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 CONVERSION FORMULAS FOR THE

 LEBESGUE-STIELTJES INTEGRAL

 0. Introduction

 We present here some formulas converting Lebesgue-Stieltjes integrals with
 a continuous integrator h of bounded variation into Lebesgue integrals over
 the range of h. A special case is Banach 's indicatrix formula displayed as
 (10) below. Indeed, we use an extension of Banach's formula to prove the
 general conversion formulas. One of these formulas (6) in conjunction with
 (8) and the Fubini theorem for the generalized Riemann integral [11] provides
 a handy proof of Green's theorem. In general all our integrals are defined by
 Kurzweil-Henstock integration using endpoint tags in the approximating sums.
 [3]) [4], [5] ,[6], [7], [10] and [11] But wherever we have absolute integrability
 our integrals here are equivalent to Lebesgue-Stieltjes integrals. Our use of
 differentials is based on the concepts introduced in [6], [7] and [8].

 We begin with some relevant definitions. A cell is a closed interval K =
 [a, 6] in M with a < b. A figure is a finite union of disjoint cells. The indicator
 1 e of a subset E of M is the function on M with value 1 on £ and 0 on the
 complement M ' E. E° is the interior of E. For h a function on K = [a, 6]
 we define Ah(K) = h(b) - h(a). For h continuous and of bounded variation
 on K) a subset E of K is dh-measurable if the differential 1e dh is integrable
 over K. This is equivalent to the existence of the Lebesgue-Stieltjes integral
 fE dh. A dA-measurable set differs from a Borei set by a dA-null set. (See [7].)
 The variation function for h is the function v defined on K by

 (0) v(t)= /W)|. Ja

 v is characterized by the conditions v(a) = 0 and dv = 'dh'.
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 1 The Conversion Formulas

 Theorem 1 Let h be a continuous function of bounded variation on K = [a, 6]
 with variation function v. Let f be a function on K with f dh absolutely
 integrable. (That is, the Lebesgue- Stielt jes integral fK f dh exists and is finite.)
 For each subset E of K the function Fe given by

 (1) FB(y) = £ f(t)
 ttEnh-iiy)

 is defined and finite for almost all y in M since the set h~l(y) is finite for
 almost all y. If E is dh-measurable then Fe is Lebesgue-integrable and

 (2) H FE(y)dy= / f dv.
 J-oo JE

 Let A,B be subsets of K satisfying the Hahn conditions

 (3) i4fl5 = 0 and dh = (1^ - lß)dv.

 Then A,B are dh-measurable. Moreover , in terms of (1)

 (4) H FA(y)dy= [ /(dft)+, J-oo JK

 (5) H FB(y)dy= [ f(dh )-, J- oo JK

 and for F = F¿ - Fß

 (6) H F(y)dy= [ fdh J-oo JK

 and

 (7) / F(y)dy = / f dh for every Borei set D.
 J D J h~l(D)

 The conditions (3) hold if and only if modulo dv-null sets , A is the set of all
 t in K where t ) = 1, B the set where ^(t) = - 1. So for almost all y in M

 (8) F(y)= ¿2 ^(0/(0-
 t€h- i(y)
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 Proof. We ignore the trivial case h constant, v = 0. So h(K) is a cell. For
 u = ^(v + h) and w = 5 (v - h) we have integrable differentials du = (dh)+ and
 dw = ( dh)~ since dv = |d/i|. (See [6], [7] and [8].) The Hahn decomposition
 theorem ([7], Theorem 25) yields A and B satisfying (3). For such A, B we
 have 1a dh = du and Ißdh = -dw. So A and B are d/i-measurable. Since
 dh - (1 a - 'ß)dv the differentiation theorem ([7], Theorems 17) gives the
 narrow-sense derivative $¿{t) = 1 a(í) - 1 ßif) for dv- all t in K. So

 (9) d±{t) = ±1

 for dv- all ť, and dh = ^ dv. Let 5 be the set of all t in if where (9) fails to
 hold. Its image h(S) is Lebesgue-null since S is dv-null and h is nonexpansive
 relative to v. Indeed, for any function g on /ť, if S is dý-null, then g(S) is
 Lebesgue-null by [9], Theorem 2. Therefore for almost all y in M (9) holds
 at every t in h~x(y). For such y the compact set h~l(y) must be finite since
 no t satisfying (9) can be a limit point of h~1(y). Thus, (1) yields (8) for
 F = Fa - Fb- Moreover, the Banach indicatrix Nk{v ), the number of points
 i in K such that h(t) = y, is finite for almost all y. Indeed, Banach proved
 ([1], Theorem 2) that Nk is integrable and its integral

