Krzysztof Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, (kcies@wvnvms.wvnet.edu)

ON RANGE OF UNIFORMLY ANTISYMMETRIC FUNCTIONS

Abstract

In this note it is proved that the range of uniformly antisymmetric function must have at least four elements. This generalizes the results from [3] and [2] that the range of such function must have at least three elements. The problem whether the range of uniformly antisymmetric function can be finite remains open.

For a linear space $K \subset \mathbb{R}$ over \mathbb{Q} a function $f: K \rightarrow \mathbb{R}$ is uniformly antisymmetric if for every $x \in K$ there exists $g(x) \in(0,1)$ such that

$$
|f(x-h)-f(x+h)| \geq g(x)
$$

for every $0<h<g(x), x \in K$. It is easy to see that $f: K \rightarrow \mathbb{Z}$ is uniformly antisymmetric if there exists a function $g: K \rightarrow(0,1)$, called a gage function, such that

$$
f(x-h) \neq f(x+h)
$$

for every $0<h<g(x), h \in K$.
Uniformly antisymmetric functions has been studied by Kostyrko [3], Ciesielski and Larson [2], and Komjáth and Shelah [4]. In [2] it has been proved that there exists an uniformly antisymmetric function $f: \mathbb{R} \rightarrow \mathbb{N}$. It has been also shown there that there is no uniformly antisymmetric function $f: K \rightarrow\{0,1\}$ for any uncountable linear space $K \subset \mathbb{R}$ over \mathbb{Q}, generalizing the result form [3]. The main open problem from [2, Problem 1] is whether there exists a uniformly antisymmetric function $f: \mathbb{R} \rightarrow \mathbb{R}$ with finite or bounded range. In this note we will reformulate this problem in terms of n-coloring of

[^0]some infinite graphs on \mathbb{R} and show that there is no uniformly antisymmetric function $f: K \rightarrow\{0,1,2\}$ for any uncountable linear space $K \subset \mathbb{R}$ over \mathbb{Q}.

We need some definitions and facts. Let $K \subset \mathbb{R}$ be a linear space over \mathbb{Q}. For a gage function $g: K \rightarrow(0,1)$ define a graph $G_{g}=\left(K, E_{g}\right)$ by considering K as its set of vertices and defining the set E_{g} of its edges as the set of all unordered pairs $\{a, b\}$ from K such that $g(x) \geq|x-a|=|x-b|$ for $x=(a+b) / 2$. Notice that for $B \subset \mathbb{Z}$ there exists a uniformly antisymmetric function $f: K \rightarrow B$ with a gage function g if and only if f is a coloring of the graph G_{g} such that no two vertices connected by an edge have the same color. In other words, there exists a uniformly antisymmetric function $f: K \rightarrow\{0,1, \ldots, n-1\}$ with gage g if and only if the graph G_{g} is n-colorable.

Since graph G_{g} is n-colorable if and only if every its finite subgraph is n-colorable (see [1]) we conclude the following theorem.

Theorem 1 For any linear space $K \subset \mathbb{R}$ over \mathbb{Q} and any natural number n there exists a uniformly antisymmetric function $f: K \rightarrow\{1,2, \ldots, n\}$ if and only if there exists a function $g: K \rightarrow(0,1)$ such that every finite subgraph of G_{g} is n-colorable.

In particular, there is no uniformly antisymmetric function $f: K \rightarrow \mathbb{R}$ with finite range if and only if for every $g: K \rightarrow(0,1)$ and every natural number n the graph G_{g} contains a finite subgraph which is not n-colorable.

Now, we are ready to prove the following theorem.
Theorem 2 Let K be an uncountable linear space over \mathbb{Q}. If $f: K \rightarrow\{1,2,3\}$ then f is not uniformly antisymmetric function.

Proof. Choose arbitrary $g: K \rightarrow(0,1)$. By Theorem 1 it is enough to show that G_{g} contains finite subgraph which is not 3-colorable. To this order we will show that G_{g} contains K_{4}, i.e., graph with 4 vertices and all possible edges.

We denote vertices of K_{4} by A, B, C and D. We will think of this K_{4} as on 3-dimensional tetrahedron with base formed by vertices A, B and C. (See figure.) Let a, b and c denote the mid points of intervals (edges) $B C, A C$ and $A B$, respectively. (Thus, in triangle $A B C$, point a is a center of the side opposite to A, etc.) Also, centers of sides $A D, B D$ and $C D$ are denoted by a^{\prime}, b^{\prime} and c^{\prime}, respectively.

