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 On Generalized Cluster Sets

 The paper consists of three parts. In the first we

 consider a -ideals of subsets of the plane adjoint with some

 a -ideal J' of subsets of the real line. The second part

 contains some theorems concerning o -algebras of the form
 2

 (ß à J) , where ß is a a-algebra of Borei sets. In the

 third part the tacts from the two earlier parts are used to

 study generalized limit numbers of real function defined in

 the upper half -plane.

 1 . Let H denote the open upper half -plane above the
 2

 real line R, S - a a-algebra of subsets of R and S

 the smallest a-algebra generated by sets A x B, where

 A €S and B € S. L(x,0) is the half line beginning at

 x € R in the direction 8, L(x,6,r) - the segment beginning

 at x € R in the direction 6 having length r . For x € R

 let h be the real function defined in H such that h (p) =
 X X

 = r for p € H, where r is the distance of p from x.

 For any a-ideal J c s and direction 6 Ç. (0,ir) we

 shall define the a-ideal <7*^(8) adjoint with J in the
 direction 9:

 ( 8) « ÍM € S^ : there is a set U € J* such that

 h (L(x,0) H M) € J for each x € R - Ul
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 The a-ideal (ir/2) was defined by R. Ger in his work [3].

 Let us notice that for some o -ideals J we obtain:

 (1) ^(0Ł) » ( 8 2 ) for 01,-e2 € (0,rr) , 9][ i 82 ,

 namely for J - Í0], the a-ideal of measure zero sets and

 the cr-ideal of first category sets which follow from the

 Fubini theorem and the Kur a tarsie i -Ulam theorem (see [5],

 Chapter XIV, XV ) . However it is possible to give an example

 of a o-ideal for which (1) is not valid. For instance, let S

 be the o -algebra of all subsets of R and J - the a-ideal

 of countable sets. Let A be the set of x € [o,l] the

 ternary expansion of which has the form x = O.a^^a^
 where

 JO or 2 for i odd
 ai = ' 10 for i even

 and B be the set of y € (0,11 the ternary expansion of

 which has the form y = Ofb^b^b^ where

 io for i odd
 b. - (
 1 10 or 2 for i even

 Then the set M = A x B Ç and M € ( 3ît/4) , but

 M ¿ J2 (tt/2) .

 2
 Similar to the a-ideal J (0) we shall define a

 2
 a-ideal J (x) adjoint with J at the point x for an

 arbitrary a-ideal J c s and for every point x 6 R.
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 7^ (x) = i M £ : there is a set ® t J such that

 hx(L(x,9) H M) € <T for each 9 £ (0,7 r) -®] .

 Let us notice that for such a-ideals as J - ¡0', the

 family of sets of measure zero and for the family of sets of

 first category we have

 (2) ^2<xi' " for X1'X2 6 R' X1 * X2 '

 It can be shown that for the a -ideal of countable sets the

 equality (2) does not hold. It suffices to transform homeo-

 inorfically the unit square Qq onto a tetragon in such a way
 that the points of the half lines L(x,t/2) for x 6 [0,11

 will be transformed into those of the half lines L(0,8) for

 9 € [ir/4, arc tg 21 and the points of the half lines L(x,37í/4)

 for x 6 [0,2) will be transformed into those of the half lines

 L (4 ,cp) for cp € [3tt/4, t r - arc tg j] . Then the image E of
 the set M from the above example, obtained by means of the

 2
 homeomorphism , belongs to S (assuming that the continuum

 hypothesis is true, see [6]) , and E t ( 4) , but E ļ. (O) .

 It follows from those above considerations that we can

 2
 define the o-ideal J adjoint to a given o -ideal J c s

 in all directions:

 j2 = H J^(6) ,
 0€ (0,tt)

 and the a -ideal adjoint to a given a -ideal J c s in

 all points :
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 Ą = n ^2(x) .
 x€R

 For the a -ideal J of countable sets one can prove that il

 A ,B C (o,ir) , A fi B = 0, A U B = -(0,7r) , A 4 0. B 4 0, then

 there exists a set M c H such that

 M £ J2 ( 9 ) for each 9 € A

 and

 M € J^(8) for each 8 € B .

 (We assume that the continuum hypothesis is true) .

