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 EXTREME CONTRACTIONS IN C(%,Ą)
 AND THE MAZUR INTERSECTION

 PROPERTY IN l' t'

 Abstract

 In this paper, we show that the projective tensor product of a two-
 dimensional lv space with a two-dimensional iq space never has the
 Mazur Intersection Property for a large range of values of p and q . For
 this purpose, we characterize the extreme contractions from £% to t' and
 obtain their closure.

 1 Introduction

 A Banach space is said to have the Mazur Intersection Property (MIP) if
 every closed bounded convex set is the intersection of closed balls. In a finite-
 dimensional space X y this is equivalent to the extreme points of the dual unit
 ball B{X*) being norm dense in the dual sphere S(X*). And, in general,

 Theorem 1.1 For a Banach space X , the following are equivalent :
 (а) The w*-denting points of B(X*) are norm dense in S(X*).

 (б) X has the MIP .

 (c) Every support mapping on X m.aps norm dense subsets of S(X) to
 norm dense subsets of S(X*).
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 (see [2] or [4] for details and related results)
 Using this characterization, Ruess and Stegall [15] have shown that the

 injective tensor product of two Banach spaces of dimension > 2 never has
 the MIP. And Sersouri [17] has shown that in fact there is a two-dimensional
 compact convex set in X Y that is not an intersection of balls.
 The situation appears to be much more difficult for projective tensor prod-

 uct spaces, since the extremal structure of the unit ball of the dual of X Y ,
 i.e., £(X, Y*) (see e.g., [3, Chapter VIII]), is known only in some very spe-
 cial cases and no pattern is discernible even in these cases for a reasonable
 conjecture to be made in general. See [9] or [12] for a survey.
 The simplest situation arises in a Hilbert space, where the extreme con-

 tractions are characterized as isomet.ries and coisometries, by Kadison [11] in
 the complex case (see also [10]) and by Grzaslewicz [6] in the real case. And it
 immediately follows that the projective tensor product of two Hilbert spaces
 never has the MIP.

 Complications already increase significantly if we move on to ^-spaces. In
 fact, the complete picture eludes us even for two-dimensional ^-spaces. Here
 we show that the projective tensor product of a two-dimensional t? space with
 a two-dimensional £q space never has the MIP for a large range of values of p
 and q. For this purpose, we characterize the extreme contractions from ip2 to

 and obtain their closure. Some of the results about extreme contractions

 were proved earlier in [5, 6, 8] through different techniques. Our approach is
 similar to that of [12] for the case p = q with complex scalars. We, however,
 work only with real scalars. This technique also lends itself naturally to the
 computation of the closure.

 A major portion of this work is contained in the first-named author's Ph.
 D. Thesis [1] written under the supervision of the second author. We take this
 opportunity to thank a referee whose detailed comments on the paper led to
 considerable improvement of its exposition.

 2 Extreme Contractions in £(^2^2)

 Notations : For 1 < p < 00, x = (xi,x2) G ip2 with ||x|| = 1, define
 xp"1 = (55fn(xi)|.Ti|p"1, 5^n(x2)|x2|p_1) and x° = (- x2ixi). Notice that,
 in general, xp_1 is the unique norming functional of x and {x, (x°)p"1} is a
 basis for £2i and if p = 2, xp~l = x and {x,x0} is orthonormal. Denote the
 vectors (1, 0) and (0, 1) by e' and e2 respectively.

 We will need the following inequality [14, Lemma I.e. 14]
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 Lemma 2.1 Let 1 < p < q < oo. Let a = ±'/(p - 1 )/{q - 1). Tften

 "1 l1^ T1 l1^
 "1 i {|1 + ar|® + 11- «r|»} < T1 i {|1 + r|p + |1 - if}

 /or all r £ M with strict inequality holding for r ^ 0.

 Theorem 2.1 For 1 < p, q < oo, an operator T : Q w ^ ll^ll = 1 25
 an extreme contraction

 (i) [6] forp = g = 2, if and only ifT is àn isometry.

 (ii) [8] for p = 2 ^ q, if and only ifT satisfies one of the following

 (a) T attains its norm on two linearly independent vectors.

 (b) T is of the form

 T í « ® c¿ if q < 2
 ' X ® y H- sx° ® (y0)9"1 2/ g>2

 where x is any unit vector and , in the second case , |y, |9 = ^ and

 5 = -L^1 ^gfo~2i/o.
 (iii) [8] for p ^ 2 = q, if and only ifT satisfies one of the following

 (a) T attains its norm on two linearly independent vectors.

 (b) T is of the form

 T _ f e, ® y if p > 2
 ļ xp-1 0y + 5i°®y° ¿/ p<2

 where y is any unit vector and , in ¿/ie second case , 'x{'p = ^ and
 5 = ±>/(p- 1 )2V-pVp.