 (10) f NK(y)dy = f dv. (See also [12] and [13].) J-oo JK

 Note that Nk vanishes on the exterior of the cell h(K). So its integral over R
 in (10) is just its integral over h(K). Theorem 10 in [9] extends (10) to give

 (11) I NK{y)dy = I dv for every Borei set D.
 Jd Jh-i(D)

 We shall prove (2) first for E = A", namely

 (12) / FK(y)dy= f fdv.
 J-oo JK

 Define the function G on M by

 (13) G(y)= [ fdv.
 J (-oo,y]

 G is constant on each of the two open half-lines whose union is the exterior
 of the cell h(K ) = [yo , 2/i] - Specifically, G equals 0 on (- oo,t/o), JK f on
 (2/i,oo). We contend that G is absolutely continuous, and that its derivative
 G ' = Fk almost everywhere. This suffices to give (12) since G' = Fk = 0
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 outside h{K), so FK(y)dy = Jh{K) G'{y)dy = G{yi) - G(y0) = fKf dv -
 0 = fKfdv.
 To prove absolute continuity of G let e > 0 be given. We seek S > 0 such

 that

 (14) I I dG I < e for every figure D in M of Lebesgue measure m(D) < S.
 Jd

 By (11) for D = y we get /i"1(y) dv-null for every y. So we can replace the
 closed half-line (- oo,y] in (13) by the open half-line (- oo,y). Consequently

 (15) i dG = I f dv for every figure D in M
 J D J h~1 (D)

 since it holds for every cell, and D is a finite union of disjoint cells. Take a > 0
 small enough so that the absolute continuity of the integral gives

 (16) / 'f'dv < e for every Borei set C such that / dv < a.
 Jc Jc

 Similarly use (11) to get S > 0 small enough so that

 (17) I dv < oc for every Borei set D such that m(D) < S.
 J h"1(D)

 Apply (17), (16) with C = h'1(D)i and (15) to get (14). So G is absolutely
 continuous. Thus, G'{y) exists and is finite almost everywhere, and dG(y) =
 G'(y)dy.

 Let T be the set of all y in M such that G'(y) exists, and h~1(y) is a finite

 set in which every member t satisfies the four conditions: a <t < b, ^ (t) =
 ±1> £faf(s)dv(s) = /(*)> and £fa 'fis)'Ms) = l/(*)l- So almost all y in
 M belong to T since the h- image of a ¿r-null set is Lebesgue-null. We contend
 that G'(y) = i^y) for all y in T. That is, in terms of (1),

 (18) G'(y) = ¿2 f(t) for all y in T.
 íe/i-My)

 This is trivial for h~l(y) empty since both sides of (18) vanish if y is not in
 h(K). Given y in T with h~~l(y) nonempty let ci, . . .,cn be the members of
 /i"1(y). Consider any e > 0 small enough so that the cells I<i = [c¿ - e , + e]
 for i = 1, . . . , n are disjoint and lie in K. For all S > 0 let D¿ = [y, y + S].
 The nest of compact sets h~1(D¿) indexed by S > 0 has intersection h~l(y).
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 Therefore, since h~x(y) lies in the neighborhood K* U- • -U K„y so does h~1(D¿)
 for S sufficiently small. Choose such a S and let D = D( 5. So

 (19) h~l(D) Ç Kl U • • • U K°n with D = [y, y + S].

