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A THEOREM ON SEQUENCES OF
DIFFERENTIABLE FUNCTIONS

1 Introduction

Some interesting results dealing with convergence of derivatives are known.
We can quote e.g. results of D. Preiss and G.Petruska and M.Laczkovich ([4],
[3]) stating that each Baire two function is a pointwise limit of derivatives and
each Baire one function defined on a nowhere dense compact set is a uniform
limit of derivatives. These results, however, don’t say anything about con-
vergence of primitives. Except the well known theorem that under uniform
convergence of derivatives (lim f,)’ = lim f}, and some of its localizations, the
literature contains few other theorems describing the relationship between f’
and g, where f = lim f,, ¢ = lim f,. Here we try to fill in this gap for con-
tinuous derivatives by showing that the only thing we can say is f'(z) = g(z)
almost everywhere on a dense open set. We also show that this assertion holds
in the more general case where derivatives of higher orders are considered. As
a consequence we get a result related to the aforementioned theorems, namely:
for every p+ 1 functions from the first Baire class defined on a nowhere dense
closed set there exists a sequence of p-times continuously differentiable func-
tions, such that the sequences of the successive derivatives converge to the
corresponding function.

2 Statement of Results

The main result of this paper is the following:
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Theorem 1 Let p € N and go,91,...,9, : R = R. Then there is a sequence
(fa)n>1 of p-times continuously differentiable functions such that

fa90, fao g1, FB) o gy,
if and only if every g; is Baire one,
(1) gép)(a:) = ggp-l)(z) = =gp(x) a.e. on a dense open set U
and go, ..., gp—1 are locally absolutely continuous on U.
An immediate consequence of Theorem 1 is the following

Corollary 1 Let p € N and let F C R be nowhere dense and closed. Then for
every set of Baire one functions go, g1, ...,9p defined on F there is a sequence
(fa)n31 of p-times continuously differentiable functions defined on R such that

fa— 90, fo 91,y ) 5 g, 0n F.

Note that Theorem 1 does not hold without the assumption that the pt*
derivatives, ,(.p ), are continuous. Moreover, if we only assume that the f,
are p-times differentiable, the function g, = lim, f,(.p ) can be any Baire
two function independent of the go,...gp—1. This fact easily follows from 3,
Corollary 4.12] and from the fact that every Baire two function is the limit of
bounded approximately continuous functions, (see [5] and [6]).

In the proof of Theorem 1 we shall use the following notation: By, L},
C? denotes the class of all Baire one, locally Lebesgue integrable, p-times
continuously differentiable functions f : R = R, respectively. Define

To ={(90,91,---,9p) ;3(fa)n>1 C C? :f,(,') — g, for every r =0,1,...,p},
[e =]
T=U7%
p=1

and for arbitrary g : R — R, M C R define the function gps by gm(z) = g(z)
ifz € M, gmu(z) = 0 otherwise.

3 Proofs

The proof of the necessity is rather straightforward. Obviously we can suppose
p = 1. For an arbitrary open interval I put Hx = {x € I ; 3n € N:|f}(z)| >
k}. Since every Hy is open and (Hi)x>1 has empty intersection, by the Baire
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Category Theorem there is k¥ € N and [a,b] C I such that Hx N [a,b] = 0.
So |fi(z)] < k on [a,d] for every n € N and by the Lebesgue Dominated
Convergence Theorem we have for each € [a, ]

z

w(z) = lim fa(2) = lim [fn0) + [ (0] = g0(@) + [ ou(te.

a

From this the necessity follows easily.

Lemma 1 Letg € BiNL},.; put G° = g and let G™ be an indefinite (Lebesgue)
integral of G"~! (r=1,...,p). Then (G?,...,G},G°=g)€T.

Proor. First suppose g > 0. Since g € By, there is a sequence of continuously
differentiable functions (gn)n>1 such that g, — g. Take arbitrary compact
interval I = [a,b]. There is a lower semicontinuous integrable function ¢ > g
on I (see e.g. [1], p.192). From (2], p.448, there is (hn)n>1 C C([) such that
0< h, /4. Put

H2(@) = minga(s), hn(2)}, Hi(e) = G"(0)+ [ HiT )t

for z € [a,b], r=1,...,p, and define f, = HE. Obviously f,(,p) =H! 5 G°=
g, f#7V = HL 5 G! (since (Hn)n>1 is integrably dominated by ¥), f~% =
HZ — G? (since (H})n»1 is dominated by ¥'(z) = G(a) + [, ¥(t)dt), etc.