 It follows from that, that j' <t J2 . Similarly J2 jļ .

 2. We are now going to study the a -algebra 8 à J =

 - ÍB A U : B € 5, U where 8 denotes the o -algebra

 of Borei subsets of R and T will be a a-ideal in R.

 Let & be the family of open sets . We give now some main

 properties of the a -algebra 8 A T.

 Theorem 1 . If is a a-ideal such that S =

 = Jq, then for any a-ideal «7^ 3 we have the equality

 8âJ1 =

 It is known that for the a-ideal J' of sets of the first

 category we have the equality 8 àJ = JfLJ. We can construct

 a a-ideal, which is proper, movable and essentially larger

 than either the a-ideal of measure zero sets or the a-ideal

 of first category sets .

 Really, let Jq be the a-ideal of measure zero sets or

 the a-ideal of first category sets and Eq c r be the
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 Sierpiński set ; that is , a rionmeasurable set such that

 card ( (Eq + x) A Eq) £ for every x € R ,

 (see [7], p. 135, C^q) . The set Eq does not have the
 Baire property either .

 = fC U D : C € J0, DCE01
 and

 X, = i U (E n + xi : E^ 6 -T. i and x € R for every J ni . ¿ n n n i n J
 n=x

 Then J2 is a proper a-ideal with the required properties.

 Theorem 2 . If J is a a-ideal such that & A J -

 * * b J, then (3 à J')2 c:J"2 (v/2) .

 It is known that there exists a set E of the second

 category in the plane, no three points of which are on a

 line (see [5], th. 15.5) . So it does not have the Baire

 property. Hènce we have that there exists a o -ideal Ï

 such that B A J = * A J and A2 A J2 (tt /2) 9¿ (B A T) 2 .

 3. We shall consider real functions f defined in the

 open upper half -plane H and we shall introduce the concepts

 of directional limit numbers of f with respect to a a-ideal J

 and limit numbers of f with respect to the o -ideals J2 and

 . Those concepts are natural generalizations of qualitative

 limit numbers discussed in the papers [8], [21 and [41 .

 Let x € R . A real number y is called a limit number of

 f at x in the direction 9 6 (0,tt) with respect to a a -ideal

 S' , if there exists e > 0 such that
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 h (L (x, 9 ,r) 0 f ( (y - e , y + e) ) ) J for each r > O .
 A

 Moreover the number + «, ( -®) is called a limit number of

 f at x in the direction 0 v?ith respect to the a -ideal J,

 if there exists a € R such that

 h (L (x, 8 ,r) fif ~1 ( (a , + •) ) ) p', (hv (L (x, 9 ,r) flf ' "1 ( ( - • , a) ) ) ffr) A X

 for each r > 0. The set of such limit numbers we shall denote

 by Cj(£ ,x,9) .

 A real number y is called a limit number of f at x
 2 _2

 with respect to the a-ideal J , (Jļ) , if for each e > O

 and r > O

 K(x,r) nf_1( (y-e,y+e) ) , (K(x,r) Of"1 ( (y-e,y+e) ) £?+) ,

 where K(x,r) denotes the circle with the center x and

 radius r. Moreover +w is called a limit number of f at

 x with respect to the a-ideal A «5). if for each a € R
 and r > 0

 K(x,r) nr^ia, +«)) ¿J2, (Kix.r) .

 Similarly we define -• as a limit number of f at x with

 respect to the a-ideal Ī2 , (J^) . The set of such limit

 numbers we shall denote by C 2(f,x) , (C 2(f «*)) •

 The following theorem is similar to the theorem concerning

 essential limit numbers proved in the paper [1] .

 Theorem 3 . Let J be a a-ideal which does not include

 nonempty open sets and satisfies the conditions:
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 (3) SUT - J< à J

 and

 2 °

 (4) J (9ļ) = f°r a°y two directions

 eŁ, e2 € (O,TT) , ^ i e2 .

 If f : H R is a measurable function with respect to the
 2

 a -algebra (6 à J') , then for any direction 6 € (0,tt)

 sup Cj(£,x,Q) is a measurable function of x with respect
 to the a -algebra & à J.

 By similar assumption, we can obtain generalizations of

 many theorems concerning the qualitative limit numbers. Those

 theorems can be found in the works [8], [2], [4].

