Hüseyin Bor, Department of Mathematics, Erciyes University, Kayseri 38039, Turkey. Mailing Address: P.K. 213, Kayseri 38002, Turkey.

A NOTE ON ABSOLUTE SUMMABILITY METHODS

In this paper a generalization of a theorem of Bor [2] has been proved.

1. Introduction

Let Σa_n be a given infinite series with partial sums s_n , and $u_n = na_n$. By z_n^{α} and t_n^{α} we denote the *n*th Cesarò means of order α ($\alpha > -1$) of the sequences (s_n) and (u_n) , respectively. The series Σa_n is said to be summable $|C, \alpha|_k$, $k \ge 1$, if (see [4])

$$\sum_{n=1}^{\infty} n^{k-1} |z_n^{\alpha} - z_{n-1}^{\alpha}|^k < \infty.$$
 (1.1)

But since $t_n^{\alpha} = n(z_n^{\alpha} - z_{n-1}^{\alpha})$ (see [5]), condition (1.1) can also be written as

$$\sum_{n=1}^{\infty} \frac{1}{n} |t_n^{\alpha}|^k < \infty. \tag{1.2}$$

Let (p_n) be a sequence of positive real constants such that

$$P_n = \sum_{v=0}^{n} p_v \to \infty \text{ as } n \to \infty, \ (P_{-i} = p_{-i} = 0, \ i \ge 1).$$
 (1.3)

The sequence-to-sequence transformation

$$T_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v s_v \tag{1.4}$$

Key Words: Absolute summability, summability methods, infinite series Mathematical Reviews subject classification: 40D25, 40F05, 40G05, 40G99 Received by the editors April 24, 1992

538 Bor

defines the sequence (T_n) of the (\bar{N}, p_n) means of the sequence (s_n) , generated by the sequence of coefficients (p_n) . The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k$, $k \ge 1$, if (see [1])

$$\sum_{n=1}^{\infty} (P_n/p_n)^{k-1} |\Delta T_{n-1}|^k < \infty, \tag{1.5}$$

where

$$\Delta T_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v, \quad (n \ge 1). \tag{1.6}$$

In the special case when $p_n = 1$ for all values of n (resp. k = 1), $|\bar{N}, p_n|_k$ summability is the same as $|C, 1|_k$ (resp. $|\bar{N}, p_n|$) summability.

2.

It is known that the summability $|\bar{N}, p_n|_k$ and summability $|C, \alpha|_k$ are, in general, independent of each other. For $\alpha = 1$, Bor [2] has established a relation between the $|\bar{N}, p_n|_k$ and $|C, 1|_k$ summability methods by proving the following theorem.

Theorem 2.1 Let (p_n) be a sequence of positive real constants such that as $n \to \infty$

$$np_n \simeq P_n$$
 (that is $np_n O(P_n)$ and $P_n = O(np_n)$). (2.1)

If $\sum a_n$ is summable $|\bar{N}, p_n|_k$, then it is also summable $|C, 1|_k, k \ge 1$.

Notice that, to see the hypothesis (2.1) in Theorem 2.1 is satisfied by at least one $p_n \neq 1$, it is sufficient to take $p_n = n$ for all values of n.

In the present paper we shall prove the following theorem, which is a generalization of Theorem 2.1.

Theorem 2.2 Let (p_n) be a sequence of positive real constants such that condition (2.1) of Theorem 2.1 is satisfied and let (T_n) be the (\bar{N}, p_n) mean of the series Σa_n . If

$$\sum_{n=1}^{\infty} (P_n/p_n)^{(2-\alpha)k-1} |\Delta T_{n-1}|^k < \infty.$$
 (2.2)

then the series $\sum a_n$ is summable $|C, \alpha|_k$, $k \ge 1$, $0 < \alpha \le 1$.

It should be noted that if we take $\alpha = 1$ in this theorem, then we get Theorem 2.1.

3.

We need the following lemma for the proof of our theorem.

