Wladyslaw Wilczynski and Wojciech Wojdowski, Institute of Mathematics, University of Łódź, 90-238 Łódź, Poland

ON DENSITY POINTS

J. Foran in [2] has presented a new condition under which a measurable function $f : \mathbb{R} \to \mathbb{R}$ is approximately continuous. In [4] a similar condition was formulated for *I*-approximate continuity. We shall deal with points of density, strong density, *I*-density and strong *I*-density of plane sets. For the definitions see [3] and [1].

Let $A \subset \mathbb{R}^2$ be a Lebesque measurable set and f its characteristic function. We are interested in the following condition (compare [2]) concerning a decreasing sequence $\{t_n\}_{n \in \mathbb{N}}$ convergent to 0.

(**) Whenever $f(t_n x, t_n y)$ converges to 1 for almost every (x, y) in $(-1, 1)^2$, then (0, 0) is a point of density of A.

Theorem 1 In order that $(\star\star)$ holds for each measurable set $A \subset \mathbb{R}^2$, it is necessary and sufficient that there is an r > 0 so that for each $n \in \mathbb{N}$, $t_{n+1} > rt_n$.

In the case of strong density we shall need two decreasing sequences $\{t_n\}_{n \in \mathbb{N}}$, $\{s_n\}_{n \in \mathbb{N}}$ convergent to 0.

 $(\star\star_S)$ Whenever $f(t_n x, s_k y)$ converges to 1 (as a double sequence) for almost every (x, y) in $(-1, 1)^2$, then (0, 0) is a point of strong density of A.

Theorem 2 In order that $(\star\star_s)$ holds for each measurable set $A \subset R^2$ it is necessary and sufficient that there is an r > 0 so that for each $n \in \mathbb{N}$ $t_{n+1} > rt_n$ and $s_{n+1} > rs_n$.

In the case of *I*-density and strong *I*-density the results are completely analogous.

However, the both cases, linear and planar, for each sequence $\{t_n\}_{n\in\mathbb{N}}$ decreasing to zero there exists a set $A \subset R$ (or $A \subset R^2$) such that 0 (or (0,0), respectively) is a point of density of A, but it is not true that $f(t_nx)$ ($f(t_nx,t_ny)$, respectively) converges to 1 for almost every $x \in (-1,1)$ ($(x,y) \in (-1,1)^2$, respectively).

For complete proofs see [5].

References

- Carrese, R. Wilczynski, W., I-density points of plane sets, Ricerche di Matematica, 34 no 1 (1985), 147-157.
- Foran, J., Sequence conditions which imply approximate continuity, Real Anal. Exchange 17 (1991-92), 728-736.
- [3] Saks, S., Theory of the Integral, Warsaw 1937.
- [4] Wilczynski, W., Sequence conditions which imply I-approximate continuity, Tatra Mountains Math. Publ., 2 (1992), 1-5.
- [5] Wilczynski, W. Wojdowski, W. Sequence conditions which imply approximate and I-approximate continuities of functions of two variables, submitted to Tatra Mountains Math. Publ.