 (it>) [5] for p = q ^ 2, if and only ifT satisfies one of the following

 (а) T attains its norm on two linearly independent vectors.

 (б) T is of the form

 T f ei ® y if p > 2, 2/12/2 # 0
 ļ ®p-1®ej ¿/ p<2, xixo "fi 0

 (v) /or l<g<2<p<oo; if and only ifT satisfies one of the following

 (а) T attains its norm on two linearly independent vectors.

 (б) T = xp~x ® y «/¿¿A x, y unit vectors and £1 #22/1 2/2 = 0.
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 Proof. Let T : lp2 - > £1, ||T|| = 1. Then there exists x = (xi,X2) G £p suc^
 that ||x|| = 1 = ||Tsc||. Let

 Tx-y- (yi,y2) and Ixy = {T : ||T|| < 1 ,Tx = y}.

 Then for any T £ /Xy, (T - xp~1 <g> y) annihilates x and so is of rank < 1,
 whence (T- xp~1 <g)y) = x° <g>u, for some u E čp- Further, T*(yq~l) = xp"l1
 that is (T* -y( S)xp~1) annihilates yq~1i whence (T* - y®xp~l) = (y0)9'1®!;,
 for some Combining, T must be of the form

 Ts = xp~1 ® y + ® (y0)g_1, for some s € ]R

 In othęr words, Ixy = {T5 ' s £ JR} ||T,|| < 1}. That is, Ixy is a line segment
 (could be degenerate) in the unit ball, and, its end points are extreme.
 As in [12], pre- or post-multiplying by diag(s<7n(xi), s<7n(x2))3 diag(s^n(yi),

 S9n(y2)) and permutation matrices, if necessary - each of which is an isom-
 etry - we may assume x' > x2 > 0, t/i > 2/2 > 0.
 For r e JR, denote by fp{x,r) = x + r(x°)p~1 and Fp(x,r) = ||/p(®, r)||p.
 Then Fp(x,r) = |xi - rxp~l'p + |x2 + ^ï_1|p- Clearly, if p = 2 or x2 = 0,

 Fp(x, r) = 1 + 'r'p. Otherwise,

 Fp(xi r) = x2p • I rxp2 - xix2|p + x^p ■ | rx' + xix2|p

 = x2pG(rxp - X1X2) + xīPG(rxp + Xix2)

 where G(u) = |i¿|p. Thus

 ■^-Fp(x, r) = G'[rx2 - xiar2) + G'(rxÇ + XiX2) (1)

 and G'(0) = 0, G'(u) = p - sgn(u) -'u'p~l. Clearly, (1) also holds for p = 2 and
 x2 = 0.

 Now, G'(u) is an odd function, positive and strictly increasing for u > 0.
 Since the two arguments of G' in (1) add up to r, we have if r > 0 (resp.
 r < 0), the one larger in absolute value is positive (resp. negative), and so,
 jļ:Fp(xir) is positive (resp. negative), i.e., Fp(xi r) is strictly increasing (resp.
 decreasing) in r > 0 (resp. r < 0).
 Further, if p ^ 2 and X2 ^ 0

 Fp(Xi 0) = 1, F;(x, 0) = 0, )
 F¡¡{x, 0) = p(p- l)(xix2)p-2, I (i),
 ^p"(®.°) = p(p ~ l)(p - 2){x1x2)P~3{Xi - £•>], I
 Fp (m,Q) = p(p- l)(p - 2)(p- 3)(xix2)p_4[1 - 3(xix2)p] J
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 and so, if 1 < q < oo, for Hp<ļ(x,r) = [Fp(x, r)]9/p, we have,

 Hpq(x, 0) = 1, H'pq(x, 0) = 0, ļ
 Hpq{x, 0) = q(p- l)(xii2)P"2,
 H'p'ļ(x, 0) = q(p - l)(p - 2)(x1x2)p-3[xp1 - x%', V (3)
 H™(x, 0) = ç(p-l)(x1x2r4[(p-2)(p-3)

 - 3(xi x2)p{(p - 2 )(p - 3) + (p - g)(p - 1)}] ,

 where the derivatives are taken with respect to r.
 Now, T,(fp(x, r)) = fq(y, rs), and thus for any r ^ 0, ||T,(/P(x, r))||« =

 Fq(y,rs) is strictly increasing in s > 0 and strictly decreasing in s < 0, and
 Fq(y1 rs) is unbounded in 5. Now, if r ^ 0,

 Fq(y, 0) = 1 = [/•„(«, O)]«'" < [Fp(x,r)]*/r

 So, there exists unique s+(x,y, r) > 0 and unique s_(x,y,r) < 0 such that

 Fg{y, rs±) = [Fp(x, r)]q/p (4)