Lemma 3.1 . See ([3]). If $\alpha > -1$ and $\alpha - \beta > 0$, then

$$\sum_{n=v}^{\infty} \frac{A_{n-v}^{\beta}}{n A_n^{\alpha}} = \frac{1}{v A_v^{\alpha-\beta-1}},\tag{3.1}$$

where

$$A_n^{\alpha} = \frac{(\alpha+1)(\alpha+2)\dots(\alpha+n)}{n!} \simeq \frac{n^{\alpha}}{\Gamma(\alpha+1)}, \ A_0^{\alpha} = 1 \ and \ A_{-n}^{\alpha} = 0 \ for \ n > 0.$$

$$(3.2)$$

4. Proof of Theorem 2.2

Let t_n^{α} be the nth (C, α) mean of the sequence (na_n) , where $0 < \alpha \le 1$. Then we have

$$t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=1}^n A_{n-v}^{\alpha-1} v a_v, \tag{4.1}$$

where A_n^{α} is as in (3.2). By (1.6), we have

$$a_n = -\frac{P_n}{p_n} \Delta T_{n-1} + \frac{P_{n-2}}{p_{n-1}} \Delta T_{n-2}. \tag{4.2}$$

Hence

$$t_{n}^{\alpha} = \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v \left(-\frac{P_{v}}{p_{v}} \Delta T_{v-1} + \frac{P_{v-2}}{p_{v-1}} \Delta T_{v-2} \right)$$

$$= \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} (-v) A_{n-v}^{\alpha-1} \frac{P_{v}}{p_{v}} \Delta T_{v-1} - \frac{nP_{n}}{p_{n} A_{n}^{\alpha}} \Delta T_{n-1}$$

$$+ \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} v A_{n-v}^{\alpha-1} \frac{P_{v-2}}{p_{v-1}} \Delta T_{v-2}$$

$$= -\frac{nP_{n}}{p_{n} A_{n}^{\alpha}} \Delta T_{n-1} + \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} (-v) A_{n-v}^{\alpha-1} \frac{P_{v}}{p_{v}} \Delta T_{v-1}$$

$$+ \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} (v+1) A_{n-v-1}^{\alpha-1} \frac{P_{v-1}}{p_{v}} \Delta T_{v-1}$$

540 Bor

$$= -\frac{nP_n}{p_n A_n^{\alpha}} \Delta T_{n-1} + \frac{1}{A_n^{\alpha}} \sum_{v=1}^{n-1} \frac{\Delta T_{v-1}}{p_v} \left(-v P_v A_{n-v}^{\alpha-1} + (v+1) A_{n-v-1}^{\alpha-1} P_{v-1} \right).$$

Since

$$-vP_{v}A_{n-v}^{\alpha-1} + (v+1)P_{v-1}A_{n-v-1}^{\alpha-1} = -vP_{v}\Delta A_{n-v}^{\alpha-1} - vp_{v}A_{n-v-1}^{\alpha-1} + P_{v-1}A_{n-v-1}^{\alpha-1},$$
 we have

$$t_{n}^{\alpha} = -\frac{nP_{n}}{p_{n}A_{n}^{\alpha}}\Delta T_{n-1} - \frac{1}{A_{n}^{\alpha}}\sum_{v=1}^{n-1}v\frac{P_{v}}{p_{v}}\Delta A_{n-v}^{\alpha-1}\Delta T_{v-1}$$

$$- \frac{1}{A_{n}^{\alpha}}\sum_{v=1}^{n-1}vA_{n-v-1}^{\alpha-1}\Delta T_{v-1} + \frac{1}{A_{n}^{\alpha}}\sum_{v=1}^{n-1}\frac{P_{v-1}}{p_{v}}A_{n-v-1}^{\alpha-1}\Delta T_{v-1}$$

$$= t_{n,1}^{\alpha} + t_{n,2}^{\alpha} + t_{n,3}^{\alpha} + t_{n,4}^{\alpha}, \text{ say.}$$

To prove the theorem, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \frac{1}{n} |t_{n,r}^{\alpha}|^{k} < \infty, \text{ for } r = 1, 2, 3, 4, \text{ by (1.2)}.$$

Firstly, we have

$$\sum_{n=1}^{m} \frac{1}{n} |t_{n,1}^{\alpha}|^{k} = \sum_{n=1}^{m} n^{k-1} (P_{n}/p_{n})^{k} (A_{n}^{\alpha})^{-k} |\Delta T_{n-1}|^{k}$$

$$= O(1) \sum_{n=1}^{m} n^{k-1} (P_{n}/p_{n})^{k} n^{-\alpha k} |\Delta T_{n-1}|^{k}$$

$$= O(1) \sum_{n=1}^{m} (P_{n}/p_{n})^{(2-\alpha)k-1} |\Delta T_{n-1}|^{k} = O(1)$$

as $m \to \infty$, by virtue of the hypotheses.

