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 THE STRUCTURE OF MINIMAL

 ATTRACTION CENTERS OF

 TRAJECTORIES OF CONTINUOUS MAPS

 OF THE INTERVAL

 Abstract

 The structure of minimal attraction centers of trajectories of con-
 tinuous maps of the interval is investigated. It is proved that a closed
 subset S of the interval is the minimal attraction center of a trajec-
 tory of a continuous map of the interval into itself if and only if S is
 either a nowhere dense set or a union of finitely many mutually disjoint
 nondegenerate closed intervals.

 1 Introduction

 We study the dynamics of continuous maps f : I -¥ I where I is the interval
 [0,1]. Under iterations of /, each point x of I generates an ordered sequence
 {fn(x)}nLi which is called the trajectory of x. (Recall that f°(x) = x and
 for n = 1, 2, 3 . . . the points fn(x) are determined successively by the equality
 fn(x) = /(/n_1 (#)).) The most general properties of limit behavior of the
 trajectory of a point x are described by its u;-limit set, i.e., by the set of
 limit points of the sequence {/n(x)}£°=1. The dynamics of continuous maps
 on u;-limit sets and the topological structure of w-limit sets of such maps
 were studied by A. N. Sharkovskiï in the sixties (see [5]-[8]). In particular,
 it was established in [5] that for continuous maps of the interval any w-limit
 set is either a nowhere dense set or a finite collection of mutually disjoint
 nondegenerate closed intervals. Later it was proved in [1] that any set of the
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 above mentioned kind is the uMimit set of a trajectory of a continuous map of
 the interval.

 Statistical properties of the trajectory behavior of a point x are charac-
 terized by another set which is known as the minimal attraction center or
 statistical limit set (cr-limit set) of x. We use the notation c(x)f) for this
 set. Informally, (t(x, f) is the smallest closed set such that the trajectory of x
 moves near this set almost all the time. This set was introduced in [2] [3] (see
 also [4]) in the study of the existence problem for invariant measures of dy-
 namical systems. It should be noted that the main properties of the dynamics
 on (T-limit sets are essentially different from the properties of the dynamics on
 ¿¿-limit sets. In particular concerning the topological structure of these sets,
 we observe that for any infinite w-limit set the isolated points are nonperiodic,
 and for any (T-limit set the isolated points must be periodic. Nevertheless it
 turns out that the conditions, which describe the admissible structure of cr-
 limit sets for continuous maps of the interval, are identical to the conditions,
 which describe the admissible structure of w-limit sets. Namely in the present
 paper we prove that a nonempty closed subset of the interval is the (T-limit set
 of a trajectory of a continuous map of the interval if and only if this set is either
 a nowhere dense set or a finite collection of mutually disjoint nondegenerate
 closed intervals.

 2 Main Result

 We say that the trajectory of a point x G I is statistically asymptotic [3]
 to a closed set F C X if for any set U open in I with F C U we have

 n Xu{f*(x)) = 1 where xu is the indicator of the set U} i.e., the
 real- valued function on X such that Xu{y) = 1 for y G U and xu{y) = 0 for
 y $lU . The (T-limit set (t(x, /) is defined to be the smallest closed set to which
 the trajectory of x is statistically asymptotic. The set (t(x, /) is characterized
 by the following two properties:

 (i) the trajectory of x is statistically asymptotic to cr(a?, /),

 (ii) for every y G (t(x, /) and for every open set U with y G U ì we have

 1 n_1
 lim sup- V) Xt/ (/'(*)) >0-

 n7ťo

 The following theorem describes the admissible structure of minimal at-
 traction centers of trajectories of continuous maps of the interval.
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 Theorem 1 A nonempty closed subset of the interval is the minimal attrac-
 tion center of a trajectory of a continuous map of the interval if and only
 if either this subset is nowhere dense or it is a finite collection of mutually
 disjoint nondegenerate closed intervals.

 Proof. It is not hard to see that for continuous maps of the interval, any
 minimal attraction center has the structure mentioned in the theorem. Indeed,
 if the minimal attraction center of a trajectory is dense in some part of the
 interval, then it contains a subinterval because it is closed. Therefore after a
 finite number of iterations the trajectory hits this subinterval and hence its
 minimal attraction center coincides with its w-limit set. (We use the known
 facts that (r(xyf ) C cj(z,/) and f(a(xif)) = <r(x,/); see [4] for details.) By
 the result of [5], which has been mentioned in the previous section, we conclude
 that in this case the minimal attraction center is a finite collection of mutually
 disjoint nondegenerate closed intervals. Thus the "only if" part of the theorem
 is proved.

 Let <rRec(/) denote the set of all cr-recurrent points of the map /, i.e., the
 set of points which belong to their minimal attraction centers. In order to
 prove the "if" part, we prove the following auxiliary theorem first.

