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ON MEASURE SPACES WHERE
EGOROFF’S THEOREM HOLDS

Absfract

A measure space (X, S, pu) is called almost finite if X is a union of
a set of finite measure and finitely many atoms of infinite measure. It .
is shown that Egoroff’s Theorem for sequences of measurable functions
holds if and only if the underlying measure space is almost finite. As a
consequence we obtain several theorems on the interaction between con-
vergences almost everywhere, almost uniform and in measure, respec-
tively, with no preliminary conditions on the measure space (X, S, , u),
thus extending results from [2], [4], [6] and [10]). It is proved further
that if (X, S,u) is almost finite (is not almost finite), then ¢ : R = R
preserves almost uniform convergence and convergence in measure, re-
spectively, if and only if ¢ is continuous (is uniformly continuous), thus
augmenting a result of [3].

1 Introduction

Let (X, S, 1) be a measure space with u(X) > 0. Denote by M the class of all
S-measurable functions f : X — [—00, +00] that are finite almost everywhere
(abbr. a.e.) on X. .

A set A € S is called an atom if u(A) > 0 and for any B C A, B € S either
u(B) = 0 or p(A\ B) = 0. The measure space (X, S, i) is said to be purely
atomic ([5)) if it is decomposable into a countable union of atoms.

Let f, fn € M (n € N). The concepts of convergence of the sequence
{fa}2%, to f almost everywhere (denoted f, — f), almost uniformly (f, —>

f) and in measure (f, © f), respectively are well-known, their mutual con-
nections are well established and belong to stock theorems of Measure Theory

(cf. [5)).
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Some of these theorems hold in case pu(X) < oo, but need not hold in
general. Such theorems are e.g. the well-known Egoroff Theorem ([1]) assert-
ing that convergence a.e. implies almost uniform convergence, or a theorem
of Lebesgue asserting that convergence a.e. implies convergence in measure,
which is actually a consequence of Egoroff’s Theorem since almost uniform
convergence implies convergence in measure without restrictions on u ([5],
page 92). For examples showing that these theorems need not hold in infinite
measure spaces, see [5] (pages 90 and 94).

Various papers deal with diverse generalization of Egoroft’s Theorem eg.
for collections of functions instead of sequences (cf. [7], [9] and [11]). However
it is also possible to extend the classical theorem (see [2]). It is the purpose of
this paper to characterize measure spaces where Egoroff’s Theorem holds and
draw consequences on the interaction between the mentioned types of con-
vergence without preliminary conditions on (X, S, i), thus extending results
from [10], [6] and [4]. As a consequence we will characterize functions which
preserve the investigated modes of convergence, thus augmenting a theorem
of [3].

It turns out that the appropriate measure space is one that can be de-
composed into the union of a set of finite measure and finitely many atoms
of infinite measure. We will refer to it as an almost finite measure space.
There is a characterization of these spaces via collections of pairwise disjoint
measurable sets.

Theorem 1 The following are equivalent:
(1) (X, S, p) is almost finite,

(ii) limpse0 (Xn) = 0 for each sequence {Xn}3%, of pairwise disjoint S-
measurable sets.

PRroOOF. (i)=>(ii) Let {X,}5%, be a sequence of pairwise disjoint S-measurable
sets. Without loss of generallty we may assume that p(X,) > 0 for alln € N.
Then, by (i), 3,5n, #( = p(Un>noXn) < +oo for some ng € N. Thus
limp 00 #(Xn) = 0.

(ii))=>(i) According to Zorn’s Lemma there is a maximal element F in the
class of all families of pairwise disjoint S-measurable sets of positive finite
measure. By (ii) the set F; = {E € F; u(E) > %} is finite for all j € N. Thus
F = UsZ,F; is countable, say F = {F1,..., F,...} where F; € S (k € N).
Consequently, F = Ug2, Fx € S.

To show that u(F) < +oo0 it suffices to observe that otherwise we can find
an increasing sequence {k;}32, of natural numbers such that u(U}; ) >
1 for all 7 € N. Since F is maximal, the measurable subsets of G = X \F



EGOROFF’s THEOREM 801

are either nullsets or sets of infinite measure. If these subsets of G contained
infinitely many different sets of infinite measure, then G would contain a se-
quence of pairwise disjoint measurable sets of infinite measure, which contra-
dicts (ii). a

2 Main Results

First we prove an extension of the theorem of Egoroff and Lebesgue, respec-
tively: ‘

Theorem 2 The following are equivalent:

(1) (X, S, u) is almost finite,

(ii) for any £, fa € M, fo 255 f implies fo =25 f,
(iii) for any f, fa € M, fo == f implies f, 5 f.