Now, when k > 1, applying Hölder's inequality, with indices k and k', where $\frac{1}{k} + \frac{1}{k'} = 1$, we get

$$\sum_{n=1}^{m+1} \frac{1}{n} |t_{n,2}^{\alpha}|^{k} \leq \sum_{n=2}^{m+1} \frac{1}{n(A_{n}^{\alpha})^{k}} \left(\sum_{v=1}^{n-1} v \frac{P_{v}}{p_{v}} |\Delta A_{n-v}^{\alpha-1}| |\Delta T_{v-1}| \right)^{k}$$

$$= O(1) \sum_{n=2}^{m+1} \frac{\left(\sum_{v=1}^{n-1} v^{k} \left(\frac{P_{v}}{p_{v}} \right)^{k} |\Delta A_{n-v}^{\alpha-1}| |\Delta T_{v-1}|^{k} \right) \left(\sum_{v=1}^{n-1} |\Delta A_{n-v}^{\alpha-1}| \right)^{k-1}}{n^{1+\alpha k}}$$

$$= O(1) \sum_{n=2}^{m+1} \frac{\left(\sum_{v=1}^{n-1} v^k \left(\frac{P_v}{p_v}\right)^k (n-v)^{\alpha-2} |\Delta T_{v-1}|^k\right) \left(\sum_{v=1}^{n-1} (n-v)^{\alpha-2}\right)^{k-1}}{n^{1+\alpha k}}$$

$$= O(1) \sum_{v=1}^{m} v^k \left(\frac{P_v}{p_v}\right)^k |\Delta T_{v-1}|^k \sum_{n=v+1}^{m+1} \frac{(n-v)^{\alpha-2}}{n^{1+\alpha k}}, \text{ when } (0 < \alpha < 1)$$

$$= O(1) \sum_{v=1}^{m} v^{k-\alpha k-1} \left(\frac{P_v}{p_v}\right)^k |\Delta T_{v-1}|^k \sum_{n=v+1}^{m+1} (n-v)^{\alpha-2}$$

$$= O(1) \sum_{v=1}^{m} v^{k-\alpha k-1} \left(\frac{P_v}{p_v}\right)^k |\Delta T_{v-1}|^k.$$

Thus when $0 < \alpha < 1$, we have

$$\sum_{n=2}^{m+1} \frac{1}{n} |t_{n,2}^{\alpha}|^k = O(1) \sum_{v=1}^{m} (P_v/p_v)^{(2-\alpha)k-1} |\Delta T_{v-1}|^k = O(1) \text{ as } m \to \infty,$$

by virtue of the hypotheses.

Remark 1 It should be noted that when $\alpha = 1$, the summation equals zero as $\Delta A_{n-v}^{\alpha-1} = 0$.

Again using Lemma 3.1, we get

$$\sum_{n=2}^{m+1} \frac{1}{n} |t_{n,3}^{\alpha}|^{k} \leq \sum_{n=2}^{m+1} \frac{1}{n(A_{n}^{\alpha})^{k}} \left\{ \sum_{v=1}^{n-1} v A_{n-v-1}^{\alpha-1} |\Delta T_{v-1}| \right\}^{k}$$

$$= O(1) \sum_{n=2}^{m+1} \frac{1}{n(A_{n}^{\alpha})^{k}} \left\{ \sum_{v=1}^{n-1} v A_{n-v}^{\alpha-1} |\Delta T_{v-1}| \right\}^{k}$$

$$= O(1) \sum_{n=2}^{m+1} \frac{1}{nA_{n}^{\alpha}} \left\{ \sum_{v=1}^{n-1} v^{k} A_{n-v}^{\alpha-1} |\Delta T_{v-1}|^{k} \right\} \times \left\{ \sum_{v=1}^{n-1} \frac{A_{n-v}^{\alpha-1}}{A_{n}^{\alpha}} \right\}^{k-1}$$

$$= O(1) \sum_{n=2}^{m+1} \frac{1}{nA_{n}^{\alpha}} \sum_{v=1}^{n-1} v^{k} A_{n-v}^{\alpha-1} |\Delta T_{v-1}|^{k}$$

$$= O(1) \sum_{v=1}^{m} v^{k} |\Delta T_{v-1}|^{k} \sum_{n=v+1}^{m+1} \frac{A_{n-v}^{\alpha-1}}{nA_{n}^{\alpha}}$$