 And the quantity on the LHS becomes smaller or larger than the one in the
 RHS according as |s| gets smaller or larger. Evidently, such s± also exist for
 (sr0)*""1, which we denote by /p(x,oo). In fact, in this case, |$±(x, y, oo)| =
 ||(x0)p"1||/||(t/0)9~1||. Notice that s± is a continuous function of r ^ 0 and
 elementary examples show that limr_»o s±(x, y, r) may not even exist. Let

 sļ(x,y) = inf{s+(x,y,r) : r ± 0} $L(x,y) = sup{s_ (x, y, r) : r ^ 0}

 Clearly, Ts € IXy if and only if si < s < s+, i.e., Ts*± are end points of Ixy
 and hence are extreme. Also let

 s+(x,y) = liminfs+(x,y,r) d= supinf{s+(x,y,r) : 'r' < e}
 e>0

 s!*(x,y) = lim sup s_ (x,y,r) =f inf sup{s_ (x, y, r) : |r| < e)
 r-+0 €>°

 Note that if we put Jxy = {s : Ts is contractive in a neighbourhood of x},
 then si* = inf Jxy and s*f = sup Jxy , though may not necessarily belong
 to Jxy. Clearly, s** < s*_ < 0 < sļ < sļ*.
 Now, either equals s±(x,y,r) for some r ^ 0 (including r = oo), in

 which case sļ ^ 0 and Ts*± attain their norm on two linearly independent
 vectors, or s± = .

 Note that T attains its norm on two linearly independent vectors if and
 only if T* attains its norm on two linearly independent vectors. Moreover,
 any such T is exposed, and hence strongly exposed.
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 Thus to complete the proof, the task that remains is to identify all (if any)
 extreme contractions that attain their norm in exactly one direction (called ťof
 the desired type' in the sequel). Then sļ = , in which case (i) |s±*| < oo,
 {it) s± € Jxy > in fact, (iii) Ts» E IXy
 Therefore, in different cases, we proceed to successively check these three

 conditions and whenever we reach a contradiction, we conclude that sļ*
 and Ts • is not of the desired type. And in case all the three conditions are
 satisfied, we check whether it attains its norm in any direction other than
 that of X and only if it does not, we get an extreme contraction of the desired
 type. This line of reasoning is exemplified in the analysis of cases (II) and
 (IV) below. However, in case (I), we can directly calculate s±.
 Case(I) : (i') p = 2 and either q = 2 or t/2 = 0; (ii) q = 2 and either p = 2

 or X2 = 0; (in) p -fi 2 ^ q and x2 = 0 = 2/2 •

 Ts is a contraction Fq(yirs) < [Fp(x, r)]q/p for all r
 <=> 1 -f |rs|9 < [1 -f |r|p]g/p for all r

 <=> 1*1® < f1 + lr|Pļq/" ~ 1 for all r ^ 0 In9

 Note that the RHS = 1 if p = q and is strictly decreasing (resp. increasing)
 in |r| for q > p (resp. q < p).

 So, if p = 9, s± = ±1, and hence, = s ļ* = ±1 and Ts are isometries.
 And, if p ^ qi the infimum of the RHS over r 0 yields

 lsll9=i * 1 if q>P * ' 0 if q < p

 So, if q < p, = 0, and To is an extreme contraction of the desired type.
 And if q > p) s± = s±( oo) = ±1 with T±i attaining its norm at both x and
 (x0)?""1. It is interesting to note that if p ^ 2 ^ q, T' in this case is the
 identity operator.

 For the remaining cases, we calculate sļ*. Let {rn} be a sequence of real
 numbers such that rn - > 0 and s±(rn) - y . If we assume |s¿| < oo, then
 { s±(rn )} is a bounded sequence. Now, by (4),

 Fq{y,rns±(r„)) = [Fp(x,rn)]q/p (5)

 Case (II) : q ^ 2, 2/2 > 0 and either p = 2 or = 0.
 In this case, subtracting 1 from both side of (5), dividing by r' and taking

 limit as n - > 00, we get by L'Hospital's rule and (2) that

 LHS - > i q{q - l)s2{y1ij2)q~2,
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 where s = s±* and
 0 if p > 2

 RHS - ► < 00 if P < 2
 < 1 00 I if P p=2

 So, if p < 2, we have a contradiction, whence Ts*± is not of the desired
 type, and if p > 2, = s± = 0, and To is extreme, and clearly of the desired
 type.

