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 In this paper I wish to look again at the role of porosity

 in the construction of counterexamples. Much has been

 written about the role of porosity in the equality of

 derivates of functions. My interest lies in the role of

 porosity and its several generalizations in the theory of

 cluster sets. In a early paper I investigated the sets of

 points on the real line that were the sets on which the

 cluster sets of various types differed for arbitrary

 functions -real or complex valued- defined in the half plane

 y > 0.

 Using the techniques available to me at the time I was able

 to show that many of these exceptional sets were of the

 first Baire category and measure zero. A couple of years

 later, Yoshida published a paper in the Nagoya Journal [1],

 extending these results by showing that the sets I had

 considered were, in fact, sigma-porous sets. I was intrigued

 by the results, particularly when I discovered that the

 techniques he used to prove the improved theorems were

 essentially the same as my earlier techniques. Had I known

 of the concept of sigma-porosity at the time of my work I
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 might have proved the better result.

 The question of whether Yoshida' s results were indeed the

 best possible in this direction is the subject of the work

 that led to this talk. Some specifics: Let^(x) and
 ļt,(x) be two fixed Stolz angles in the upper half plane with

 vertex at the point x on the real line R; and let the set

 E ( f , V J r X?2 ^ set x on R where the function
 f(x,y) has unequal cluster sets through the two Stolz

 angles; finally, let E(f) denote the set of points on the

 real line where f has unequal angular cluster sets on any

 two Stolz angles.

 Yoshida asked the following question: Given an arbitrary

 sigma-porous set E on R, does there exist a function, f,

 possibly holomorphic in the upper half plane so that E(f) =

 E? That is, does sigma-porosity characterize the sets E(f)?

 Paul Humke and I attempted to answer this question by

 constructing just such a function. In that endeavor we were

 led to yet another variant of the porosity concept that

 seemed more amenable to the constructive process, that of

 global porosity. An analysis of the argument used by

 Yoshida and earlier myself led us to conclude that what was

 important here was the geometry and regularity of the

 intervals complimentary to the set E. Since E(f) can be

 expressed as a countable union of sets of the type E(f,Vļ'V2)
 we looked closely at the question for fixed Stolz angles.

 At each point of E(f,VļrV2> the angular region V x is
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 constructed, and the region G(E,Vj) (x) , is formed,

 being the union taken over all x in E(f,Vj ^2*' 0ne can

 easily show that at any limit point xQ of E, a sequence can

 approach xQ through the compliment of GÍE,^, ) non-
 tangentially to the real axis only if the complimentary

 intervals of E are sufficiently large and regular in a

 neighborhood of xQ - Yoshida's sigma porosity argument.

 What seemed important to us about a set P that was porous,

 with porosity 1/2, for example, at a point xQ was the fact

 that xQ should be the limit of intervals of the compliment
 of E with the property that in any sufficiently small

 interval I containing xQ the intervals of the compliment of
 P made up approximately 1/2 of the interval I, and this

 could be restated in terms of the covering properties of

 intervals related to these complimentary intervals. In

 particular, if each of the complimentary intervals were

 expanded about its midpoint by a factor of 2, such expanded

 intervals shoud cover most of our interval I, and a like

 expansion by any factor greater than 2 will cover all of I

 near x . This idea is the one behind the definition of
 o

 uniform porosity of a set E at a point x. Specifically, let

 E be a bounded set with a = inf(E) and b = sup(E). Then

 ia,b)'cl(E) is a union of disjoint open intervals I(n). We

 let EP(N) denote the set of endpoints of the first N-l

 intervals, and r*I(k) be the interval concentric with I(k)

 whose length is r times the length of I(k). If there is a

 number r > 0 such that for each N, E'EP(N) is wholly
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 contained in the union of the expanded intervals r*I(k), the

 union running from k = N to » , then E is uniformly porous,

 and indeed, countable unions of uniformly porous sets

 actually characterize sigma-porous sets.

 We were led to introduce global porosity because of the

 difficulty encountered in the function-construction phase

 with the possiblity of needing an infinite collection to do

 the covering at each point. Accordingly, we modified the

 definition of uniformly porous in the following way: If for
 *

 r>0 there is, for each N, an integer N such that the set

 EP (N) is contained in the finite union of intervals

 *

 r*I(k), the union running from N to N , then E is called r-

 globally porous. A set is just globally porous if it is r-

 globally porous for some r, and the countable union of

 globally porous sets is, called sigma-globally porous.

 In the paper , "Another Note on Sigma-Porous Sets" 12], we

 show some characterizations of sigma-globally porous sets.

 Among other results, we construct there a set which is

 perfect and porous, but not sigma-globally porous. With

 this definition in hand we began to attempt to construct a

 function to partially answer the question of Yoshida. To

 that end we began with the

 LEMMA:

 Let E be a G^subset of an r-globally porous set F. Let oc be
 chosen from the interval (0,^/2). Then there is a continuous
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 function in the upper half plane to [0,1], and a number#

 greater that t< such that

 (i) The cluster set on the Stolz angle (ct,TT -oc) = [0,1]

 for X in E .

 (ii) The cluster set on the Stolz angle (^,'îr-û) = [0]
 for X in Cl (E) .

 (iii) The cluster set on any Stolz angle V = [0] for x

 not in E

 From this lemma and the properties of G sets which are

 also sigma-globally porous, we were able to make the

 following first small step in the direction of the question

 of Yoshida:

 THEOREM: If E is a Gw , sigma-globally porous set on R,

 then there is a continous function from the upper

 half plane to [0,1], with the given set E as the

 exceptional set E(f).
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