542 Bor

$$= O(1) \sum_{v=1}^{m} v^{k} |\Delta T_{v-1}|^{k} \frac{1}{v}.$$

Since $1-\alpha>0$ and $k\geq 0$, we have $a^{(1-\alpha)k}\leq v^{(1-\alpha)k}$. Hence as in $t_{n,1}^{\alpha}$, we get

$$\sum_{n=2}^{m+1} \frac{1}{n} |t_{n,3}^{\alpha}|^{k} = O(1) \sum_{v=1}^{m} v^{k-1} |\Delta T_{v-1}|^{k}$$

$$= O(1) \sum_{v=1}^{m} v^{k-1} v^{(1-\alpha)k} |\Delta T_{v-1}|^{k}$$

$$= O(1) \sum_{v=1}^{m} (P_{v}/p_{v})^{(2-\alpha)k-1} |\Delta T_{v-1}|^{k} = O(1) \text{ as } m \to \infty,$$

by virtue of the hypotheses.

Finally, we have

$$\sum_{n=2}^{m+1} \frac{|t_{n,4}^{\alpha}|^{k}}{n} \leq \sum_{n=2}^{m+1} \frac{1}{n(A_{n}^{\alpha})^{k}} \left(\sum_{v=1}^{n-1} \frac{P_{v-1}}{p_{v}} A_{n-v-1}^{\alpha-1} |\Delta T_{v-1}| \right)^{k}$$

$$= \sum_{n=2}^{m+1} \frac{1}{n(A_{n}^{\alpha})^{k}} \left(\sum_{v=1}^{n-1} \frac{P_{v-1}}{P_{v}} \cdot \frac{P_{v}}{p_{v}} A_{n-v-1}^{\alpha-1} |\Delta T_{v-1}| \right)^{k}$$

$$= O(1) \sum_{n=2}^{m+1} \frac{1}{n(A_{n}^{\alpha})^{k}} \left(\sum_{v=1}^{n-1} \frac{P_{v}}{p_{v}} A_{n-v}^{\alpha-1} |\Delta T_{v-1}| \right)^{k}$$

$$= O(1) \sum_{n=2}^{m+1} \frac{\left(\sum_{v=1}^{n-1} \left(\frac{P_{v}}{p_{v}} \right)^{k} A_{n-v}^{\alpha-1} |\Delta T_{v-1}|^{k} \right) \left(\sum_{v=1}^{n-1} \frac{A_{n-v}^{\alpha-1}}{A_{n}^{\alpha}} \right)^{k-1}}{n A_{n}^{\alpha}}$$

$$= O(1) \sum_{v=1}^{m+1} \frac{1}{n A_{n}^{\alpha}} \left(\sum_{v=1}^{n-1} \left(\frac{P_{v}}{p_{v}} \right)^{k} A_{n-v}^{\alpha-1} |\Delta T_{v-1}|^{k} \right)$$

$$= O(1) \sum_{v=1}^{m} (P_{v}/p_{v})^{k} |\Delta T_{v-1}|^{k} \sum_{n=v+1}^{m+1} \frac{A_{n-v}^{\alpha-1}}{n A_{n}^{\alpha}}$$

$$= O(1) \sum_{v=1}^{m} (P_{v}/p_{v})^{k} |\Delta T_{v-1}|^{k} \frac{1}{v},$$

by the lemma. Hence, as in $t_{n,3}^{\alpha}$, we have

$$\sum_{n=2}^{m+1} \frac{1}{n} |t_{n,4}^{\alpha}|^{k} = O(1) \sum_{v=1}^{m} (P_{v}/p_{v})^{k} |\Delta T_{v-1}|^{k} v^{(1-\alpha)k} v^{-1}$$

$$= O(1) \sum_{v=1}^{m} (P_{v}/p_{v})^{(2-\alpha)k-1} |\Delta T_{v-1}|^{k}$$

$$= O(1) \text{ as } m \to \infty.$$

by virtue of the hypotheses. Therefore, we get that

$$\sum_{n=1}^{m} \frac{1}{n} |t_{n,r}^{\alpha}|^{k} = O(1) \text{ as } m \to \infty, \text{ for } r = 1, 2, 3, 4.$$

This completes the proof of the theorem.

References

- [1] H. Bor, On two summability methods, Math. Proc. Cambridge Phil. Soc., 97 (1985), 147-149.
- [2] H. Bor, A note on two summability methods, Proc. Amer. Math. Soc., 98 (1986), 81-84.
- [3] H. C. Chow, A note on convergence and summability factors, Jour. London Math. Soc., 29 (1954), 459-476.
- [4] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7 (1957), 113-141.
- [5] E. Kogbetliantz, Sur les séries absolument sommables par la méthode des moyennes arithmétiques, Bull. Sci. Math., 49 (1925), 234-256.