 If p = 2, we have

 «2(?-i)(yuö)«-2 = i (6)

 Now, if the $ given by (6) belongs to Jxy , we must have

 Fq{ Vi rs) < [Fp(x » r)]ç^p for all small r ^ 0 (7)

 Comparing the Taylor expansion of the two sides around r = 0 (for the
 LHS use (2)), we see that the coefficients of 1, r and r2 on both sides are equal,
 whence the inequality (7) for small r implies the corresponding inequality for
 the coefficient of r3 on both sides, which, for r > 0 and r < 0, leads to the
 equality

 ļ s3q(q - l)(g - 2)(y12/2)9-3(y? - j$) = 0 (8)
 Combining equations (6) and (8), we ha vey' = y' = 1/2, s2 = -

 But again the equality in (8) pushes the inequality down to the coefficients of
 r4, i.e.,

 ^9(9- 2) > - 1)(? - 2)(? - 3)(yiy2)?-4[l - 3(yiî/2)ç]

 OI nr 3{q~2) ?(n «X . (9-2)(9-3)
 OI nr 3{q~2) ?(n «X . - (q-l)

 Now for g < 2, this leads to a contradiction, so that Ts*± is not of the
 desired type. On the other hand, by Lemma 2.1 for p = 2 and q > 2, we have
 that Ts with the above parameters is a contraction that attains its norm only
 in the direction of x and hence, is of the desired type.

 Case (III) : p 2, xi > 0 and either q = 2 or 3/2 = 0.
 This situation is dual to case (II) above.
 Case(IV) : p 2 q and X2 > 0, 2/2 > 0.
 In this case too, subtracting 1 from both side of (5), dividing by r2 and

 taking limit as n - > 00, we get by (2) and (3)

 (? - lXî/lî/2)9"2«2 = (P - 1)(*1*2)P~2 (9)
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 where s = .

 So, if s G Jxy , comparing the Taylor expansion of the two sides of (7)
 around r = 0 (use (2) for the LHS and (3) for the RHS), by arguments similar
 to Case (II) (p = 2), we must have

 s3(q - 1 )(q - 2 )(t/iy2r3(y? - vi) = (P - l)(p - 2 )(xix2y-3(x{ - x5) (10)

 and

 «4(? - 1)(? - 2 )(q - 3)(î/iî/2)?_4[1 - 3(yiî/2)9] < (p - l)(xix2)í>~4 •
 [(p - 2)(p - 3){1 - 3(xix2)p} - 3(p - q){p - l)(x1x2)p] (11)

 Eliminating s from (9) and (10) and using the fact that x, y are unit
 vectors, we get

 íí^ü [_ł

 (9-1) [(yij/2)?

 Also, dividing (11) by the square of (9), we get

 (g - 2)(g - 3) r 1

 (9-1) ,(yiî/2)? . ~ (p-I) ,(xix2)p

 Notice that for p = qy we get from (12) that ar, = yt-, ¿ = 1, 2, whence from
 (9), s = ±1, and from (10), yi = y2 = x 1 = x2 for 5 = - 1. Thus,

 Tl T - f 1 0 1 and T~l T - f 0 1 1
 Tl T - - [ f 0 J 1 and T~l T - - ļ f 1 0 . 1

 which, clearly, are isometries.

 Now, let p^ q. From (12) and (13), writing

 'X1X2)P

 (p-2)»(,-3) (,-2)(,-3) , (p-2)(p-3)
 (î - 2)(p - i) ( ' (?- 1) s , (p-i) (A-3>-3(r-<>
 Simplifying we get

 (? - p)(p - 2) 2g(g-p)(pç-p-g)
 (p-l)(,_2)" - (p-l)(g-l)(ļ-2)

 So, if (a.) 1 < q < 2 < p < 00, or, (b) 1 < p < q < 2, or, (c) 2 < p < 9 < 00,
 we have

 A 2,0*- p-,1 2(ç-2)(pi-p-i + 2)
 (p-2)(q-l) (p - 2) (q - 1)
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 And if (d) 1 < p < 2 < q < oo, or, (e) 1 < q < p < 2, or, (f) 2 < q < p < oo,
 we have

 2 q(pq-p-q) ^ 2(q - 2)(pq - p - q + 2)
 ^ (p-2)(j-l) ie-' ^ (p - 2)(q - 1) (15)
 Now, (xix2)p = l/A and x' + x ' = 1, so 0 < 1/A < 1/4, i.e., A > 4 or

 A-4> 0.

 But since (pq - p - q + 2) = (p - l)(q - 1) + 1 is always positive for 1 < p,
 g<oo, ifl<g<2<p<oo, i.e., in case (a) above, we reach a contradiction
 at this point, whence Ts*± is not of the desired type. □
 Remark, (a) For p > q > 2 and y2 = 0, the same result, as in Case (III)
 above, has been obtained by Kan [13, Lemma 6.2] for complex scalars too.

 (6) Recently we have come to know that P. Scherwentke [16] has proved
 a special case of Theorem 2.1 (v), i.e., when p > 2 and 1/p-h 1/q = 1, using
 techniques similar to [8].

 3 Partial Results in Remaining Cases

 In the last part of the proof of Theorem 2.1, the conditions (b) and (e) are
 dual to (c) and (f) respectively. And in the cases (b) and (c), the inequality
 (14) implies

 īteiļ (16)
 while in cases (e) and (f), the inequality (15) implies

 Now, in cases (b), (c), (e) and (f), we have from (10) that for 5 < 0, both
 sides of (10) must be 0, i.e., we must have x' = x' = 1/2 = y' = y'. But then
 in cases (e) and (f), we have a contradiction. So, in these two cases, si gives
 extreme contractions not of the desired type.