 Auxiliary Theorem Let f : I I be an expanding continuous map , i.e., for
 any open subset U of I, there is a positive integer K < oo ( depending on U )
 for which fK(U) = I. Then for any nonempty invariant subset Z o/<rRec(/),
 there exists a point x E I, the minimal attraction center of which is Z.

 We divide the proof of this theorem into some lemmas.

 Lemma 1 For each e > 0 there exists K = K(e) such that for any open
 interval J C I we have fK (J) = I whenever the length of J is not less than e.

 Proof. If for some e such a K{e) does not exist, then it is possible to find a
 sequence of open intervals {(an, 6n)}£°=1 with 'bn - an' >e and a sequence of
 integers {Kn}^=1 tending to oo as n oo such that fKn ((an, 6n)) ^ I for all
 n. We can assume that lim an = a and lim bn = b. It is easy to see that for

 n- ► oo n- Koo

 S = e/4 we have (a + <$, 6 - Ô) ^0 and fK{{a + Í, 6 - Í)) ^ I for all K. But
 this contradicts hypothesis of the theorem. □
 The following lemma is immediately implied by the previous one.

 Lemma 2 Let e > 0 and K(e) be determined by Lemma 1. Suppose that for
 some subinterval J of I and for some n > K(e), we have fn{J) ^ L Then
 for any i < n - K(e) the length of the interval f%(J) is less than e.

 For any point x E I and any e > 0 let the symbol B(x,e) denote the
 ¿-neighborhood of the point x in /, i.e., the set {y G / : 'y - x' < e}. The
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 following lemma is a consequence of the obvious fact that any finite segment
 of a trajectory does not influence its statistical behavior.

 Lemma 3 For every point x G aRec(f) and every € > 0 there exist v > 0
 and a sequence of positive integer numbers {Lm}^=1 such that

 card{¿ < Lm : f*(x) G Bjx.e)} ^
 m + Lm

 for all m > 1 (card A denotes the number of elements in the finite set A) .

 Proof. The condition x G <rRec(/) means that x G o-(xyf) and hence for
 any e>0we have limsupn_).00 £ XB(xte)(f(x)) = fo(e) > Fix 6 and
 choose any v G (0, ^o(^))- Then fix m > 1. Let A = fo(£) - f and Sk =

 Also we fix an arbitrary positive integer Ar, for which Sk < y. The existence
 of the above mentioned limit implies the existence of an integer Lm > fc, for
 which

 card{¿ < Lm : f{x) € , A
 Lm " 2 '

 Then for this Lm we have

 card{i < Lm : f'(x) € B(x,e)} _
 m + Lm

 m + cardi i < Lm : f(x) e B(x,e)} m ^ A .
 =  m + Lm m + , Lm j l

 that completes the proof of the lemma. □

 Proof of the Auxiliary Theorem. Let us set ^ for i = 1,2,... and
 consider the compact set Z . For this set we can find a sequence of finite i,-nets

 Zi = . . . , consisting of points from Z and such that Zi C Zi+ 1 for
 all i > 1. Now having defined the sequence where Ni is the number of
 points in the J, -net Zi , any positive integer j can be uniquely represented in the

 formj = n{j)+Yik<i(j) ^ k where n(j) satisfies the condition 1 < n(j) < Ni{j).
 Thus all points of the finite J, -nets Zi form an infinite sequence {zj}JL' by

 the condition zj = z^ where n and i are equal to the above described n(j)
 and i(j) respectively. By the equality ej = the sequence {zj}jCL1 can also
 be associated with the sequence of positive real numbers, which will
 define neighborhoods of points zj . Note that for any j > 1 there are infinitely
 many k > j with Zk = zj and that the points Zj form a subset of Z dense in
 Z.
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 We use the sequence of points {zj}JL' and numbers in order to
 construct a sequence {Fj}<jL0 of nested closed subsets of I with a nonempty
 intersection containing a point having the required properties.

 Let Fo = I and to = 0. By applying Lemma 3 to the point z' and £i, we
 define the number v and the sequence {Lm}. Then we set v' is equal to this
 v and l' - Lo + 2K{s'). Now let t' be any positive integer such that t' > l'

 and tl-2^(c0 > 1/2. Since the map / is continuous and expanding, we can
 find an interval Fļ which contains the point z' and for which =
 B{ftl~K(eiHzi)ìei). By Lemma 1 we can find a closed interval F' C Fļ such
 that ftl(Fi) = B(z2ì€2)' Note that by Lemma 2, for any t < t' - 2K(e'), the
 length of the interval fť(F1) is less than e' and hence the first t' - 2K(e')
 iterations of the interval F' belong to e i -neighborhoods of the corresponding
 iterations of the point z' .