So (GP,...,G% = g) € T on every compact interval I, hence, it is easy to see
that (G?,...,G°=g) € T on R.
In the general case put g+ = max(g,0), g- = —min(g,0). Clearly, g4, 9-

are nonnegative locally integrable Baire one functions, so from above,
(GE,...,G% =g4),and (G,...,G° = g_) belong to 7. Now the assertion
follows from G" = G, —G_ (r=0,...,p). a

Lemma 2 Ifg € 31 and g'(z) = 0 on a dense open set, then, (g,0,...,0) €
T . If moreover g is locally integrable, then also (G?,...,G°=4,0,...,0) €T,
where G°, ..., GP are such as in Lemma 1.

ProOF. Let g’(z) = 0 on a dense open set U and let {(a,bx)}x denote the
system of components of U. Note that g(z) = ¢k = const on every (ax, bx).
Since g is a Baire one function, there is a sequence of continuous functions
(gn)n>1 converging to g; without loss of generality we can suppose that each
gn is uniformly continuous. So for € = % there is | € N such that

1 1
(2) l9n(z) = gn(¥)| < - whenever |z — y| < T
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Clearly we can take a sequence ... < z_1 <z <21 <..., Ty = 00, T_; =
—oo such that for every k¥ < n there is i = 4 : z;_; = ax, z; = bx and for
every i #iy,...,0p : &; — 2i—1 < -}-

Put f.(z;) = gn(z:) for every i and on (z;—1,z;) define f, as follows If
1= 4 for some k < n, then put fa(z) =cx forz € [ak+9%';%,bk — 282k ]. on
(ak,ax + 2 28k U (b — éﬁﬁ*,bk) define f, such to be p-times contmuously

dlﬂ'erentla,ble on [ak, bk] and £$7 (ak) = £ (bx) =0 forevery r=1,...,p. If
i # i for every k < n then (since U is dense) there is k > n such that at least
one of the following assertions holds:

(i) Tio1 < b < z;, (ii) Ti—1 < ar < T, (lll) ,(z,-_l,:c;) C (ak,bk).

In the case (i) put § = 3 min{bx — zi_1, bx — ax} and define f,(z) = gn(zi-1)
for z € (zi-1,bk — 8], fn(2) = gn(z;) for = € [bi, ;). On (bx — 4, bk) C (ak, bx)
define f, such that '

(3) faeC? o fNzio1) = f7(2) =0 forr=1,...,p;
min{gn(zi-1), gn(z:)} < fn(z) < max{gn(zi-1),9n(zi)} on [zi_1, 2]

Analogously define f, in the case (ii). If (iii) is satisfied then on (z;_1,z;) we
can define f, arbitrary, requiring only that (3) holds.
The fact £ — 0 follows from the observation

{z: f{(=) # 0} C U[(ak,aw Baih) U (b — Bz, b)) U O (ak, br).
k=1 k=n+1

The assertion f,(z) — g(z) for z € U is obvious. Now it suffices to realize
that by (2), (3) [fa(z) — gn(z)| < L whenever z e R-U.

The proof of the second statement is similar to the proof of Lemma 1, only
instead of min(g,,, h,) we have to take functions f, constructed as above such
that f, € C*, f,ﬁ') —0forr=1,...,s and |fa(z) — min{gn(z), hn(z)}| <
ifz ¢U,|fa(z)—g(z)| < L ifz € U. (Obviously these functions also have an
integrable major function on I, e.g. ¥ + g+ 1.) O

Lemma 3 If g € By and g(z) = 0 on a dense open set, then
(0)'-'>0’ga0)"'y0) eT.

