Real Analysis Exchange Vol. 7 (1981-82)

Jan S. Lipiński, Institute of Mathematics, University of Gdańsk, 80 - 952 Gdansk, Poland.

On continuous periodic extensions of functions

It is known [2] that there exist unbounded sets E of real numbers such that for any bounded real function ϕ defined on E there exists a continuous periodic function f defined on the whole real line R such that $\phi(x) = f(x)$ for any $x \in E$. We shall call a set E of this property a Marczewski set because of the name of the author of the question whether such sets exist. A partial answer to the question òf Marzewski can be found in the paper [3]. Its author, J. Mycielski, proved that if $t_n^{-1}t_{n+1}>3+\delta$, where $\delta > 0$, then any function ϕ defined on the set E of the numbers t_n with the range consisting of two points has a continuous periodic extension. The following complete answer to Marczewski's question was given in the paper $[2]$. If sion. The following complete answer to Marczewski's question
iven in the paper [2]. <u>If</u>
(i) $t_n^{-1}t_{n+1} \ge \delta_{n+1}^{-1} (c+\delta_{n+2}), \delta_n > 0, \sum_{n=1}^{\infty} \delta_n = c < +\infty$

(i) $t_n^{-1}t_{n+1} \geq \delta_{n+1}^{-1}$ (c+ δ_{n+2}), $\delta_n > 0$, $\sum_{n=1}^{\infty} \delta_n = c < +\infty$

then the set of all numbers t_{n} is a Marczewski set. In this paper we extend this result to the following theorem.

Theorem 1. For any set E consisting of the numbers t_n following conditions (i) and for any bounded function ϕ defined on E there exists a Lipschitz, periodic, piecewise monotone function f defined on R such that $\phi(t_n) = f(t_n)$ for any n and the range $f(R) = [inf \Phi, supp].$

We also discuss the problem of the power of a set of periods

 of continuous periodic extensions of a bounded function defined on a Marczewski set.

 We shall limit ourselves to indicate the successive steps of the proof of Theorem 1 without detailed substantiation. In the beginning we construct a Lipschitz function ψ on the interval [0,c] in such a manner that $\psi(0) = \psi(c) = \inf \phi$, $\psi(\gamma) = \sup \phi$, [0,c] in such a manner that $\psi(0) = \psi(c) = \inf \phi$, $\psi(\gamma) = \sup \phi$,
where $\gamma = 2^{-1} \delta_1 + \sum_{n=2}^{\infty} \delta_n = c - 2^{-1} \delta_1$, ψ is linear in [y, c], more $y = 2 - y_1$, $y = 1$, $y = 1$, $y = 1$, $z = 3$,
non-decreasing in $[0, y]$ and constant and equal to $\phi(t_n)$ in an non-decreasing in $[0,\gamma]$ and constant and equal to $\phi(t_n)$ in an
interval $[d_n, d_n + \delta_{n+1}]$ contained in $[0,\gamma]$ for $n = 1, 2, ...$. Extend ψ to a periodic function with period c defined on the whole R. Then ψ takes the value $\Phi(\operatorname{\mathsf{t}}_{\mathsf{n}})$ on the intervals [kc+d_n, kc+d_n + δ_{n+1}] where k are integers. It is sufficient to show that there exists a number $r_{\sf o}^{\sf}$ such that r_0^{-1} $x_n \in U$ [kc+d_n, kc+d_n + δ_{n+1}]. Then $f(x)$: = $\psi(r_0^{-1}x)$ is the

solution for Φ and r_{0} c is period of f.

