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On continuous periodic extensions of functions

Itis known [2] that there exist unbounded sets E of real
numbers such that for any bounded real function ¢ defined on E
there exists a continuous periodic function f defined on the
whole real line R such that ¢(x) = f(x) for any xe E. We shall
call a set E of this property a Marczewski set because of the
name of the author of the question whether such sets exist. A
partial answer to the question of Marzewski can be found in the
paper [3]. Its author, J. Mycielski, proved that if't;}tn+1>3+6,
where § >0, then any function ¢ defined on the set E of thé numbers
tn with the range consisting of two points has a continuous periodic
extension. The following complete answer to Marczewski's question

was given in the paper [2]. If

o ¢l -1 s =<t w
(1) tn tn+1 Z-6n+1 (C+6n+2)’ 6n2>0’ n=1 8 c<t

then the set of all numbers t 1is a Marczewski set. In this paper

we extend this result to the following theorem.

Theorem 1. For any set E consisting of the numbers tn follow-

ing conditions (i) and for any bounded function ¢ defined on E

there exists a Lipschitz, periodic, piecewise monotone function f

defined on R such that ¢(tn) = f(tn) for any n and the range

f(R) = [inf ¢, supe].

We also discuss the problem of the power of a set of periods
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of continuous periodic extensions of a bounded function defined
on a Marczewski set.

We shall 1imit ourselves to indicate the successive steps
of the proof of Theorem 1 without detailed substantiation. In
the beginning we construct a Lipschitz function y on the interval
[0,c] in such a manner that y(0) = y(c) = inf o, y(y)=supe,

= -1 T -~ _ o=l o Tinamw
where y = 2 8t Sy =¢ 2 61, v is linear in [y, c],

non-decreasing in [0,y] and constant and equai to ¢(tn) in an
interval [dn, dn + 6n+1] contained in [0,y] for n =1, 2, ...
Extend ¢y to a periodic function with period c defined on the whole
R. Then y takes the value ¢(tn) on the intervals

[kc+dn, kc+dn + 5n+1] where k are integers. It is sufficient to
show that there exists a number rs such that

1

l‘-

. = -1y
o Xp€ U [kc+dn, kc+dn + 5n+1]' Then f(x) : = w(r0 x) is the

k

solution for ¢ and roC is period of f.

Let en(r) s = x'lr. Choose for Jl a closed interval such

that el(Jl) = [dl,d1+62] and let Ly: = ez(Jl). The first in-
equality of (i) implies that the length |L1| > c+8,5. Therefore
the interval L1 contains at least one interval of the form
[kcfdz, ke+d, + 63]. Fix one of them as [kzc + d2, kzc + d2 + 63]
: = B, and choose for J, a closed interval such that 92(J2) = B,.
0f course JI:: Jz. In a similar manner we define a decreasing
sequence of closed intervals Jn and choose kn such that
en(Jn) =fk,c+d, kec+d +6 1. LetL =9 (). Then
]Lnl.i C+ 640 The intersection ﬂJn is a singleton o Obvious-

-1 _ . -
1y ro Xp = en(ro)een(dn). This ends the proof.
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Let E be an unbounded set of real numbers and let ¢ be a
bounded function defined on E. Denote by P(E, ¢) the set of all
continuous periodic extensions of ¢ and by R(E,s) the set of all
proper periods of functions belonging to P(E,¢). Marczewski's
question can be expressed as follows: Does there exist an un-
bounded set E such that for any bounded function ¢ : E+R the
set P(E,®) is non-empty? Hartman [1] observed that for any un-
bounded E and any bounded ¢ the set R(E,¢) is a zero-set. The

following theorems complete his observation.

Theorem 2. If the numbers t follow the conditions (i) and

there exists an infinite sequence of indices n, such that

1
t >
UM

- -1 . .
tn 6n1+1(2c f 6n1+2) then for each bounded function defined

on the set E = {t } the set R(E,¢) has the power of the continuum.

Proof: We continue the argumentation of the proof of Theorem

1. lL"il'Z 2c + 6n1+2‘ Thus each interval L"i contains at least
two intervals [kniflc * dni+1, k"i+lc + d"i+1 + 6n1+2] and
[k"i+1 + 1) c+ d"i+1, (k"i+1 +1)-c+ d"i+l + G"ile . There are

two different intervals Jn associated with them. Denote them by
i

Jn-,O and Jn.,l' Obviously (11) Jn.,Ofw Jn.,1 =0 .
i i 3 i
Thus defining the interval Jn we have to choose one of the in-
i

tervals Jn j where ji equals 0 or 1. There are as many sequences
- s 9 -

i’
{"i} as there are sequences of 0's and 1's, so they form a set of

the power of the continuum. {r } =N J_= 0 So it is

n=1 "

n_i ’J.i
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implied by (ii) that different sequences {n;} determine different

numbers ro.

Theorem 3. If E is a Marczewski set then for any bounded func-

tion ¢: E-R the set R(E,®) is non-enumerable.