 Also in case (d), (15) is always satisfied and (10) implies that for s > 0,

 ®? = x2 = = yj = y'-
 Now, from (9) it follows that Ts*¿ is a contraction if and only if

 [I yl ■ |l + Oi(y2/yi)q/2r + y' ■ |l i - a(y1/y2)g/2r /9 i 1/9 [I yl ■ |l + Oi(y2/yi)q/2r + y' ■ |l i - a(y1/y2)g/2r /9

 [P x*ļ • 1 + (x2/xi)p/2r + z? • 1 - (ii/x'2 )p/2r PT ^ / P [P x*ļ • 1 + (x2/xi)p/2r + z? • 1 - (ii/x'2 )p/2r (18)
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 for all r 6 -R, where a = ±'/{p - l)/(g - 1) with the sign being that of
 Thus for the particular case of x' = x' = 1/2 = yf = y', we have by

 Lemma 2.1 that in cases (b), (c) and (d) for both 5 > 0 and s < 0, we get
 extreme contractions of the desired type.
 Thus, modulo duality, we are left with the following cases unsolved :
 (1) Case (b) with x' > 1/2 satisfying (16) for s > 0 with y' given by (12).

 (2) Case (e) with x' satisfying (17) for 5 > 0 with t/i given by (12).

 (3) Case (d) with x' > 1/2 and s < 0 with y' given by (12).
 In the remaining part of this section, we prove that in case (b), i.e., for

 1 < p < q < 2, for 1/2 < x' < 1/q, we get extreme contractions of the desired
 type. Specifically, we prove

 Lemma 3.1 Let 1 < p < q < 2, 1/2 < xÇ < 1/q, then (18) holds for all
 r £ ]R, with equality only for r = 0.

 Proof. For notational simplicity, put x ? = a¿, y¡ = 6¿, i = 1,2 and a^¡a' = u,
 &2/&1 = v. Notice that, in this notation, (12) becomes

 (2 - q)av~l/2(l - v) = (2 - p)u~l^2(l - u) (19)

 which implies 0 < v < u < 1. It is also not difficult to see that

 av-1/2 < i/.-1/2 <=>■ a' < - (20)
 9

 Also, in our notation (18) becomes

 1 1 . 1/2 ' q v -1/2 ' q
 1 + v 1 -f v

 1 V ti V ^ / P
 < - - U + u ! + u .

 Case I : 0 < r < u1!2

 Expanding both LHS9 and RHSP by Binomial series, and noting that
 a2 = (p - 1 )/(q - 1) and (1 4- x)q/p > 1 + for all x > 0, it suffices to
 show that

 0 < (2 - <?)•■• (k - 1 - q)ak-2v-(k~2V2 ' 1 + (-1)*" V_1 ' L i + v

 < (2 -/>)•••(*- I - p)u~(-k-2^2 1 + (22)
 for all k > 3.
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 Now, asO<v<ti<l} both 1 + (- I)*"2!/*"1 and 1 + (- l)*"2^"1 are
 nonnegative, i.e., the first inequality in (22) follows. Also for k = 3, the second
 inequality in (22) is an equality by (19). And for k > 4, dividing both sides
 of (22) by that of (19), it suffices to show

 (3 - q) ■ ■ ■ (k - 1 - q)ak-3v-^-3^2 p-M-1)*"2**"1
 L 1 - v¿

 < (3-p)...(*- [i+ÍZÜ^] I - Vr I - Vr

 But for k > 4, (3 - q) • • (k - 1 - q) < (3 - p) • • • (k - 1 - p), and by
 (20), ak~3v~(k~3M2 < u-(*-3)/2. Also, it is not difficult to see that for any
 k > 4, [1 4- (- l)k~2xk~ì]/(l - x2) is strictly increasing for 0 < x < 1. Since
 0 < v < u < 1, Case I follows.

 Notice that for r = tx1/2, we get

 (1 + ««"v)' + jļ- . (1 - «»-"v")'] < [a + «r
 (23)

 CASE II : r < 0 and r > u1/2.
 Notice that if we put t = -u~lt2r/( 1 - u~1/2r), (21) becomes

 r 1

 ii - (i + c)^ +- 1 t J- v -ii-(i- c/V)ťr l+v 1 t v

 1 1
 < + (24)

 where c = au^V^2, and the ranges r < 0 and r > ulf2 become 0 < t < 1
 and ť > 1 respectively. Thus, we have to prove (24) for t > 0, t -fi 1.
 Notice that by (20), c < v and c < au < u. Put

