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 Variation of f on E and Lebesgue Outer
 Measure of fE

 Let / be a real- valued function on a cell K = [a, b]. By "cell" we mean a
 closed, bounded, nondegenerate interval in R. The total variation of / is given
 by a Kurzweil-Henstock integral fK 'df' < oo defined as the gauge-filtered limit of
 approximating sums over cell divisions with endpoint tags. For a development of
 this type of integral and its associated definition of differential, see [3,4,5]. We hope
 the reader will be impressed with the utility of our differential formulations based
 on an "honest" defintion of differential. We define the variation of / on a subset
 E of K to be the upper integral fK lfi|¿/| < oo where 1# is the indicator of E.
 We call E ¿/-null if this integral is zero, that is, if the differential 1# df = 0 [3,4].
 Before the advent of the Kurzweil-Henstock integral ¿/-null sets E were treated
 indirectly by using the condition that the image fE be Lebesgue-null. Indeed,
 as we shall show in Theorem 2, fE is Lebesgue-null if E is ¿/-null. This result
 enables us to avoid the usual tedious proofs that an image fE is Lebesgue-null by
 resorting to a concise proof of the inherently stronger condition that E is ¿/-null.
 Theorem 11 gives a converse to Theorem 2 for / a continuous function of bounded
 variation. For such / a set E is ¿/-null if and only if fEě's Lebesgue-null. So for
 continuous / of bounded variation Lusin's condition ( N ) that / map Lebesgue-
 null sets into Lebesgue-null sets is obviously just the absolute continuity conditon
 that every Lebesgue-null set is ¿/-null. Let m be Lebesgue measure and m* be
 Lebesgue outer measure.

 Theorem 1. Let E be a subset of K such that at each point of E f is either
 left or right continuous. Then

 (1) m-(fE) < 2 7 1E|¿/|.
 J K

 Proof: Let D be the set of those t in E for which there exist cells J containing
 t with diam fj = 0, that is, with / constant on J. Clearly fD is countable, so
 m(fD) = 0. Given a gauge S on K and e > 0 each t in E ' D is an endpoint of
 some cell J in K such that (J, t) is ¿-fine and 0 < diam F J < e. Given c > 1
 choose s in J such that
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 (2) O < sup |/(r) - f(t) I < c'f(s) - f(t) |.
 reJ

 Let / be the cell with endpoints s, t. Then by (2) we have

 (3) diam fl < diam f J < 2c| A /(/) |.
 Thus

 (4) (-M) is a tagged cell with t in E/D and
 0 < diam fl < 2c| A /(/) 1.

 Moreover,

 (5) diam fl < e.

 Let H be the set of all cells H of the form [inf //, sup fl] for some (I, t) satisfying
 (4). By (5) Tí is a Vitali covering of f(E ' D ), hence of m-all of fE. So m-all of
 fE is covered by a countable set {Hi} of disjoint members H, of Ti. For each H,
 choose ( Ii, U ) satisfying (4) with Hi the convex closure of The s are disjoint
 since f li Ç Hi. Thus by (4)

 (6) rn*(fE) < E, m(Hi) = diam //, < 2c S,| A /(/,•) |
 < 2cS(1B|A/U)

 where the upper sum is the supremum of all approximating sums over ¿-divisions
 of K , [3,4]. Since 6 is an arbitrary gauge (6) gives

 (7) m*(fE) <2 cí 1eW' for all c > 1.
 J K

 Clearly (7) implies (1). □

 Theorem 2. If A is ¿/-null then m(fA) = 0.

 Proof: Since df = 0, lp df = 0 for every point p in A. That is, / is
 continuous at every p in A. So Theorem 1 gives m(fA) = 0. □

 Under certain conditions on / the inequality (1) in Theorem 1 can be sharpened
 by halving the coefficient 2 on the right side in (1). Such is our next result.

 509



 Theorem 3. Let E be a subset of K and A a ¿/-nuli subset of E such that
 for each t in E'A either / is left continuous and (df /'df')_(t) exists, or / is right
 continuous and (df /'df')+(t) exists. Then

 (8) m-(ÍE) < Jk lE'if'.
 Proof: By Theorem 2 we may assume A is empty. Existence (in the narrow

 sense [5]) of (df /'df')_(t) = lim/_t_ A /(/)/ 1 A /(/) | means that for all sufficiently
 small I with right endpoint t sgn A /(/) = (df /'df')_(t) ^ 0. If this left derivative
 equals 1 then f(t) = Max //. If it equals -1 then f(t) = Min fi. Analogous
 statements hold for the right derivative. In either case the radius of fl about
 f(t) equals diam //. So the coefficient 2 in (3) can be replaced by 1 inducing the
 replacement of 2c by c in (4), (6), (7). The modified proof of Theorem 1 then gives
 (8) in place of (1). □

 A classical special case of Theorem 3 is the following.