Let $\theta_n(r)$: = $x^{-1}r$. Choose for J_1 a closed interval such that $\theta_1(J_1) = [d_1, d_1+f_2]$ and let $L_1: = \theta_2(J_1)$. The first inequality of (i) implies that the length $|L_1| \geq c + \delta_3$. Therefore the interval L_1 contains at least one interval of the form [kc+d₂, kc+d₂ + δ_3]. Fix one of them as [k₂c + d₂, k₂c + d₂ + δ_3] : = B_2 and choose for J_2 a closed interval such that $\theta_2(J_2)$ = B_2 . Of course $J_1 \supset J_2$. In a similar manner we define a decreasing sequence of closed intervals J_n and choose k_n such that n^{n} and choose k_{n} Of course $J_1 \supset J_2$. In a similar manner we define a decreasing
sequence of closed intervals J_n and choose k_n such that
 $\theta_n(J_n) = [k_n c + d_n, k_n c + d_n + \delta_{n+1}]$. Let $L_n = \theta_{n+1}(J_n)$. Then
 $|L_n| \ge c + \delta_{n+2}$. The intersection Sequence of closed intervals J_n and choose k_n such that
 $\theta_n(J_n) = [k_n c + d_n, k_n c + d_n + \delta_{n+1}]$. Let $L_n = \theta_{n+1}(J_n)$. Then
 $|L_n| \ge c + \delta_{n+2}$. The intersection θ_{n+1} is a singleton r_0 . Obvious-
 $\theta_{n+1} = \theta_n(r_0) \le \theta_n($ $|L_n| \geq c + \delta_{n+2}$. The intersection Π_n is a singleton r_o . Obvious-
ly $r_o^{-1}x_n = \theta_n(r_o) \in \theta_n(J_n)$. This ends the proof. 3 chas ene
130

Let E be an unbounded set of real numbers and let Φ be a bounded function defined on E. Denote by $P(E, \phi)$ the set of all continuous periodic extensions of Φ and by R(E, Φ) the set of all proper periods of functions belonging to $P(E,\Phi)$. Marczewski's question can be expressed as follows: Does there exist an un bounded set E such that for any bounded function $\Phi : E \rightarrow R$ the set $P(E, \Phi)$ is non-empty? Hartman [1] observed that for any unbounded E and any bounded Φ the set R(E, Φ) is a zero-set. The following theorems complete his observation.

Theorem 2. If the numbers t_n follow the conditions (i) and there exists an infinite sequence of indices n_i such that $t_{n_{i}+1}^{-1}t_{n_{i}+1} \geq \delta_{n_{i}+1}^{-1}$ (2c + $\delta_{n_{i}+2}$) then for each bounded function defined $t_{n}^t t_{n+1}^t \geq \delta_{n}^t t_1^{(2c + \delta_{n+2})}$ then for each bounded function defined
on the set E = { t_n } the set R(E, ϕ) has the power of the continuum.
Proof: We continue the argumentation of the proof of Theorem

e set $E = \{t_n\}$ the set $R(E, \phi)$ has the power of the continuum.
Proof: We continue the argumentation of the proof of Theorem 1. $|L_{n_i}| \geq 2c + \delta_{n_i+2}$. Thus each interval L_{n_i} contains at least two intervals $[k_{n_j+1}c + d_{n_j+1}, k_{n_j+1}c + d_{n_j+1} + \delta_{n_j+2}]$ and $[k_{n_j+1} + 1)$ · c + d_{n_j+1}, $(k_{n_j+1} + 1)$ · c + d_{n_j+1} + $\delta_{n_j+2}]$. There are two different intervals J_{n.} associated with them. Denote them by ni $J_{n_i,0}$ and $J_{n_i,1}$. Obviously (ii) $J_{n_i,0}\cap J_{n_i,1} = \emptyset$. Thus defining the interval J_{n_x} we have to choose one of the in ni tervals J_{n ...}; where j_i equals 0 or 1. There are as many sequences n_j, j_j ${n_i}$ as there are sequences of $0's$ and $1's$, so they form a set of $\{n_i\}$ as there are sequences of 0's and 1's, so they form a set of
the power of the continuum. $\{r_o\} = \bigcap_{n=1}^{\infty} J_n = \bigcap_{i=1}^{\infty} J_{n_i}$, j. So it is

131

implied by (ii) that different sequences $\{n_i\}$ determine different numbers r_o.

Theorem 3. If E is a Marczewski set then for any bounded function ϕ : E-R the set R(E, ϕ) is non-enumerable.

