpha<2^{w}}$ be sequences of points such that $\left(a_{\alpha}, a_{\alpha}^{\prime}\right),\left(b_{\alpha}, b_{\alpha}^{\prime}\right) \in$ $F_{\alpha} \cap\left(I \times\left[-n_{\alpha}, n_{\alpha}\right]\right), a_{\alpha} \in A_{\alpha} \backslash\left\{a_{\beta}: \beta<\alpha\right\}$ and $b_{\alpha} \in B_{\alpha} \backslash\left\{b_{\beta}: \beta<\alpha\right\}$ for
any $\alpha<2^{\omega}$. Now define the functions g and h in the following way:

$$
\begin{aligned}
& h(x)= \begin{cases}a_{\alpha}^{\prime} & \text { for } x=a_{\alpha}, \alpha<2^{\omega} \\
2 f\left(b_{\alpha}\right)-b_{\alpha}^{\prime} & \text { for } x=b_{\alpha}, \alpha<2^{\omega} \\
f(x)+1 & \text { otherwise }\end{cases} \\
& g(x)= \begin{cases}b_{\alpha}^{\prime} & \text { for } x=b_{\alpha}, \alpha<2^{\omega} \\
2 f\left(a_{\alpha}\right)-a_{\alpha}^{\prime} & \text { for } x=a_{\alpha}, \alpha<2^{\omega} \\
f(x)-1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Clearly, g, h are almost continuous and $f=(g+h) / 2$.
Finally observe that if f is measurable (has the Baire property), then sets [$f>n$] and $[f<-n$] are measurable (have the Baire property) for every positive integer n and we can choose c-dense in I sets of measure zero and of the first category $A_{n} \subset[f>n]$ and $B_{n} \subset[f<-n]$. Sets $A=\bigcup_{n=1}^{\infty} A_{n}$, $B=\bigcup_{n=1}^{\infty} B_{n}$ have measure zero (are of the first category) and we continue as in the proof of general case with $a_{\alpha} \in A, b_{\alpha} \in B$ for $\alpha<2^{\omega}$. Since $[g \neq f] \cup[h \neq f] \subset A \cup B, g$ and h are measurable (have the Baire property). Q.E.D.

Corollary 7.1 For every function from $\mathcal{D}^{*}(\Re, \Re)$ there exist almost continuous functions g and h such that $g<f<h$.

8 Stationary and determining sets.

Let \mathcal{F} be a family of functions defined on X into Y. A subset E of X is called stationary for \mathcal{F} provided that each member of \mathcal{F} which is constant on E must be constant on all of X. We shall denote by $\boldsymbol{S}(\mathcal{F})$ the collection of all stationary sets for the class \mathcal{F}. A set E is called a determining set for \mathcal{F} provided that each two functions from \mathcal{F} which coincide on E must coincide on whole X. The class of all determining sets for \mathcal{F} will be denoted by $D(\mathcal{F})$. A set $E \subset X$ is called a restrictive set for the pair $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ of families of functions from X into Y provided that $f_{1}=f_{2}$ whenever $f_{1} \in \mathcal{F}_{1}$, $f_{2} \in \mathcal{F}_{2}$ and $f_{1}\left|E=f_{2}\right| E$. The class of all restrictive sets for $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ will be denoted by $\boldsymbol{R}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$ [9]. Note that
(1) if $\mathcal{C o n s t}(X, Y) \subset \mathcal{F}$ then $\boldsymbol{D}(\mathcal{F}) \subset S(\mathcal{F})$,
(2) $\boldsymbol{R}(\mathcal{F}, \mathcal{F})=\boldsymbol{D}(\mathcal{F})$ and $\boldsymbol{R}($ Const, $\mathcal{F})=\boldsymbol{S}(\mathcal{F})$
(3) if $\mathcal{F}_{1} \subset \mathcal{F}_{2}$ then $\boldsymbol{S}\left(\mathcal{F}_{2}\right) \subset \boldsymbol{S}\left(\mathcal{F}_{1}\right)$ and $\boldsymbol{D}\left(\mathcal{F}_{2}\right) \subset \boldsymbol{D}\left(\mathcal{F}_{1}\right)$,
(4) if $\mathcal{F}_{1} \subset \mathcal{F}_{2}$ then $\boldsymbol{R}\left(\mathcal{F}_{2}, \mathcal{F}\right) \subset \boldsymbol{R}\left(\mathcal{F}_{1}, \mathcal{F}\right)$ for every family \mathcal{F} of functions from X into Y.