Proof. Suppose to the contrary that there exists a'Marczewski
set E and a bounded function 2" E+R such that R(E,@o) is at most
countable. Without loss of generality we may assume that oo(E)C[O,l].
Let us arrange the set R(E;¢o) as aﬁ infinite sequenaa{rn}. " Pernaps

r =r_ for some n, m. For any r_ there exists a bounded function

nm
Qn defined on E with the range consisting of two numbers 0 and (n+1)'1
such that rn ¢ R(E,@n). The function ¥(x) = {¢0(x), ¢1(x), ¢2(x),...}
maps the set E into the Hilbert's cube. The Hilbert's cube is a Peano
cufve. Consequently there exists a continuous function G mapping [0,1]
onto the Hilbert's cube. It is easy to prove that each Marczewski set

is countable. Let us arrange the set E as an infinite sequence {xn}.

Take points tne;G-l(?(xn)). Then the function & defined on E by the
formula $(xn) =t is real and bounded. So % is extendable to a func-
tion fe P(E,3). Let ’s be a period of f. Then the composite function
F(x) = G(f(x)) maps R into the Hilbert's cube? is continuous and per-
iodic r,. Obviously F(xn) = w(xn). So F is a continuous and periodic and
tension of ¥. Each component fn of F is continuous and periodic and

is an extension of o, SO s # rn forn=1, 2, ... and (iii)

o é R(E, éo). The function fo is the first component of F and con-
sequently fo is a continuous periodic extension of A with period o

Thus ro€ R(E,@o) contrary to (iii). This complete the proof.
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Problems. 1. Is any Marczewski set congruent to a set E
consisting of numbers t_ satisfying conditions (i)?

2. Is P(E,%) a set of the power of the continuum for
and Marczewski set E and any bounded ¢ : E+R ?

3. Let E consist. of numbers tn satisfying the condition
(i). Does there exist for any bounded ¢ : E+=R a differentiable
function belonging to P(E,?)?

4, Let y be a Lipschitz function defined on [0,c], con-
stant on the intervals [dn, dn + 6n+1]' Does there exist a
homeomorphism h mapping [0,c] onto [0,c] such that yoh is
differentiable and h(d_ + 6 ,,) - h(d ) =5 . ?

A positive solution of the 4-th problem implies the identical
solution of the 3-rd problem. Indeed, it is enough to replace

p by yoh in the proof of the Theorem 2.

133



REFERENCES

S. Hartman, On {nterpolfation by almost periodic functions,
Colloquium Mathematicum 8 (1961), 99-101.

J.S. Lipinski, Sur un problme de E. Marczewski concernant Les
gonctions periodiques, Bulletin de 1'Academie Polonaise des
Sciences, Serie des Sciences math., ast. et phys., 8 (1960),
695-697.

J. Mycielski, On interpolation by almost periodic functions,
Colloquium Mathematicum 8 (1961), 95-97.

134



	Contents
	p. 129
	p. 130
	p. 131
	p. 132
	p. 133
	p. 134

	Issue Table of Contents
	Real Analysis Exchange, Vol. 7, No. 1 (1981-82) pp. 1-179
	Front Matter
	EDITORIAL MESSAGES [pp. 3-3]
	TOPICAL SURVEY
	Peano Derivatives: A Survey [pp. 5-23]

	PROCEEDINGS OF THE FOURTH SUMMER SYMPOSIUM
	Introductory Remarks [pp. 27-29]
	REAL ANALYSIS SUMMER SYMPOSIUM 1981 SYRACUSE UNIVERSITY PROGRAM [pp. 30-30]
	Summaries of Presentations
	Some Problems in Need of Solution [pp. 31-41]
	LEBESGUE AREA AND DEGIORGI PERIMETER OF THE BOUNDARY OF A TOPOLOGICAL BALL IN Rn [pp. 42-52]
	On Functions With Non-Negative Divided Differences [pp. 53-53]
	PRODUCTS OF DERIVATIVES AND APPROXIMATE CONTINUITY [pp. 54-57]
	Fourier Series of Functions of Generalized Bounded Variation [pp. 58-60]
	On Baire one Darboux functions with Lusin's condition (N) [pp. 61-64]
	A NEW NOTION OF DERIVATIVE [pp. 65-84]
	Modification of Functions [pp. 85-88]
	Partially Convex Functions in the Variational Calculus [pp. 89-92]
	SECTIONWISE PROPERTIES AND AVERAGING PROCESSES [pp. 93-111]
	Iterated Lp Derivatives [pp. 112-116]


	RESEARCH ARTICLES
	SUR LA CONSTRUCTION OE MESURES ASSOCIEES AUX CONTRACTIONS ASYMPTOTIQUES DES INTERVALLES [pp. 117-128]
	On continuous periodic extensions of functions [pp. 129-134]
	ON A SPACE OF FUNCTIONS REPRESENTABLE BY DERIVATIVES [pp. 135-148]
	SOME THEOREMS ON DINI DERIVATES [pp. 149-154]
	SOME EXAMPLES ON CONTINUOUS RESTRICTIONS [pp. 155-162]

	INROADS
	On Strong Essential Cluster Sets [pp. 163-168]
	A DARBOUX PROPERTY FOR TRANSFORMATIONS [pp. 169-171]
	On Darboux Asymmetry [pp. 172-176]

	[SYMPOSIA ANNOUNCEMENTS] [pp. 177-178]
	QUERIES
	QUERIES FROM THE TEXT [pp. 179-179]




