GENERALIZED CONVERGENCE THEOREMS FOR DENJOY-PERRON INTEGRALS

We give a proof of the controlled convergence theorem that is real-line independent.

Let E be an interval in the n-dimensional space, that is, it is the set of all points $x = (x_1, \ldots, x_n)$ with $a_j \le x_j \le b_j$ for $j = 1, 2, \ldots, n$. Assume that a norm has been defined on the n-dimensional space. An open sphere S(x,r) with centre x and radius r is the set of all y such that ||x-y|| < r. A division D of E is a finite colleciton of interval-point pairs (I,x) with the intervals non-overlapping and their union E. It is δ -fine if $I \subset S(x,\delta(x))$ where x is a vertex of I. Then a real number H is the value of the generalized Riemann integral of f over E if given $\epsilon > 0$ there is a positive function $\delta(x)$ such that

$$|(D) \sum f(x)|I| - H| < \epsilon$$

for all δ -fine division D of E.

A function F defined on E is $AC^{**}(X)$ if for every $\epsilon > 0$ there are a $\delta(x) > 0$ and a $\eta > 0$ such that for any two δ -fine partial divisions of X, D₁ and D₂, satisfying

$$(D_1 \setminus D_2) \sum |I| < \eta$$
 we have $(D_1 \setminus D_2) \sum |F(I)| < \epsilon$.

Here $D_1 \setminus D_2$ denotes the collection of component intervals I in $D_1 \setminus D_2$. A function is ACG^{**} if E is the union of a sequence of closed sets X_i , i = 1,2,..., on each of which F is $AC^{**}(X_i)$. A sequence of functions $\{F_n\}$ is UACG^{**} if F_n is ACG^{**} uniformly in n.

Then we can prove the following

THEOREM If the following conditions are satisfied:

(i) $f_n(x) \to f(x)$ everywhere in E as $n \to \infty$ where each f_n if generalized Riemann integrable on E;

(ii) the primitives F_n of f_n are UACG^{**},

then f is generalized Riemann integrable on E and we have

$$\int_E f_n \longrightarrow \int_E f \quad \text{as} \quad n \to \infty.$$

Some applications are also mentioned.