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 A NOTE ON ABSOLUTE SUMMABILITY

 METHODS

 In this paper a generalization of a theorem of Bor [2] has been proved.

 1. Introduction

 Let Sa„ be a given infinite series with partial sums sn, and un = na„. By
 z% and we denote the nth Cesaro means of order or (a > -1) of the
 sequences (sn) and (un), respectively. The series £an is said to be summable
 |C'a|fc, k > 1, if (see [4])

 (1.1)
 n = l

 But since ť® = n(z% - (see [5]), condition (1.1) can also be written as

 (1.2)
 n=l

 Let (p„) be a sequence of positive real constants such that

 n

 Pņ =y^JPv -> OO as n-»oo, (P-i = P-¡ = 0, « > 1). (1.3)
 v=0

 The sequence-to-sequence transformation

 o-4)
 rn v=0
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 defines the sequence (Tn) of the (Ñ,pn) means of the sequence (sn)j generated
 by the sequence of coefficients (pn). The series Ean is said to be summable
 |.'V,p„|t, k > 1, if (see [1])

 CO

 (1.5)
 n = l

 where
 n

 (n > 1). (1.6)
 PnP»-1 tťi

 In the special case when pn = 1 for all values of n (resp. k = 1), 'N,pn'k
 summability is the same as |C, lļ* (resp. |Ñ,pn|) summability.

 2.

 It is known that the summability | Ñ,pn'k and summability 'C,a'k are, in
 general, independent of each other. For a = 1, Bor [2] has established a
 relation between the |Ñ,pn|fc anc^ l|jb summability methods by proving the
 following theorem.

 Theorem 2.1 Let (pn) be a sequence of positive real constants such that as
 n - ► oo

 npn X Pn (that is npnO(Pn) and Pn = 0(npn)). (2.1)

 IfHan is summable | Ñ,pn'k, then it is also summable | C, l|t, k > 1.

 Notice that, to see the hypothesis (2.1) in Theorem 2.1 is satisfied by at
 least one pn ^ 1, it is sufficient to take pn = n for all values of n.

 In the present paper we shall prove the following theorem, which is a
 generalization of Theorem 2.1.

 Theorem 2.2 Let ( pn ) be a sequence of positive real constants such that con-
 dition (2.1) of Theorem 2.1 is satisfied and let (T„) be the ( Ñypn ) mean of the
 series Han- If

 j|* < OO. (2.2)
 n = 1

 then the series S an is summable |C, a|jt, ¿ > 1, 0 < a < 1.

 It should be noted that if we take a = 1 in this theorem, then we get
 Theorem 2.1.
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 3.

 We need the following lemma for the proof of our theorem.

 Lemma 3.1 . See ([3]). If a > - 1 and a - ß > 0, then

 00 Aß 1
 = (31>

 n=v n V/iv

 where

 (a + l)(ûr -h 2) . . .(a + n) n° An , . _
 '1° = -

 (3.2)

 4. Proof of Theorem 2.2

 Let t° be the nth (C, a) mean of the sequence (na„), where 0 < a < 1. Then
 we have

 = (4-1)
 n v = l

 where A* is as in (3.2). By (1.6), we have

 a„ = AT„_i + ^ATn_2. (4.2)
 Pn Pn-'

 Hence

 +^Pa-^at-

 v = l
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 = -ēkAT-' + (-«^i +<»+ »"-i-.*-') ■
 Since

 -»P.^Zi + íw + ljP.-iA-zi.! = -vPvAAÎll-vpvAïzl^ + Pv-iAïzLv
 we have

 = -ēžAT"->-*X°%AA°zlAT--'

 - iPA"::-'ŮT- +¿S 7T^;-'at"-'
 = łn,l +ťň,2 + ťň,3 + ťň,4> say-

 To prove the theorem, by Minkowski's inequality, it is sufficient to show that

 E ±ltS,lk ' < oo, for r = 1,2,3,4, by (1.2). (4.3) n '
 n = l

 Firstly, we have

 tn i m

 77 -
 n= 1 n=l

 m

 = Oa^n^Pn/pn)* n-ofc|AT„_1|ł
 n = l

 m

 = 0(1) ^(Pn/pn^-^-^ATn.!!4 = 0(1)
 n = l

 as m - ► oo, by virtue of the hypotheses.
 Now, when k > 1, applying Holder's inequality, with indices k and k' ,

 where £ + p = 1 , we get

 m+l - m+1 1 /n-1 p ' *

 = od) E-
 n=2
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 -, ("E«» (£)'<»- »r-w.-.r) (x> -vf-A
 =

 n= 2

 m / p ' k m+l / - 2

 = 0(l)Xy(-^J / '"v p / ' lAT^f ¿ (n~jL / - 2 , when (0 < a < 1) v = l '"v / n=f -f 1

 m / p ' * m+1

 = O(l)¿i;k-ofc-l(-ij / p ' |ATv_i|k ¿(n-vr-2
 t> = l VPv/ n=v + l

 = o(i)
 v=i

 Thus when 0 < a < 1, we have

 m+l .. m

 = °(1)H(Pw/p,,)(2~0,)t~1lAT,'-1lk = ^i1) 85 m-40°'
 n=2 v=l

 by virtue of the hypotheses.

 Remark 1 It should be noted that when a = 1, the summation equals zero as
 a c; = o.

 Again using Lemma 3.1, we get

 m+l 1 m+l - ( n - 1 ļ *

 m+l ļ r n - 1 ļ *

 m+l - (n- 1 ļ f n~l 4«-l Ì

 = °(DE^f E^rilAT^ X n = 2 n U = 1 J U = 1 n J
 m+l - n - 1

 = oíOĚr^E^-ilAr.-il*
 n=2 n v = l

 m m+l iQ-l

 = 0(l)£,»|Ar,-,|' £ TT?
 v=l n=v+l n
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 m -

 = O^XyiAT^I*-.
 V=1

 Since 1 - a > 0 and Jk > 0, we have Hence as in we
 get

 m + 1 .J m

 E -Kal4 = GKOiy^lAr-il*
 n = 2 v - 1

 m

 = o(i)J3®fc-1t><1-a,>fc|Arl,_j|k
 v = l

 m

 = 0(l)^(P,,/pt,)(2~0l)*~1|A:r„_i|t = 0(1) asm-» oo,
 V = 1

 by virtue of the hypotheses.
 Finally, we have

 ™+l |/a it m+i - /n-i p ' *

 ™+l s¥- |/a it *
 m+1 1 /n_1 p p '*

 m+l 1 /n-1 D ' *

 - oa) E ^

 m m+1 ia-1

 = 0(l)^(Pv/Pv)k'ATv^'k £
 i> = 1 n=v + 1

 v = l
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 by the lemma. Hence, as in ť" 3, we have

 m + 1 .J m

 Ti = 2 V = 1

 V = 1

 = 0(1) as m - ► co.

 by virtue of the hypotheses. Therefore, we get that

 £ -|*n,rlł = 0(1) as m - oo, for r= 1,2,3,4.
 i ^ n = i l

 This completes the proof of the theorem.
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