 Consider any i = l,...,n. By (19) A maps the endpoints of into the
 complement (- 00, y) U (y + ¿,oo) of D. By the intermediate value theorem
 the two endpoints of Ki are mapped into opposing half-lines since (9) holds at
 t = Ci and Ci is the only member of A_1(y) in /<,*. So the cell h(Ki) contains
 D. In particular it contains y + S. Thus, the compact set Ki C' h'1 (y + 6)
 of points t in Ki with h(t) = y + S is nonempty. It therefore has a first
 point Si and a last point U. Clearly c, < < ti < ct- - f £ if ^(ct) = 1 and
 Ci - e < Si < ti < Ci if %j;{ci) = -1. In the former case take /,• = [c,-, 5,] and
 J i = [a , ťt] . In the latter case take /,• = [ť, , c,] and , a] . In either case
 li Ç Ji C Ki and the cells /,• , have a common endpoint, c,- at the center of
 Ki. Since h(si) = h(ti) = y + Í and /i(ct) = y, A/i(/,) = AA(J,) = ±6. Since
 the endpoint c¿ of /,• is the only member of h"1 (y) in Ki, it is the only member
 of h~l(y) in the subset Ii of Ki. The other endpoint of /» is the only member
 of /i""1(í/-h¿) in Ii since /,• abuts the convex closure of Ki C'h~1(y + 6).
 So h(Ii) = D by the intermediate value theorem for the continuous function
 h. We therefore have U Ç Ei for Ei = Ki fi h"1 (D). Now Ki - Ji consists
 of two components. The component which abuts J,- at ct is mapped by h into
 (-00, y). The component which abuts J,- at its other end is mapped by h into
 (y + ¿,00). So Ei, the set of all t in Ki with h(t) in Z), is contained in J,-.
 By (15), A G(D) = fDdG = fh-1{D)fdv = £?=i jBJdv since h~'D) =
 EjU Ei by (19). Hence, 'AG(D) - £?=i f dv' = | E?=i Je._A <

 1 fj -i l/l since /» Ç Ei Ç Divide through by ¿ to get

 (20) s ¿ ¿„4
 As e goes to 0 both and ť,- converge to c¿. So /,• and Jt* approach their
 common endpoint c¿. Thus, both jAv(/t) and yAv(J¿) converge to 1 since
 Av > 0, S = |AA(/t)| = |A/i(J¿)|, and |^(c,)| = 1. So j f dv converges to

 f(ci) and both ' f, 'f'dv and ' fT 'f'dv converge to |/(c,-)|. The right side Ö 1 0 1

 of (20) therefore converges to 0. Since S goes to 0 by continuity of A, the left
 side of (20) converges to |G'(y) - £?=i /(C0I- So G'(î/) = £?= 1 /(c¿) êiving
 (18). This completes the proof of (12).
 Given a dA-measurable set E apply (12) with / replaced by lsf • in

 (12) is thereby replaced by Fe giving (2). Given A , £ satisfying (3) apply (2)
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 with E = A to get (4), E = B to get (5), noting that 1 Adv = l¿dh = (d/i)+
 and Ißdv = - lßdh = (dh)~ . Subtract (5) from (4) to get (6). To get (7)
 apply (6) with / replaced by 1 h-l(D)f thereby replacing F by 1 &F. □

 A, B in (3) are unique modulo dv-null sets. The most primitive way to get
 (3) is to let A consist of all "d/i-positive" , B all "dft-negative" , points in K
 where t is dh-positive (dh-negative) if Ah(I) > 0 (respectively, Ah(I) < 0) for
 all sufficiently small cells I in K with t as an endpoint.

 2 The Indicatrix Formulas

 As a corollary to Theorem 1 we get the following generalization of Banach 's
 indicatrix theorem. ([1], Theorem 2)

 Theorem 2 Let h be a continuous function of bounded variation on K = [a, 6]
 with variation function v. For E a subset of K let Ne{v) be the number of
 points t in E such that h(t) = y. Then Ne{v) < oo for almost all y. Moreover ,
 if E is dh-measurable, then Ne is Lebesgue-integrable and

 (21) Í NE(y)dy = Í dv.
 J - oo Je

 If A} B satisfy the Hahn conditions (3), then Na and Nb are Lebesgue-
 integrable and

 (22) r NA(y)dy= [ (dfc)+,
 J- oo J K

 (23) H NB(y)dy= [ (dh)-.
 J-oo J K

 Finally

 rh(b) r

 (24) / 1 D(y)dy = / dh for every Borei set D .
 J h(a) J h- i(D)

 Proof. Apply Theorem 1 with / = 1. Then Fe = Ne by (1). So (21),
 (22), (23) follow respectively from (2), (4), (5). We contend that (24) follows
 similarly from (7). Recall that for almost all y the set h~l(y) is finite and all
 its members satisfy (9). By the intermediate value theorem the sign of ^ (t)
 alternates as t advances through the points of h~1(y). So for almost all y (8)
 with / = 1 reduces to F(y) = sgn[/i(6) - h(a)] if y is interior to the interval
 L with endpoints h(a) and /1(6), and to F(y) = 0 if y is exterior to L. So
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 Id F(y)dV = ¡L sgn[h(b)-h(a)]lD(y)dy = 1 D{v)dy. This with (7) gives
 (24). □