 ) = T-7- [I1 - (1 + c)ťl9 + v • |1 - (1 - c/f)ť|9] and
 1 H- v

 = T^-[|1-(1 1 + U + «)<!" + «] 1 + U

 Put f(t) = q log <j>ļ(t) - p log <f>i (t). We have to show f(t) > 0 for t ^ 0.
 Now, /'(ť) = (í^i(ť)^2(ť)-M(ť)^2(ť))/(^i(ť)^2(<)), so that f'(t) >,=, or <
 0 according as q<j>' (t)<ļ>ļ (0 - P<f>[{t)<ł>2{t) >,=, or < 0; or, equivalently,

 S0n[l - (1 - c/v)t) |1 - (1 - c/v)t'q~l ■ [1 - ( uv + c) • ý(ť)]

 <,=, or > «5n[l - (1 + c)ť] • |1 - (1 + c)ť|9-1 • [1 + (u - c) ^(ť)] (25)
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 where g(t) = {1 - sgn[ 1 - (1 + u)t ] • |1 - (1 + u)t'p~1} / c(' + u).
 Notice that g'(t) = c'1(p - 1) 1 1 - (1 + u)t'p~2 > 0, and hence, g(t) is

 strictly increasing with <j(0) = 0.
 Subcase 1 : 0 < t < 1/(1 + c).
 Since /(0) = 0, and it suffices to prove f'(t) > 0, or, in (25), LHS < RHS.

 Notice that in this case, every factor on the two sides of (25), except possibly
 the third term on the LHS, is nonnegative. And the third term on the LHS is
 decreasing, positive at t = 0 and is<0atż=l/(l + u). When this term is
 < 0, we have nothing to prove. And thus it suffices to prove

 "i-(i - c/v)ty~l [i + (u - c) • g(*)]
 _ 1 - (1 + c)t J - [1 - (uv 4- c) • g(t)]

 for the values of t for which g(t) < 1 /(uv + c), which exclude the values
 l/(l + f)<*< 1/(1 + c).

 Again since in this range all the factors are positive and the two sides are
 equal at t = 0, taking logarithm and differentiating, it suffices to show

 v[l - (1 - c/v)t' - [1 - (1 + c)t] " [1 + (u - c) • g(t)] • [1 - (uv + c) • g(t)]

 Simplifying the expressions and putting $ = (1 4- u)t , this is equivalent to

 A - [7-^ - - + v(l - s)p~l] -f D • [c2(l - s) + u2v( 1 - s)1-p] + B • [c2 - uv] > 0
 (1 - s)

 where

 A = (uv + c)(u - c) > 0
 B = (uv + c)(l + c) + (v - c)(ii - c)
 D = (l + c)(u-c) > 0

 Now, in the range 0 < 5 < 1 and so, we can expand the LHS by Binomial
 and geometric series. Note that

 A + D -f B = v(l + u)2 and A + u2D - uB = - c2(l + u)2

 whence the constant term on the LHS is

 c2(A + D + B) + v(A + u2D -uB) = 0

 On the other hand, we have from (19), that

 A - D = g + „)[,(! - - »(1 - »)] = c'' + "»<' - 'K« -
 2 -p

 A - u2D = c(l H- u)[u(l - v) - c( 1 - u)] = uv(l - u2)-

 (q - 1)(2 - q)
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 whence the coefficient of s on the LHS is

 c2(A-D)-(p-l)v(A-u2D) = c2(l + u)(q-p) ^ ¿ - ^ ¿ - - - =0 ¿ - p ¿ - q

 Therefore, and since 1 < p < 2, we have the coefficient of sk, k > 2, is

 A |c2 _ V(P~ l)(2-p) - (k-p) j + ru2Ł. (p - 1 )p(p + 1) • • • (P + k - 2)

 > ¿ť - (r-W-p) - (t-p) . V{A _ U,D)

 = Dc' + v(A - u'D)(p - 1) 1 - I2-"/-" > 0

 Subcase 2 : 1/(1 + c) < / < v/(n - c).
 Since (|x| + |j/|)a > |e|° + |y|° for a > 1, we have that in (24)

 LHS9 = -l_.[(l 1 -r v + c)ť_l]í+-^-.[l-(l-c/V)ť]' 1 H- v 1 -r v 1 H- v

 Comparing the first term of the two sides, it suffices to show

 ji-.Ki+ox- y. < +»)'-!]«
 "(l + c)ť-ll ^ (1 + v)1/«

 or' l(l + tl)ť-lj - ^ (l + l^/p

 for t > 1/(1 + c), the LHS is increasing, and the maximum value at "t = oo"
 is (1 + c)/( 1 + u). Thus it suffices to show that

 (l + c) < (l + t;)1/«-(l + ")1~1/p

 but this follows from (23).
 And comparing the second term, we need to show

 For 1/(1 + c) < t < v/(y - c), the RHS is decreasing and it suffices to prove

 / u v ' (1 - c/v)'q__ v "(c + c/v) q
 'lH-txy ~ 1-ļ-v _ (1 ~h c) 1 + v (1 "f* c)
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 Now, if we consider the function

 Ml X ) - Ml X ) -

 1 + V + l + v 1 + x

 we see that

 L// v (1 + c)(x - c)q"1 + (v - c)(x + c/v)q~l
 h{') L// v = li

 whence h(x) is increasing for x > c, and the inequality (24) at t = 1/(1 -f u),
 yields

 (Hb) ž h(u) 2 h{c)
 This proves the subcase 2.