 By applying Lemma 3 to the point zi and £2, we define a new number
 v and a new sequence {Lm} , and then set 1/2 is equal to this v and /2 =
 Ltļ + 2K(s2). Now let ¿2 be any positive integer such that Í2 > /1, /2 > h
 and >2/3. Since the map / is continuous and expanding and also
 since /řl (Fi) = B(z2ì £2), we can find an interval F2 which is contained in the
 interval F' and for which the following two conditions are satisfied:

 a) the point Z2 belongs to ftl{F1)'y

 b) = B{ft*-Ki£*)(z2),e2).

 Now by Lemma 1 we can find a closed interval F2 C Fļ such that ftl+t2(F2) =
 B{z3i63).

 Similarly for any j > 1 , we apply Lemma 3 to the point zj and Sj in order
 to define a new number v and a new sequence {Z/m}> and then set i/j is equal
 to this v and lj = Lt + 2 K(sj) where t = ^¿<7 U- Now let tj be any positive

 t -2K(e )

 integer such that tj > U for all i < j and tļ+t2+ . .Ļt. > j+ī • Since the map /
 is continuous and expanding and also since (Fj- 1) = B(zjiSj ), we
 can find an interval FJ which is contained in the interval Fj-.' and for which
 the following two conditions are satisfied:

 a) the point Zj belongs to ftl+ " tj-1(Fj)'

 Now by Lemma 1 we can find a closed interval Fj C Ff such that /*!+•••*> (Fj) =
 B{zj+i > £j+ 1) •

 By Lemma 2 the first tj - 2 K(ej) of the last tj iterations of the interval
 Fj belong to £j -neighborhoods of the corresponding iterations of the point
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 Zj. Since the interval Fj is contained in all previously constructed intervals,
 due to the properties of these intervals indicated above we can conclude that
 trajectories of all points of the interval Fj approximate, successively for i =
 1 , . . . ,j, pieces of trajectories of length t{ - 2 K{si) of points z' to within
 Let us prove that for the point xi which is defined by the intersection of
 all closed intervals Fj as j - y oo, we shall have cr(x, /) = Z. To this end for
 arbitrary e > 0 we consider the ¿-neighborhood B(Z,e ) of the set Z. It is
 clear that for all j greater than some jo > 1, we have B(zjì€j) C B(Zie).
 Then for each j > jo, by the choice of tj , for any t > Yli<j U the relative time
 of being of the trajectory of the point x outside of the set B(Zie) does not
 exceed 1 / ( j H- 1) and hence it decreases to 0 as t -> oo. Therefore cr(x, /) C Z.
 Furthermore since for any j there are infinitely many k > j with Zk = Zj and
 6k < £j and also since tj are chosen to be not less than /,• for all i < j, by

 Lemma 3 for each point Zj we have limsupn_)>00 XB(zj ,€){?{&)) > 0
 for any fixed e > 0. Hence for any j > 1 the point Zj belongs to a(x1f).
 Since <t(x, /) is closed and the points Zj form a dense set in Z , we obtain the
 inclusion Z Ç a(xìf). This proves the equality <t(x,/) = Z and completes
 the proof of the auxiliary theorem. □
 Using the Auxiliary Theorem, we can complete the proof of the theorem

 on the structure of <7-limit sets as follows.

 Let S be a closed interval [a, 6] and c be the midpoint of this interval. Let
 / be the tent map on [a, 6], i.e. the continuous map such that f(a) = f(b) = a,
 /(c) = b and / is linear on each of the intervals [a, c], [c, 6]. It is well known
 that the tent map is expanding and that periodic points of / are dense in the
 interval. Therefore by the Auxiliary Theorem there exists a point x G [a, 6],
 for which <t(x, /) = [a, 6] = 5.

 If S = [ai, òi] U [a2, 62] U • • -U [an, 6n] where n > 1 and ai < 61 < a2 < b2 <
 - - - < an < 6n, then for i = 1, 2, . . .n - 1 we set /(a¿) = a¿+i, /(&*) = &¿+i and
 f(an) = f{bn) = ai, /(a"+bn ) = 61. Extending / by linearity, we obtain a
 continuous piecewise linear map /:/->•/, for which /([a¿,6¿]) = [a,+i,6,+i]
 for i = 1, 2, . . . , n - 1 and f{[anìbn]) = [ai, 61]. The restriction of the map fn
 on the interval [ai, 61] is the tent map on [ai, 61] and we can use the Auxiliary
 Theorem again in order to obtain a point x E [ai, &i] with <r(x , fn) = [ai, 61]
 and hence a(xì f) = S.