 For E = K (21) is just Banach's formula (10). (The sum of (22) and (23)
 also gives (10) since Na + Nb = Njc almost everywhere.) More generally,
 (21) with E = hl{D) gives (11) since Nh-i(D) - ^dNk- The special case
 D = R which reduces (7) to (6) in Theorem 1 reduces (24) to the fundamental
 identity A h(K) = fK dh which holds for every function h on K. (See [6] and
 [7].) Note that (24) for the case h(a) = h(b) gives dh = 0 for every
 Borei set D in R.

 3 An Application to the Proof of Green's Theorem

 To show the utility of the conversion formulas we shall apply (6) and (8) of
 Theorem 1 to get a simple proof of Green's theorem. The conditions in our
 hypothesis are in several respects stronger than necessary for the validity of
 our proof. Moreover, the proof is more straightforward than the usual proofs.
 (e-g- [2])

 Theorem 3 Let D be a closed topological disk in the (x}y)-plane with the
 boundary of D a rectifiable Jordan curve C. Let p and q be continuous func-
 tions on D which with the exception of countably many points have finite par-
 tial derivatives qx and py on the interior D° of D . Moreover ; let qx and py be
 generalized Riemann- integrable on D. Then

 (25) / / {qx -py)dxdy= ¿ pdx + qdy
 J Jd JC

 for C positively oriented.

 Proof. Parameterize the positively oriented C by (p(ť),/i(ť)) where g and h
 are continuous functions of bounded variation on K = [a, 6] with g(a) = <7(6)
 and h(a) = h(b). Since C is rectifiable it is Lebesgue-null in the plane. Thus,
 since qx exists and is finite at all but countably many points of D°iqx exists
 almost everywhere in D. The Fubini theorem [11] and/or [4] gives

 (26) / / qx(x}y)dxdy = / / 1 D(xìy)qx(xìy)dx dy
 J J D J - 00 J - 00

 with the given existence of the generalized Riemann integral on the left imply-
 ing the existence of the iterated integral on the right. The inner integral on
 the right exists for almost all y. We contend that for almost all y this integral
 is just F(y) in (8) of Theorem 1 for the function / given by

 (27) f(t) = q(g(t),h(t)).
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 fK dh = 0. So, according to Theorem 1, for almost all y in h(K ) the parame-
 trized Jordan curve C crosses the horizontal line Y = y an even number
 2 n of times. Moreover, C intersects this line in a nonempty, finite set of
 points (xi,î/),(x2,y),...,(xi,y),...,(x2n,2/) where xx < • • • < xj < • • • < x2n
 and for tj such that g(tj) = Xj and h(tj) = y we have = (- l)-7 for
 j = 1, . . . , 2 n with v the variation function (0) for h. The intersection of the
 line Y = y with D has components S' , . . . , 5,- , . . . , Sn where the segment Si
 has left endpoint (x2t_i,2/) and right endpoint (x2»>î/)- Since q is continuous
 on Si and qx exists and is finite at all but countably many points (x, y) in S¿,
 the fundamental theorem of calculus ([7], Theorem 17) gives

 r>X2i

 (28) j qx(x,y)dx = q{x2i,y) - q(x2i-',y) for i = 1, . . .,n.
 Jx2i- 1

 (See also [11].) Now (8) under (27) gives F(y) = /(*;') =
 l)J tf(xj> v) which is just the sum of (28). So for almost all y

 /OO -OO 1 D{x,y)qx{x,y)dx = *^2 n / rOO 00 1 D{x,y)qx{x,y)dx = *^2 / 1 Si(x,y)qx(x,y)dy
 -OO 1 = 1 00

 fX2i
 -¿2 qx{x,y)dx = F(y).

 i=l

 Apply (26), (29), (6) and (27) to get

 (30) í [ qxdxdy= [ f(t)dh(t) = <£ qdy.
 J JD Ja Je

 Apply (30) with p, q interchanged and x,y interchanged. The latter inter-
 change reverses orientation to yield

 (31) I / pydydx = - f pdx. J Jd JC

 Subtract (31) from (30) to get (25). □
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