 Subcase 3 : t > v/(v - c). Notice that if v = c, this case does not arise.
 In this case, the LHS of (25) is > 0, while the RHS < 0, whence f'(t) < 0,

 and the minimum value of / is attained for "t = oo" . Now that this value is
 > 0 follows from (23). This completes the proof of Case II, and hence, of the
 Lemma. □

 In the particular case ai = l/q, replacing r/y/q - 1 by t , we get the follow-
 ing interesting inequality, the case q = 2 being immediate from Lemma 2.1.

 Corollary 3.1 Let 1 < p < q < 2. Then

 n P- p-i ii/<7 ri (7-1 il/p n ±|l + (p-l)ť|* + P- p-i -|l -tr < ri -|l + (g-l)ť|p+^ (7-1 - -Il - t|p
 .P P J Li 9

 for all t 6 JR with strict inequality holding for t ^ 0.

 Remark. We do not know whether the range 1/2 < x' < '/q exhausts all
 values of x' for which we get a contraction. However, it is not very difficult
 to see that we cannot have the entire range in (16). Indeed, when x' is the
 right end point, we do not even get a contractive T, as in that case tracing
 our arguments back we find that the coefficients of r4 in the Taylor expansion
 of the two sides of (7) must be equal, and hence, as in the case of r3, we must
 have equality of the coefficients of r5 as well. But then direct computations
 reveal a contradiction.

 4 The Closure of Extreme Contractions

 We now obtain the closure of the extreme contractions in the cases described
 in Theorem 2.1.
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 Theorem 4.1 In all the cases described in Theorem 2.1 , except the case p =
 q ^ 2, the set of extreme contractions is closed.
 And in the case p = q ^ 2, the closure of extreme contractions may have

 operators of the form diag(l,s), |s| < 1 (upto isometric factors of signum or
 permutation matrices) as additional elements.

 Proof. In case (i), the result is obvious. And case (iii) is dual to case (ii).
 Now, in the cases (ii) and (v), the set of operators of the form (b) is clearly
 closed. And in case (iv), the closure of the set of operators of the form (b)
 contains only the operators et- <g> ej, i, j = 1,2 in addition.
 Let us consider the set of operators of the type (a) in cases (ii), (iv) and

 (v). Let {Tn} be a sequence of operators of the type (a). Let Tn - > T in
 operator norm. Let xn = (arni,xn2) be such that ||ajn|| = 1 = ||Tnxn||. Let
 Tnxn -yn- (t/ni, Vn2)' Then Tn is of the form

 Tn =xr1®yn + 4(a:n.í/n):Eñ®(yñ)9"1

 where sļ (xn , yn) is as in our earlier discussion. For notational simplicity, write
 sļfcn, yn) = • Passing to a subsequence, if necessary, assume x„ - > x =
 (^i, £2), yn - ► V = (2/1)2/2) (by compactness of the unit balls of i and Ą),
 and all the s„'s have the same sign, without loss of generality, positive.
 Clearly, ||T|| = 1 and Tx = y, whence T is of the form

 T = xp~l ® y + sx° ® ( y°)q

 Also, as Tn - > Ty

 Sn = ||T„ - xP_1 ®yn||/||x® H • ||(y^)®-1|l -► ||r- ® vl|/||*°|| - IK^)«"1 1|,

 i.e., {sn} is convergent. Clearly, sn - y s.
 Now, since Tn is of the type (a), there exists zn = xn + rn(x®)p_1 with

 rn ^ 0 € JR such that ļļTnznļļ = ||zn||. Again we may assume all rn's are of the
 same sign, in particular positive and rn - > r, where 0 < r < 00. If 0 < r < 00,
 zn - y z = x + r(x°)p~ 1 and ''Tz'' = ||z||, i.e., T is also of the type (a). Also,
 if rn - v 00, let «„ = zn/''zn''. Then u„ - >• u = (»c,)p-1/ll(a!<,),'"1ll and
 ||T«|| = 1, so that T again is of the type (a).
 Now, suppose rn - > 0. Then from ||Tnzn|| = ''zn'' we have

 Fq(yn,rnsn) - [Fp{xnt rn)}^ = 0 (26)