 Theorem 4 ♦ Let J be a a -ideal which does not include

 nonempty open sets and satisfies conditions (3) and (4) . If

 f : H «♦ R is a measurable function with respect to the a -algebra

 {B A J)^ , then for any two directions 9^ , 92 ^ (0,it) , 9^ ý
 we have

 fx € R : sup Cj( f rx,9^} < sup Cj.(f ,x,62) ^ * •

 Theorem 5 , If J* is a a -ideal which does not include

 nonempty open sets and if f : H -♦ R is a continuous function,

 then for any two directions 9^, 82 € (0 ,ir) , 9^ ^ 92 the set

 (x € R : sup Cj(f ,x,8ł) < inf C^.(f ,x,92) ļ

 is at most denumerable .
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 Theorem 6. If T is a a -ideal which does not include

 nonempty open sets and satisfies conditions (3) and (4) . If

 f ï H R is a measurable function with respect to the a-
 2

 algebra (B A T) , then for any two directions 0^, 0j € (0,t) ,
 01 ^ 02 we have

 {x € R ïCyiffX,©^ -C<r(f,x,e2) i 0! € J .

 Theorem 7 . Let J' be a a -ideal which does not include

 nonempty open sets and satisfies conditions (3) and (4) . If

 f : H -♦ R is a measurable function with respect to the o-
 2

 algebra (B A 7) and { 0 3 is an arbitrary sequence of

 directions from the interval (0,tt) , then

 09

 ix € R : H C_(£,x,ej n = 01 6 J . n=l n

 Theorem 8 . If a a -ideal J does not include nonempty

 open sets and if f ; H -♦ R is a continuous function, then for

 every direction 0 6 (0,tt) and for every x € R

 C^(f,x,0) c c .

 Example . There exists a 0 -ideal T and a continuous

 function f : H «♦ r such that for some direction 0 € (0,tt)

 0 6 (0,-rr)

 fx € R :C ,(f,x) çzí Cr(f,x,0)} * £ J . J1 *
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 It suffices to take J - Í0} and

 f(z) = max((Arg z -ir/2) , 0) for z € H .

 It is easy to prove that for 8 ■€ (0,irr/2) and xQ = O we

 have C 2(f,xQ) £ C^(f ,xQ,0) . J'

 Theorem 9 . If f : H -» R is an arbitrary function, then

 for every x € R

 (0 € (0,tt) : Cj. ( f , x , 9 ) c c «(f,x)i = (0,w) -A ,

 where A 6 J.

 The directional limit numbers of f with respect to a

 o- ideal 7 are related to the limit of the function f at

 x with respect to the a -ideal J .

 Let f:H-»R, x € R, 8 6 . The real number y is

 called the upper limit of f at x in the direction 8 with

 respect to a -ideal J if

 1° for every e > O there is r > O such that

 hx(L(x,8,r) nf_1([y+ e, + •»))) € J ,

 ?P for every e > O and for every r > O

 hx(L(x,0,r) Of""1* (y - e.y]))) i J

 and it will be denoted by J - lim sup f(p) .
 P-+X» 8

 The real number y is called the lower limit of f at x

 in the direction 0 with respect to the a -ideal J if
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 1® for every e > 0 there is r > O such that

 hx (L (x , 6 , r ) O f ""Ł ( ( - 09 , y - e 1 ) ) € J ,

 2 ® for every e > 0 and for every r > 0

 hx(L(x,e,r) nf_1( [y,y + e)}) j tJ

 and it will be denoted by 3" - lim inf f (p) .
 p-*x, 9

 The real number y is called the limit of f at x in

 the direction 8 with respect to the a -ideal J' if

 T - lim sup f(p) = J - lim inf f(p) = y
 p-»x , 9 p-»x , 9

 Theorem 10. Let f : H -» R, 9 € (0,tt) , x,yQ 6 R . If the
 a -ideal J does not include nonempty open sets, then the

 following conditions are equivalent:

 1° y. = J - lim f (p) ,
 0 p-+x , 9

 2° for every e > 0 there is r > O such that

 hx(L (x, 0 ,r) - f"1 ( (yQ - e ,yQ + e) ) ) € J* .
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