Theorem 8.1 A necessary and sufficient condition for $E \subset I$ to be a stationary set for the class $\mathcal{A}\left(I, \Re^{k}\right)$ is that $\operatorname{card}(I \backslash E)<2^{\omega}$.

Proof. Since $\mathcal{A} \subset \mathcal{D}, \boldsymbol{S}(\mathcal{D}(I, \Re)) \subset \boldsymbol{S}(\mathcal{A}(I, \Re)$). It is known [2] (and easy to obtain, see e.g. [9], p. 200) that $E \in S(\mathcal{D}(I, \Re))$ iff $\operatorname{card}(I \backslash E)<2^{\omega}$. Thus $\operatorname{card}(I \backslash E)<2^{\omega}$ implies $E \in \boldsymbol{S}(\mathcal{A}(I, \Re)) \subset \boldsymbol{S}\left(\mathcal{A}\left(I, \Re^{k}\right)\right)$.

Now assume that $K=I \backslash E$ and $\operatorname{card}(K)=2^{\omega}$. Let K_{0} be the set of all points of bilateral c-condensation of K. Obviously K_{0} is non-empty and bilaterally c-dense in itself. Arrange all minimal blocking sets in $I \times \Re^{k}$ such that $\operatorname{dom}(F) \cap K_{0} \neq \emptyset$ in a sequence $\left(F_{\alpha}\right)_{\alpha<2^{\omega}}$. Note that $\operatorname{card}\left(\operatorname{dom}\left(F_{\alpha} \cap\right.\right.$ $\left.\left.K_{0}\right)\right)=2^{\omega}$ for $\alpha<2^{\omega}$. Fix arbitrary $z \in K_{0}$ and choose a sequence of points $\left(x_{\alpha}, y_{\alpha}\right)_{\alpha<2^{\omega}}$ such that $\left(x_{\alpha}, y_{\alpha}\right) \in F_{\alpha}, x_{\alpha} \neq z$ for all $\alpha<2^{\omega}$ and $x_{\alpha} \neq x_{\beta}$ for $\alpha \neq \beta$. Let $f: I \longrightarrow \Re^{k}$ be the function defined by $f(z)=(1, \ldots, 1)$, $f\left(x_{\alpha}\right)=y_{\alpha}$ for $\alpha<2^{\omega}$ and $f(x)=0$ for other x. Observe that f intersects each minimal blocking set F in $I \times \Re^{k}$. Indeed, if $F=F_{\alpha}$ for some $\alpha<2^{\omega}$ then $\left(x_{\alpha}, y_{\alpha}\right) \in f \cap F$. In the other case $\operatorname{dom}(F) \subset \bar{J}$, where J is a component of the set $I \backslash \overline{K_{0}}$. Since $r n g(F)=\Re^{k},(x, 0) \in f \cap F$ for some $x \in \operatorname{dom}(F)$. Thus f is almost continuous, $f \mid E \equiv 0$ but $f \not \equiv 0$, therefore E is not stationary for $\mathcal{A}\left(I, \Re^{k}\right)$.
Q.E.D.

Corollary 8.1 $E \in S\left(\mathcal{A}\left(\Re, \Re^{k}\right)\right)$ iff $\operatorname{card}(\Re \backslash E)<2^{\omega}$.
Corollary 8.2 Since $\mathcal{A}(\Re, \Re) \subset \mathcal{C o n n}(\Re, \Re) \subset \mathcal{D}(\Re, \Re)$, and $S(\mathcal{A}(\Re, \Re))=$ $\boldsymbol{S}(\mathcal{D}(\Re, \Re)), E \in \boldsymbol{S}(\mathcal{C o n n}(\Re, \Re))$ iff $\operatorname{card}(\Re \backslash E)<2^{\omega}$.

Theorem 8.2 The only determining set for the classes $\mathcal{A}\left(\Re, \Re^{k}\right)$, $\mathcal{C o n n}\left(\Re, \Re^{k}\right)$ is \Re.