 Now suppose that S is a nonempty closed nowhere dense subset of I =
 [0,1]. We are going to construct a continuous expanding map /:/->/, for
 which S C Fix(/) where Fix(/) denotes the set of fixed points of /. We use
 the following construction.

 Let (a, 6) be a nondegenerate interval and let L and R be nonnegative real
 numbers. We define a real continuous function g on the segment [a, b] by the
 following two conditions:
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 (i) g(a) = a, 0(6) = 6, g(a + (b- a)/3) = 6 + R and g(b-(b-a)/3) - a-L'

 (ii) g is linear on each component of the set (a, 6)'{a+(6- a)/3, 6- (6- a)/3}.

 If an interval (a, 6) and nonnegative real numbers L and R are given, then
 we say that the function g is defined by parameters (a, 6), L, R. Note that
 we have 'g(J)' > |J| for any interval J C [a, b] where 'J' denotes the length
 of the interval J. Furthermore, if g(J) contains no endpoints of [a, 6], then
 l#(^)l > §l^l> and if J contains an endpoint of [a, 6], then [a, 6] C fK {J) for

 some K ^ 1-1- logg ļj*p*
 Let r = {G,}, i > 0, be the family of all components of the open dense set

 J'S, which are numbered with 'Gj ' > |G/J if j < Ar, and let Tn = {G,},<n. Fix
 a sequence no = 0 < rt' < n 2 < . . . such that for any Ar > 1 the finite family
 Tnk of open intervals has the following property: if we divide the interval /
 into 2k equal parts, then for any such part J we can find an interval G from
 rnfc, for which G fi J / 0. We can find such a sequence because the set S
 is nowhere dense in I. Note that for each Gì G T with i > 1, there exists a
 unique k = k(i) such that G,- G rnfc and ^ Tnk_1. It is clear that if T is
 infinite (i.e. if S is infinite), then k(i) 00 as i -¥ 00.

 Let Lo = inf Go and Rq = 1 - sup Go- (Recall that we construct the map
 on the interval / = [0,1].) If i > 1, then we define nonnegative real numbers
 L{ and Ą as follows:

 a) first we find k = k(i) such that G,- G Tnk and G,- ^ Tnk_l]

 b) if there are no elements of Tnk to the left of G,-, then Li = inf Gt ; if there
 are elements of Tnk to the left of G,-, then Li = /,• + |Gnfc | where /,• is the
 distance between Gì and the interval from rnfc , which is nearest to Gt-
 from the left;

 c) if there are no elements of Tnk to the right of G,-, then Ri = 1 - sup G, ; if
 there are elements of Tnk to the right of G¿, then Ri = ri -h |GnJ where
 ri is the distance between G, and the interval from Tnk , which is nearest
 to G i from the right.

 Now we can define the map /:/->■/ by the following two conditions:

 a) for X G S we set f(x) = x;

 b) on every G,- G T the map / is equal to the function g introduced above
 defined by the parameters G,-, L,-, Ri .

 In order to prove the continuity of the map /, it is sufficient to prove that Li
 and Ri tend to zero as i - y 00. By the definition of L, we have either L,- is
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 equal to the distance from G, to the left end of the interval I or L,- = /, + 'Gnk '
 where /,• is the distance between Gì and the interval from Tnk , which is nearest
 to Gi from the left. Having determined k = k(i ), by the definition of Tnk we
 have Li < 2~k in the first case and Z, < 2~k+1 in the second one. Hence
 Li < 2~k+1 + |GnJ. Since |GnJ ->• 0 as k -» oo and k(i) -» oo as i - y oo, we
 have Li - > 0 as i - > oo.
 Similarly we can prove that Ri - > 0 as i - y oo and hence the map / is

 continuous.

 Now let us prove that the map / is expanding. Let U be an open in I
 subinterval of I such that U H S ^ 0. Since S is nowhere dense in /, there
 exists G i G r such that U C'G i ^ 0 and one of the endpoints of G,- belongs to U .
 Let us define k = k(i) and consider the interval J = U D G,-. It is not hard to
 see that for som et < l+log3 (l+log3 interval fl(J) contains

 an endpoint of Go and |Go H fť{J) ' > 'Gnk'. Hence for r = 1 + log3 we

 must have ft+T{J ) = I.
 If U fi S = 0, then U C G,- for some G i G T. Using the properties of the

 map g mentioned above and the construction of the map /, we can conclude
 that if for this U we have f(U) fl S = 0, then |/(ř7)| > ''U'. Therefore for a
 finite N we must have fN(U) fl S ^ 0 and hence we can apply the arguments
 of the previous case to this new interval U* = fN(U). This proves that the
 map / is expanding. Now applying the Auxiliary Theorem to the map / and
 the closed set S C Fix(/) C <rRec(/), we complete the proof.
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