 Theorem 4. If f'(t) exists and is finite for df- all t in E then (8) holds.

 Proof: If f'(t) exists and is not 0 then so does df /'df'(t) = sgn f'(t) = ±1.
 Let B be the set of all ť where f'(t) exists and is finite. Then 1b df = 1 b f dt.
 So the set of points where /' = 0 is (¿/-null. By hypothesis the subset of E where
 /' fails to exist is <f/-null. Hence, the set A of all t in E where either f'(t) = 0 or
 f'(t) fails to exist is ¿/-null. At each t in E'A f has a nonzero derivative. So /
 is continuous at t and df/'df' ( t ) exists. Hence, Theorem 3 gives (8). □

 Our next result gives (8) in particular for continuous functions of bounded
 variation, df is dampable if there exists an everywhere positive function u on K
 such that both u df and u'df ' are integrable [3,4].

 Theorem 5. Let / be continuous with df dampable on K . Then (8) holds for
 every subset E of K.

 Proof: By Prop. 21 of [5] there is a ¿/-null subset A of K such that df /'df' (t)
 exists in the narrow sense at every t in K'A. So Theorem 3 applies and gives (8).
 □

 Our next result generalizes an exercise in [6] whose utility was pointedly noted
 by Varberg [7].
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 Theorem 6. Let 'f'(ł)' < c at df- all t in E. Then m*(fE) < c m*(E).

 Proof: By hypothesis there is a «¿/-null subset A oí E such that 'f'(t)' < c for
 all t in E'A. Thus 1e|¿/| = ÍE'A'df' = lE'A'f''dt < c 1# dt. By Theorem 4 (8)
 holds. So m*(fE) < fK 1eW' < c fK 1^ dt < c m*(E). □

 In the results that follow we shall apply Theorem 2 to get Lebesgue nullity of
 image sets in Theorems 7, 8, 9, 11 and 12.

 Theorem 7. Let / be continuous with df dampable on K. Then the set A of
 all points where / has either a left or right derivative equal to zero is ¿/-null. So
 m(fA) = 0.

 Proof: Let B be the set of points where / has a right derivative equal to 0.
 We need only show B is ¿/-null since a similar proof applies for the left derivative.
 Let P(I,t) = 1 if ť is the left endpoint of /, 0 if t is the right endpoint. Then
 P 1b A / = o(At) so P I# df = 0. By Theorem 16 of [4] P 1^ is tag-null df-
 everywhere. That is, for ¿/-all t in B the indicator P(I, t) = 0 ultimately a s I -* t.
 But this can only occur at b since for t < b we have P(I, t) = 1 as I - ► t. But this
 can only occur at b since for t < b we have P(/, t) = 1 as I - ► t+. Clearly b cannot
 belong to B. So the empty set is df- all of B. That is, B is ¿/-null. m(fB) = 0 by
 Theorem 2. □

 Theorem 8. Let A be a Lebesgue-null subset of K such that all four Dini
 derivates of / are finite at each point in A. Then A is ¿/-null, so m(fA) = 0.

 Proof: By hypothesis there exist a gauge 6 and a function g on K such that
 I A /|/ At (I) < g(t) for all ¿-fine (/, t) with t in A. That is, 1¿| A/| < l¿g Ať at
 each ¿-fine tagged cell. So 1¿|¿/| < 1 ^g dt = 0 since 1.a dt = 0 for Lebesgue-null
 A. Hence, df = 0. m(fA) = 0 by Theorem 2. □

 Theorem 2 easily gives Theorem 1 of [2] which we formulate in terms of differ-
 entials as our next result.

 Theorem 9. If df = g dt on K and A is a Lebesgue-null subset of K then f A
 is Lebesgue-null.

 Proof: Since 1^ dt = 0, 1a df = g 1 a dt = 0. So m(fA) = 0 by Theorem 2.
 □
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 Our next result is an extension of Banach's indicatrix theorem [1].