PRrOOF. (i)=(ii) Suppose that X = F U G where u(F) < 400 and G is a
finite union of atoms of infinite measure. Let f, f, € M (n € N) such that
fa &5 f. Measurable functions are constant a.e. on atoms, consequently
{fa}3%, converges uniformly a.e. (hence also almost uniformly) on G to f.
On the other hand on F Egoroff’s Theorem applies.

(i1)=>(iii) It suffices to notice that almost uniform convergence implies con-
vergence in measure ([5],p.92).

(iii)=>(i) Suppose that (X, S, u) is not almost finite. Then by Theorem 1
there exists a sequence {X,}3%, of pairwise disjoint S-measurable sets such
that lim, o #(Xn) #0. Put f =0 and f, = xx, for all n € N (x4 stands
for the characteristic function of A C X). Then f, % fbut fo - f. O

Corollary 1 The following are equivalent:
(i) (X, S, u) is almost finite,
(ii) for any f, fo € M, fa == f iff fo = f.

ProoF. It suffices to observe that almost uniform convergence always implies
convergence almost everywhere and apply Theorem 2. [m]

Corollary 2 The following are equivalent:
(1) (X, S,u) is almost finite and purely atomic,
(ii) forany f, fn €M, f =5 [ iff fn i’f
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PROOF. It easily follows from our Theorem 2 and from Theorem 1 in [10] (cf.
also [6],[4]). O

Further we prove a generalization of a theorem of Riesz ([8]) about the
interplay between convergence a.e. and in measure, respectively.

Theorem 3 The following are equivalent:

(i) (X,S,n) is almost finite,

(ii) for any f, fa € M, fo 5 f iff every subsequence {fn,}32, of {fn}%1
contains a subsequence { f,,,‘j }52, such that fnkj 22

ProoF. (i)=(ii) Suppose that (X, S, ) is almost finite. Suppose that there
exists a sequence {f,}3%, every subsequence of which contains a subsequence
converging a.e. on X to f € M, while f, % f. Then {f,}3%; has a subse-
quence {fn, }22, such that for some €o,d0 > 0

(1) ar = p({z € X;|fa.(z) — f(z)| > €0}) > dp for all k € N.

According to the assumptions there is a subsequence {fn, }52; of {fn,}RZ,
converging a.e. to f, thus by Theorem 2 it converges also in measure to f on
X. Consequently ax; = 0 (j = oo), which contradicts (1).

(i1)=(i) Assume that (X, S, ) is not almost finite. Then in view of Theo-
rem 2 there exists a sequence converging a.e. on X but not in measure. Hence
(ii) fails to hold. a

Now we turn to investigating the question of preservation of measurable
functions under composition (cf. [3]). More precisely, if M denotes a mode
of convergence for a sequence of measurable functions, then we find necessary
and sufficient conditions for the function ¢ : R — R to satisfy the following
implication:

for any f, fo € M, fo = f implies ¢ o fn =5 ¢ f.
The question is easy for convergence a.e. (see [3] ,Theorem 1).

Theorem 4 The function ¢ preserves convergence almost everywhere iff ¢ is
continuous.

For the remaining types of convergence Theorem 2 in [3] gives only a partial
solution. A fuller answer is as follows

Theorem 5 (i) Suppose that (X, S,p) is almost finite. Then ¢ preserves
almost uniform convergence and convergence in measure, respectively iff
¢ is continuous.
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(ii) Suppose that (X, S, p) is not almost finite. Then ¢ preserves almost uni-
form convergence and convergence in measure, respectively iff ¢ is uni-
formly continuous.

PRroOF. (i) For almost uniform convergence the theorem follows from Corol-
lary 1 and Theorem 4. Further Theorems 3 and 4 yield the desired result for
convergence in measure.

(i1) In view of Theorem 1 there exists a sequence {X,}3%, of pairwise
disjoint S-measurable sets such that

@ Jim p(Xa) #0.

The sufficiency of the condition is clear (see [3], Theorem 2). Conversely,
suppose that ¢ is not uniformly continuous. Then there are scalars z,, z}, such
that |z, — z;| < L and |¢(2n) — ¢(2,)| > €0 for some go > 0. Define the
functions

=)
fa= Z:IXX.. + Z 2k X X k (n € N) and f = szXXk'
k#n k=1

Then evidently {f,}3%, tends uniformly to f, consequently it converges to f

almost uniformly and in measure as well.
On the other hand {z € X;|¢o fa(z) —do f(z)| > €0} = X, for alln € N.
Thus in view of (2) ¢ o f, 4 ¢ o f. Hence, ¢ o fn =5 ¢o f. ]
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