Proof. For $k=1$ this follows from the inclusions $\mathcal{D B _ { 1 }} \subset \mathcal{A}(\Re, \Re) \subset$ $\mathcal{C o n n}(\Re, \Re) \subset \mathcal{D}(\Re, \Re)$, the condition (3) before Theorem 8.1 and the equalities $\boldsymbol{D}\left(\mathcal{D B}_{1}\right)=\boldsymbol{D}(\mathcal{D})=\{\Re\}$ [14]. For $k>1$ this is a consequence of the inclusions $\boldsymbol{D}\left(\mathcal{A}\left(\Re, \Re^{k}\right)\right) \subset \boldsymbol{D}(\mathcal{A}(\Re, \Re))$ and $\boldsymbol{D}\left(\operatorname{Conn}\left(\Re, \Re^{k}\right)\right) \subset \boldsymbol{D}(\operatorname{Conn}(\Re, \Re))$.
Q.E.D.

The following equalities are easy consequences of Theorems 8.1 and 8.2 and the conditions before Theorem 8.1 (cf. [9], Theorem 2.1, p. 207).

Corollary 8.3 In the class of real functions defined on \Re the following equalities hold:
(1) $E \in \boldsymbol{R}(\mathcal{C}, \mathcal{X})$ iff $\operatorname{card}(\Re \backslash E)<2^{\omega}$, for $\mathcal{X} \in\{\mathcal{A}, \mathcal{C o n n}, \mathcal{D}\}$,
(2) $\boldsymbol{R}(\mathcal{C o n n}, \mathcal{D})=\boldsymbol{R}(\mathcal{A}, \mathcal{D})=\boldsymbol{R}(\mathcal{A}, \mathcal{C o n n})=\{\Re\}$.

Assume that g is an arbitrary function and \mathcal{F} is a family of functions from X into Y. We say that $A \subset X$ is (g, \mathcal{F})-negligible if every function $f: X \longrightarrow Y$ which coincides with g on $X \backslash A$ belongs to \mathcal{F} (see [4] and [38]).

Theorem 8.3 Let M be a subset of I. There exists an almost continuous function g such that M is $a(g, \mathcal{A}(I, \Re))$-negligible iff $I \backslash M$ is c-dense in I [38].

Theorem 8.4 Assume that g is an almost continuous real function defined on I. Then the following statements are equivalent:
(i) $g \in \mathcal{D}^{*}(I, \Re)$,
(ii) every nowhere dense subset of I is $(g, \mathcal{A}(I, \Re))$-negligible,
(iii) there exists a dense subset of I which is $(g, \mathcal{A}(I, \Re))$-negligible [38].

Example 8.1 There exists an almost continuous function $g: I \longrightarrow \Re$ such that all subsets of I which are small in the sense of cardinality (i.e. with the cardinality less than 2^{ω}) or of measure (i.e. of measure zero) or of category (i.e. of the first category) are $(g, \mathcal{A}(I, \Re))$-negligible.

Indeed, as in the proof of Lemma 6.1 one can construct a function $g \in \mathcal{A}(I, \Re)$ such that $\operatorname{card}(P \cap \operatorname{dom}(K \cap g))=2^{\omega}$ for each minimal blocking set K and every non-empty perfect set $P \subset \operatorname{dom}(K)$. Then g is OK.

Theorem 8.5 Suppose that $f, g \in \mathcal{D}^{*}(I, I)$ and there exists a finite subset A of I such that $f^{-1}(y)=g^{-1}(y)$ for all $y \in I \backslash A$. Then f and g are both almost continuous or both not almost continuous [38].

Recall that a class \mathcal{F} of real functions is said to be characterizable by associated sets if there exists a family of sets \mathcal{P} so that $f \in \mathcal{F}$ iff for all $y \in \Re$ the sets $[f<y]$ and $[f>y]$ belong to $\mathcal{P}[8]$.

Corollary 8.4 The class $\mathcal{A}(I, \Re)$ is not characterizable by associated sets [38].

Acknowledgement. I would like to thank to Z. Grande for many stimulating conversations and to J. M. Jȩdrzejewski for his active interest in the publication of this text. I am especially grateful to A. Maliszewski for his valuable remarks which allowed me to correct many mistakes in the first version of the paper.