 Proof. Suppose to the contrary that there exists a Marczewski set E and a bounded function $\phi_{\alpha} \colon$ E- \ast R such that $R(E,\phi_{\alpha})$ is ntrary that there exist
o: E-R such that R(E, Φ _O
nerality we may assume tion \circ : E-R the set R(E, \circ) is non-enumerable.
Proof. Suppose to the contrary that there exists a Marczewski
set E and a bounded function \circ ₀: E-R such that R(E, \circ ₀) is at most
countable. Without loss of gene **Proof.** Suppose to the contrary that there exists a Marczewski
set E and a bounded function ϕ_o : E+R such that $R(E, \phi_o)$ is at most
countable. Without loss of generality we may assume that $\phi_o(E) \in [0,1]$.
Let us arrang Let us arrange the set $R(E, \phi_0)$ as an infinite sequence $\{r_n\}$. Perhaps $r_n = r_m$ for some n, m. For any r_n there exists a bounded function ϕ_n defined on E with the range consisting of two numbers 0 and $(n+1)^{-1}$ $r_n = r_m$ for some n, m. For any r_n there exists a bounded function
 Φ_n defined on E with the range consisting of two numbers 0 and $(n+1)^{-1}$
such that $r \neq R(F, \Phi)$. The function $\psi(x) = \{\phi(x), \phi_2(x), \phi_2(x), \ldots\}$ $r_n = r_m$ for some n, m. For any r_n there exists a bounded function
 Φ_n defined on E with the range consisting of two numbers 0 and $(n+1)^{-1}$

such that $r_n \notin R(E, \Phi_n)$. The function $\Psi(x) = {\Phi_0(x), \Phi_1(x), \Phi_2(x), ...}$

maps the maps the set E into the Hilbert's cube. The Hilbert's cube is a Peano curve. Consequently there exists a continuous function G mapping [0,1] onto the Hilbert's cube. It is easy to prove that each Marczewski set is countable. Let us arrange the set E as an infinite sequence $\{x_n\}$. Take points $t_n \in G^{-1}(\Psi(x_n))$. Then the function $\hat{\Phi}$ defined on E by the formula $\mathfrak{s}(x_{\mathsf{n}})$ = t_{n} is real and bounded. So $\hat{\mathfrak{s}}$ is extendable to a function $f \in P(E, \hat{\phi})$. Let r_{α} be a period of f. Then the composite function $F(x) = G(f(x))$ maps R into the Hilbert's cube, is continuous and periodic r₀. Obviously $F(x_n) = \Psi(x_n)$. So F is a continuous and periodic and tension of Ψ . Each component f_n of F is continuous and periodic and is an extension of ϕ_n . So $r_o \neq r_n$ for $n = 1, 2, ...$ and (iii) is an extension of ϕ_n . So $r_o \neq r_n$ for $n = 1, 2, ...$ and (iii)
 $r_o \notin R(E, \phi_o)$. The function f_o is the first component of F and con-
convertive for a continuous portation extension of in with portation $r_0 \notin R(E, \phi_0)$. The function f_0 is the first component of F and con-
sequently f_0 is a continuous periodic extension of ϕ_0 with period r_0 .
Thus we all $S(E, t_0)$ conturges to $\langle i\dot{i}i\rangle$. This complete the r sequently f_0 is a continuous periodic extension of ϕ_0 with period r_0 .
Thus $r_0 \in R(E,\phi_0)$ contrary to (iii). This complete the proof.

132

 Problems. 1. Is any Marczewski set congruent to a set E consisting of numbers t_n satisfying conditions (i)?

2. Is $P(E, \phi)$ a set of the power of the continuum for and Marczewski set E and any bounded $\Phi : E \rightarrow R$?

3. Let E consist of numbers t_n satisfying the condition (i). Does there exist for any bounded $\Phi : E \rightarrow R$ a differentiable function belonging to $P(E, \phi)$?

4. Let ψ be a Lipschitz function defined on [0,c], constant on the intervals $[d_n, d_n + \delta_{n+1}]$. Does there exist a homeomorphism h mapping $[0,c]$ onto $[0,c]$ such that $\psi \circ h$ is differentiable and $h(d_n + \delta_{n+1}) - h(d_n) = \delta_{n+1}$?

 A positive solution of the 4-th problem implies the identical solution of the 3-rd problem. Indeed, it is enough to replace ψ by ψ oh in the proof of the Theorem 2.

REFERENCES

- S. Hartman, On interpolation by almost periodic functions,
Colloquium Mathematicum 8 (1961), 99-101. $1.$
- J.S. Lipinski, Sur un problme de E. Marczewski concernant les
fonctions periodiques, Bulletin de l'Academie Polonaise des
Sciences, Serie des Sciences math., ast. et phys., 8 (1960), $2.$ $695 - 697.$
- J. Mycielski, On interpolation by almost periodic functions, $3.$ Colloquium Mathematicum 8 (1961), 95-97.