 Theorem 10. Let / be a continuous function of bounded variation on K. Let
 N(t) be the number of points s in K such that f(s) = t. Then for every Borei set
 E in R

 (9) / lj-iE'df'= J f 1 ENdt. JK J R

 Proof: (Since N = 0 outside / K the integral on the right in (9) is effectively
 over fK rather than over R.) For / of bounded variation JK 1b|¿/| defines a
 measure on the Borei sets B in K [4]. Since / is Borei measurable f~lE is a Borei
 set for E a Borei set. So a{E) defined by the left side of (9) gives a Borei measure
 a on R, indeed on fK. By Banach's indicatrix theorem [1,6] N < oo ¿¿-everywhere
 and (9) holds for E = R. That is,

 (10) ]K 'df' = 1kn dt.
 Since N dt is integrable and nonnegative it defines a Borei measure ß on R with
 ß(E) given by the right side of (9) for each Borei set E in R. We need only show
 a = ß. Given D open in K apply (10) to Ki = Ii for each component Ii of D.
 Since / is continuous, the integral of 'df' over K¡ equals the integral of 1 /, 'df' over
 K. So summation of (10) over gives

 (11) J / K lD'df'= «/R f Nd dt J K «/R

 where Np(t) is the number of points s in D such that f(s) = t. Given an open
 subset B of R apply (11) to the open subset D = f~l B of K , noting that No =
 1b N , to conclude that a(B) = ß(B). So a = ß since Borei measures on R are
 regular. □

 Theorem 10 gives a converse to Theorem 2 for continuous functions of bounded
 variation. This is our next result. The conclusion that m(gA) = 0 is Theorem 18
 in [7].

 Theorem 11. Let / be a continuous function of bounded variation on K. Let
 A. be a subset of K such that m(f A) = 0. Then A is ¿/-null and m(gA) = 0 for
 ig = 'd¡'.

 Proof: The Lebesgue-null f A is contained in a Lebesgue-null Borei set E,
 'E dt = 0. So f~lE is ¿/-null by (9). Thus, since A Ç f~xE , A is ¿/-null. For
 dg = 'df', A is ¿¿r-null. Hence, m(gA) = 0 by Theorem 2. □
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 Our next result characterizes monotoneity in terms of the upper right derivate.
 A similar result holds for the upper left derivate. The open interval U can be
 bounded or unbounded.

 Theorem 12. Let / be continuous on an open interval U. Let A be the
 set of all t in U where the upper right derivate D+f(t) < 0. Then the following
 conditions are equivalent:

 (i) f(s) < f(t) for all s < t in U,

 (ii) A is ¿/-null on every cell K in U,

 (iii) f A is Lebesgue-null,

 (iv) f A has no interior points.

 Proof: Given (i) all derivates of / are nonnegative. Hence, / has a right
 derivate equal to 0 at every point in A. So (ii) follows from Theorem 7. (ii) implies
 (iii) by Theorem 2 and the countable additivity of m. (iii) trivially implies (iv).
 Given (iv) suppose (i) false. Then /(a) > f(b) for some a < b in U. We contend
 this implies (/(6), /(a)) Ç fA contradicting the hypothesis (iv). Let K = [a, b].
 Consider any t in the open interval (/(6), /(a)). We contend t is in fA. Since
 / is continuous K fl f~lt is nonempty by the intermediate value theorem. It is
 moreover compact. Let q be its last point. Then since f(b) < t the intermediate
 value theorem implies f(s) < t for all s in (9,6], hence f(s) - f(q)/s - q < 0. So
 q is in A. Hence t = f(q) is in f A. □

 We finish with a pair of exercises characterizing monotone and monotone, con-
 tinuous functions.

 Theorem 13. Let / be a function on K such that

 (12) diam fK=í 'df' < 00.
 J K

 Then / is monotone.

 Proof: We may assume f(a) < f(b). (Otherwise consider - /.) Given s < t
 in K we contend f(s) < f(t). Take sn < tn in K such that

 (13) I f(sn) - f(tn) I -► diam fl< as n - ► 00.
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 Since a < sn < tn < b, 'f(a) - f(s,)' + |/(s„) - /(f„)| + |/((„) - /(6)1 < JK W'-
 So for all n = 1, 2, . . .

 (14) l/w - /(*.) I + |/(<.) - /(4)1 < JK W' - |/(.„) - /(in)|.
 By (14), (13), (12) f(sn) -► f(a) and f(tn) -► f(b) as n -+ oo. So f(b) - f(a) =
 fK 'df I by (13), (12). Thus /(,) - f(a) + 'f(t) - f(s)' + f(b) - f(t) < f(b ) - f(a)
 since a < s < t < b. Hence 'f(t ) - f(s) ' < f(t) - f(s). That is, f(s ) < f(t).
 □

 Our final result follows easily from Theorem 13.

 Theorem 14. Let / be a function on K such that

 (15) m*(fK) = Í 'df ' < oo.
 J K

 Then / is monotone and continuous.

 Proof: Let J - [inf fK, sup fK]. Then m*(fK) < m(J) = diam fK <
 fK 'df'. By (15) equality holds throughout these inequalities. In particular (12)
 holds. So / is monotone by Theorem 13. Since m(fK) = m(J), fK is dense in
 J. So the monotone / cannot have a saltus in K . Hence, / is continuous. □
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