Contents

1 Preliminaries. 462
1.1 Notations. 462
1.2 Basic definitions. 463
1.3 Collation with other classes of functions. 467
1.3.1 Almost continuity and continuity. 467
1.3.2 Almost continuity, connectivity and other Darboux- like properties. 468
1.4 The local characterization. 472
2 Restrictions and extensions. 473
3 Compositions. 478
4 Cartesian products and diagonals. 484
5 Limits of sequences. 489
6 Operations. 494
6.1 Sums. 494
6.2 Products. 498
6.3 Maxima and minima 505
7 Insertions of functions. 509
8 Stationary and determining sets. 511

References

[1] V. N. Akis, Fixed points theorems and almost continuity, Fund. Math. 121(1984), 133-142.
[2] N. Boboc and S. Marcus, Sur la détermination d'une fonction par les valeurs prises sur un certain ensemble, Ann. Sci. École Norm. Sup. 76(1959), 151-159.
[3] J .B. Brown, Connectivity, semi-continuity and the Darboux property, Duke Math. J. 36(1969), 559-562.
[4] J. B. Brown, Negligible sets for real connectivity functions, Proc. Amer. Math. Soc. 24(1970), 263-269.
[5] J. B. Brown, Almost continuous Darboux functions and Reed's pointwise convergence criteria, Fund. Math. 86(1974), 1-7.
[6] J. B. Brown, Almost continuity of the Cesaro-Vietoris function, Proc. Amer. Math. Soc. 49(1975), 185-188.
[7] J. B. Brown, P. Humke and M. Laczkovich, Measurable Darboux functions, Proc. Amer. Math. Soc. 102(1988), 603-612.
[8] A. M. Bruckner, On characterizing classes of functions in terms of associated sets, Canad. Math. Bull. 10(1967), 227-231.
[9] A. M. Bruckner, Differentiation of Real Functions, Springer-Verlag 1978.
[10] A. M. Bruckner and J. G. Ceder, Darboux continuity, Jber. Deut. Math. Ver. 67(1965), 93-117.
[11] A. M. Bruckner and J. G. Ceder, On jumping functions by connected sets, Czech. Math. J. 22(1972), 435-448.
[12] A. M. Bruckner, J. G. Ceder and T. L. Pearson, On Darboux functions, Rev. Roum. Math. Pures et. Appl. 19(1974), 977-988.
[13] A. M. Bruckner, J. G. Ceder and M. Weiss, On uniform limits of Darboux functions, Colloq. Math. 15(1966), 65-77.
[14] A. M. Bruckner and J. Leonard, Stationary sets and determining sets for certain classes of Darboux functions, Proc. Amer. Math. Soc. 16(1965), 935-940.
[15] J. G. Ceder, Some examples on continuous restrictions, Real Analysis Exchange 7(1981-1982), 155-162.
[16] J. G. Ceder, On factoring a function into a product of Darboux functions, Rend. Circ. Mat. Palermo 31(1982), 16-22.
[17] J. G. Ceder, On composition with connected functions, Real Analysis Exchange 11(1985-86), 380-390.
[18] J. L. Cornette, Connectivity functions and images on Peano continua, Fund. Math. 58(1966), 183-192.
[19] R. Engelking, General Topology, Warszawa 1976.
[20] R. J. Fleissner, An almost continuous function, Proc. Amer. Math. Soc. 45(1974), 346-348.
[21] R. J. Fleissner, A note on Baire 1 Darboux functions, Real Analysis Exchange 3(1977-78), 104-106.
[22] B. D. Garret, D. Nelms and K. R. Kellum, Characterization of connected functions, Jber.Deut. Math. Ver. 73(1971), 131-137.
[23] R. G. Gibson, Darboux like functions, a manuscript.
[24] R. G. Gibson and F. Roush, The Cantor intermediate value property, Topology Proc. 7(1982), 55-62.
[25] R. G. Gibson and F. Roush, The uniform limit of connectivity functions, Real Analysis Exchange 11(1985-86), 254-259.
[26] Z. Grande, Quelques remarques sur les fonctions presque continues, Probl. Mat. 10(1988), 59-70.
[27] H. B. Hoyle, III, Connectivity maps and almost continuous functions, Duke Math. J. 37(1970), 671-680.
[28] T. Husain, Almost continuous mappings, Prace Mat. 10(1966), 1-7.