 For (ii), if p = 2 and q < 2, since Tn is of type (a), we have yni2/n2 ^ 0
 for all n. And if q > 2, we have two possibilities; either there is a subsequence
 for which yniVn2 = 0, or, eventually yniVn2 î 0. In the first case, we restrict
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 ourselves only to that subsequence, and we have, by case (I), sn = 1 for all n,
 whence 5=1. Also, yi t/2 = 0. So, T = x ® et + x° <g> (¿ ^ j'), and it is
 clear that T is of type (a) (see case (I)). And in the second case, we assume
 VniVni # 0 for all n. Then dividing (26) by r' and taking limit as n - ► oo,
 we get by L'Hospital 's rule

 (g-l)52(yiy2)'-2-l = 0 (27)

 If g > 2, for 2/12/2 = 0, this leads to a contradiction, whence 2/12/2 ^ 0.
 Then (6) and (27) coincides, i.e., we have s = (x,y). Now, our analysis in
 case (II) shows that only for y' = y' = 1/2, gives a contraction (which is
 an extreme contraction of type (b)). And in every other case, we run into a
 contradiction, i.e., we must have rn -f* 0.

 And if g < 2, for 2/12/2 = 0, (27) makes sense only if s = 0. In that case,
 T = x ®e,-, which, by case (I), is an extreme contraction of the type (b). And
 for j/i t/2 ^ 0, we again have s = sļ*(a;,y) and our analysis in case (II) shows
 that this case always leads to a contradiction.

 So, in both the cases, the closure of the set of operators of the type (a)
 contains at most operators of type (b), and therefore, the set of extreme con-
 tractions is closed.

 In (iv) y i.e., if p = q, by duality, it suffices to consider p > 2. Since Tn is
 of type (a), we have three possibilities; (1) either there is a subsequence for
 which both xn'Xfi2 = 0 and yn'yn2 = 0, or, (2) there is a subsequence for
 which xn'xn2 ^ 0 and yniyn2 = 0, or, (3) eventually both xnix„2 0 and
 î/nl2/n2 7^ 0.

 In the first case, we again restrict ourselves only to that subsequence, and
 we have, by case (I), sn = 1 for all n, whence s = 1. Also, X1X2 = 0 and
 yi t/2 = 0. Now again by case (I), T is of type (a).

 In cases (2) and (3), dividing (26) by r' and taking limit - through a
 subsequence if necessary - as n - y oo, we get in the second case

 (x'Xn)P~~~ = 0

 and in the third case

 (î/lî/2)P~2S2 = (X1X2)P~2

 So, in case (2), 2/12/2 = 0, and we have a contradiction unless X1X2 = 0.
 And in that case, T is of the form diag(l, s) upto isometric factors of signum or
 permutation matrices. Now, T is a contraction for -1 < s < 1 and is extreme
 (in fact, an isometry) only for $ = ±1. However, we do not know precisely if
 they actually belong to the closure.

 In case (3), if xixo = 0, we get a contradiction unless 2/12/2 = 0 or s = 0. If
 2/12/2 0, s = 0 = sļ (x, y ), whence T is extreme. And if 2/12/2 = 0, we get the
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 conclusions as in case (2). If X'X2 ^ 0, 2/12/2 = 0 leads to a contradiction, and
 if 2/i 2/2 ^ 0, s = sļ*(se,y), so that T is an isometry and hence is of type (a).

 In case (v), i.e., ifl<g<2<p<oo, since Tn is of type (a), we must
 have xnixn2î/niî/n2 0 for all n. And a similar argument leads to

 s2(q - l)(yiî/2)9-2 = (p - l)0ci*2 )p~2

 If X1X2 ^ 0 the only situation that does not lead to any contradiction -
 either immediate or to the fact that T is a contraction - is both 2/12/2 = 0
 and 5 = 0. And in that case, s = 0 = sļ(x,ļ/), so that T is extreme.
 And if X1X2 = 0, we must have s = 0, in which case, by cases (I) and (II),
 s = 0 = s±(x,y) and T is extreme. Thus in this case too, the set of extreme
 contractions is closed. □

 Theorem 4.2 In each of the following cases of 1 < p, q < 00, (P2 lacks
 the MIP :

 (i) p and q are conjugate exponents, i.e., ^ ^ = 1.
 («) Either p or q is equal to 2.

 (Hi) 2 < p, q < 00.

 PROOF. The dual of P2 0* £ļ is ), where ì + = 1 and the closure of
 extreme contractions in none of the above cases contains norm 1 operators of
 the form ® y, where x and y are unit vectors with £1X22/12/2 ^ ^
 Remark. The fact that operators of the above form do not belong to the
 closure of extreme contractions in any of these cases seems to suggest that
 this is a general phenomenon. It is possible that this is happens in higher
 dimensions as well. Can one give a proof of this without precisely characteriz-
 ing the extreme contractions? What seems to be required is a more tractable
 necessary condition for extremality, or, for belonging to the closure of extreme
 contractions.
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