PROOF. Lemma 3 follows easily from Lemma 2 in the case that g is locally
integrable since local integrability implies that (G?,...,G*,G" = ¢,0,...,0) €
7T and (G?,...,G%,0,0,...,0) € T, hence (0,...,0,9,0,...,0) € T.

Now let g be arbitrary Baire one function such that g(z) = 0 on a dense
open set U. Put K = R — U; clearly K is closed and nowhere dense. Define
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Ko = K; if we have already defined Kj for every § < a such that Kg O Kp:
whenever 8 < ' < a, let us define

M= ﬂ Kg, Ko=M —{z € M :gp is locally bounded at z}.
p<a

Obviously K, C Kz for 8 < a and since gps is Baire one, K, is a nowhere
dense closed subset of M. Therefore the sets K, must be empty from a certain
ordinal on; let ay be the smallest ordinal a such that K, = 0.

Now we show that (0,...,0,9,0,...,0) € T by means of transfinite induc-
tion with respect to aq. Thls is true 1f ag = 0, since then g = 0 is integrable.
Assume that the assertion holds for each ay < a and suppose that oy = a.
Put F = (| Kg # 0. Obviously gr is a Baire one function locally bounded

f<a
on R, so we have (0,...,0,9r,0,...,0) € T.
IfK'CK-Fis closed then easily Ky = (K')s C Kp N K’ for each

ordinal 3, hence

(N Ksc (| KsNK' =FnK' =0,
< A<

which implies K = @ fora f < @. So ag,, < @ and (0,...,0,9x/,0,...,0) €
T by the induction hypothesis.
Let (cj, d;) i)i>o be the system of mtervals contlguous to F. Obviously for

each j > 0 there is a sequence ... < 2/, < 2} < 2 < ... such that 2’ -
1

dj, 2, = ¢j. Put My = KN 0 [zj_(k_j),:ci__j] for every k > 1. The
: j=0

sets My are closed subsets of K — F, hence (0,...,0,9m,,0,...,0) € T, i.e.

there is (h%)n>1 C CP : (hE)(") — 0 for every r = 0,...,p, r # 7o and
n

(hﬁ)(ro) — gM,

Define fno(z) = 0 if z ¢ Mynyy and for k = 1,2,...,n define fn(z)
hk(a; if z € [z7. (k= J)+5n,z]_(k_1)+1 ,,] Uzl _ —j-1 +<5,-,,:i:f‘_J —68,] (4
0,...,k—1), where é, = ;- min{z — z]_, : |i| + j < n}. For the others z
define f,(z) such to f, € C? and f<')( ) = 0 for r # ro, f57°)(z}) = g(zf)
whenever |i| + j < n. Obviously fn — 0 for 7 # 7o, f,,r°) — gx-F, hence
0,...,0,9x-r,0,...,0) € 7. Since also (0,...,0,9F,0,...,0) € T, we have

o

(0))O)yK—F+gF=gK=ng)v0)E7— D
PROOF OF SUFFICIENCY. Let g,()p)(z) =...= gp(z) a.e. on adense open set U.

Since g, € By, gp is locally bounded on a dense open set and so we can suppose
that g, (and hence each g.) is locally bounded at every z € U. Put h, =
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(9r)v, kr = (9r)r-v forr=0,...,p. By Lemma3 (0,...,0,%.,0,...,0) € T,
so to finish the proof it suffices to show that (ho,...,h,) € T.

Let {(ax,bx)}x be the system of components of U and let ¢ € (ax, bk).
Obviously from the assumptions of Theorem 1 and from the fact that every
gr is locally bounded on U we have that each h,_; is an indefinite integral
of h, on every (ax,bx). Hence by Lemma 1 there are sequences (ln),,>1 C
C? such that (I%)(") — h, on (ak,bx) for every r = 0,...,p. Now define

functions l,, as follows Put l,(z) = 0 for z € R - U, l,,( ) = Ik(z) for
z € [a + %52k b, — 2=9] and on (ak,a + %52k), (b — 2%k by) define
l, such that l € C? and l(')(ak) = l(')(bk) =0 for every r = 1, ...,p, kEN
(existence of such functions is obvious). It is now easy to see that £ S,
for each r =0,...,p, and hence (ho,...,h;) €T. O
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