[29] J. M. Jastrzȩbski, An answer to a question of R. Gibson and F. Roush, Real Analysis Exchange 15(1989-90), 340-342.
[30] J. M. Jastrzȩbski, J. M. Jçdrzejewski and T. Natkaniec, On some subclasses of Darbour functions, Fund. Math. 138(1991), 165-173.
[31] J. M. Jastrzȩbski, J. M. Jȩdrzejewski and T. Natkaniec, Points of almost continuity of real functions, Real Analysis Exchange 16(1990-1991), 415-421.
[32] F. B. Jones and E. S. Thomas, Jr., Connected G_{δ}-graphs, Duke Math. J. 33(1966), 341-345.
[33] K. R. Kellum, Almost continuous functions on I^{n}, Fund. Math. 79(1973), 213-215.
[34] K. R. Kellum, Sums and limits of almost continuous functions, Colloq. Math. 31(1974), 125-128.
[35] K. R. Kellum, On a question of Borsuk concerning non-continuous retracts I, Fund. Math. 87(1975), 89-92.
[36] K. R. Kellum, On a question of Borsuk concerning non-continuous retracts II, Fund. Math. 92(1976), 135-140.
[37] K. R. Kellum, The equivalence of absolute almost continuous retracts and ε-absolute retracts, Fund. Math. 96(1977), 229-235.
[38] K. R. Kellum, Almost continuity and connectivity-sometimes it's as easy to prove a stronger result, Real Analysis Exchange 8(1982-83), 244252.
[39] K. R. Kellum, Iterates of almost continuous functions and Sarkovskii's Theorem, Real Analysis Exchange 14(1988-89), 420-423.
[40] K. R. Kellum and B. D. Garret, Almost continuous real functions, Proc. Amer. Math. Soc. 33(1972), 181-184.
[41] K. R. Kellum and H. Rosen, Compositions of continuous functions and connected functions, a preprint.
[42] J. S. Lipiński, On a problem concerning the almost continuity, Zeszyty Naukowe Uniwersytetu Gdańskiego 4(1979), 61.
[43] J. S. Lipiński, On Darboux points, Bull. Pol. Ac. Sci. 26(1978), 869-873.
[44] P. E. Long and E. E. Mc Gehee Jr., Properties of almost continuous functions, Proc. Amer. Math. Soc. 24(1970), 175-180.
[45] S. Marcus, Sur la représentation d'une fonction arbitraire par des fonctions jouissant de la propriété de Darboux, Trans. Amer. Math. Soc. 35(1966), 484-494.
[46] S. A. Naimpally and C. M. Pareek, Graph topologies for functions spaces, II, Comm. Math. 13(1970), 221-231.
[47] T. Natkaniec, On lattices generated by Darboux functions, Bull. Pol. Ac. Sci. 35(1987), 549-552.
[48] T. Natkaniec, Two remarks on almost continuous functions, Probl. Mat. 10(1988), 71-78.
[49] T. Natkaniec, On compositions and products of almost continuous functions, Fund. Math., 139(1991), 59-74.
[50] T. Natkaniec, Products of Darboux functions, to appear.
[51] R. J. Pawlak, Darboux Transformations, Thesis, Lódź, 1985.
[52] C. S. Reed, Pointwise limits of sequences of functions, Fund. Math. 67(1970), 183-193.
[53] J. H. Roberts, Zero-dimensional sets blocking connectivity functions, Fund. Math. 57(1965), 173-179.
[54] H. Rosen, Connectivity points and Darboux points of real functions, Fund. Math. 89(1975), 265-269.
[55] H. Rosen, R. G. Gibson and F. Roush, Extendable functions and almost continuous functions with a perfect road, Real Analysis Exchange 17, to appear.
[56] J. Shoenfield, Martin's axiom, Amer. Math. Monthly 82(1975), 610-617.
[57] W. Sierpiński, Sur les suites transfinies convergentes de fonctions de Baire, Fund. Math. 1(1920), 132-141.
[58] J. Smital and E. Stanova, On almost continuous functions, Acta Math. Univ. Comen. 37(1980), 147-155.
[59] B. D. Smith, An alternate characterization of continuity, Proc. Amer. Math. Soc. 39(1973), 318-320.
[60] J. Stallings, Fixed point theorem for connectivity maps, Fund. Math. 47(1959), 249-263.

[^0]: *Partially supported by KBN Research Grant.