The algebraic relation between these points is given by equations

$$
\begin{array}{cll}
A+B=2 c, & B+C=2 a, & A+C=2 b \\
A+D=2 a^{\prime}, & B+D=2 b^{\prime}, & C+D=2 c^{\prime} \tag{2}
\end{array}
$$

Solving (1) we obtain

$$
\begin{equation*}
A=-a+b+c, \quad B=a-b+c, \quad C=a+b-c . \tag{3}
\end{equation*}
$$

Figure 1: K_{4} embedded into G_{g}.

In particular, to insure that graph generated by triangle $A B C$ is in G_{g} it is enough to make sure that there exists $\varepsilon>0$ such that

$$
\begin{equation*}
|a-B|=|b-c|<\varepsilon,|b-C|=|a-c|<\varepsilon,|c-A|=|a-b|<\varepsilon \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon<g(a), \quad \varepsilon<g(b), \quad \varepsilon<g(c) \tag{5}
\end{equation*}
$$

Notice also, that adding each of the equations (1) to an appropriate equation from (2) we obtain

$$
\begin{equation*}
2\left(a+a^{\prime}\right)=2\left(b+b^{\prime}\right)=2\left(c+c^{\prime}\right)=A+B+C+D \tag{6}
\end{equation*}
$$

So, intervals $\left[a, a^{\prime}\right],\left[b, b^{\prime}\right]$ and $\left[c, c^{\prime}\right]$ have a common center. Denote this common center by X. Then,

$$
\begin{equation*}
a^{\prime}=2 X-a, \quad b^{\prime}=2 X-b, \quad c^{\prime}=2 X-c . \tag{7}
\end{equation*}
$$

Let δ denote the diameter of the set $\left\{a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\right\}$ and notice that, by (2) and (3),

$$
\left|a^{\prime}-D\right|=\left|A-a^{\prime}\right|=\left|-a+b+c-a^{\prime}\right| \leq|-a+b|+\left|c-a^{\prime}\right| \leq 2 \delta .
$$

Similarly we can show that $\left|b^{\prime}-D\right| \leq 2 \delta$ and $\left|c^{\prime}-D\right| \leq 2 \delta$. Thus, in order to insure that edges $A D, B D$ and $C D$ are in G_{g} it is enough to choose $A B C D$ such that

$$
\begin{equation*}
g\left(a^{\prime}\right)>2 \delta, \quad g\left(b^{\prime}\right)>2 \delta ; \quad g\left(c^{\prime}\right)>2 \delta \tag{8}
\end{equation*}
$$

Now, we are ready to make the choice of our K_{4}. First, choose $d \in(0,1 / 4)$ and an uncountable $S \subset K$ such that $g[S] \subset(4 d, 1)$. Pick $X \in K$ such that $S \cap(X-d, X+d)$ is uncountable and define $T=\{2 X-s: s \in S \cap(X-d, X+d)\}$. Thus, $T \subset(X-d, X+d)$ is uncountable. Choose uncountable subset $T_{1} \subset T$ and $\varepsilon>0$ such that $g\left[T_{1}\right] \subset(\varepsilon, 1)$. We can pick $a, b, c \in T_{1}$ such that $a<b<$ $c<a+\varepsilon$. Now, from points a, b, c and X we can reconstruct $A, B, C, D, a^{\prime}, b^{\prime}, c^{\prime}$ as described above.

Edges $A B, B C$ and $A C$ are in G_{g}, since a, b, c satisfy (4) and (5).
To see that edges $A D, B D$ and $C D$ are in G_{g} notice that $a^{\prime}, b^{\prime}, c^{\prime} \in S$, i.e., $g\left(a^{\prime}\right)>4 d, g\left(b^{\prime}\right)>4 d$ and $g\left(c^{\prime}\right)>4 d$. To finish the proof it is enough to notice that $a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \in(X-d, X+d)$, i.e., that $\delta<2 d$, since this implies (8).

The following questions seems to be intriguing in light of the previous theorem.

Problem 1 Can we embed K_{5} into G_{g} for every $g: \mathbb{R} \rightarrow \mathbb{R}$?

References

[1] N. G. de Bruin, P. Erdös, A colour problem for infinite graphs and a problem in the theory of relations, Proc. Amer. Math. Soc. 54 (1951), 371-373.
[2] K. Ciesielski, L. Larson, Uniformly antisymmetric functions, Real Analysis Exch. 19(1) (1993-94), 226-235.
[3] P. Kostyrko, There is no strongly locally antisymmetric set, Real Analysis Exch. 17(2) (1991-92), 423-425.
[4] P. Komjáth and S. Shelah, On uniformly antisymmetric functions, Real Analysis Exch. 19(1) (1993-94), 218-225.

[^0]: Key Words: uniformly antisymmetric functions, coloring of infinite graphs
 Mathematical Reviews subject classification: Primary: 26A15, 26A21
 Received by the editors September 30, 1993

