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 ON A PROBLEM CONCERNING

 UNIVERSALLY BAD DARBOUX

 FUNCTIONS

 Introduction. For a given family T of real functions let c(T ) denote
 the following condition

 c{T)i there exists a Darboux function / such that / + g is Darboux for no
 9 € ? -

 Such a function / is called a universally bad Darboux function for T. The
 problem for which families T the condition c{T) is fulfilled was considered by
 many authors (see e.g. [8], [10], [3], [6], [5]). In particular, it is proved in [6]
 that if the additivity of the ideal of all first category subsets of R is equal to
 2W (e.g. if Martin's Axiom or CH hold) then c(C*) holds for the family C* of
 all nowhere constant, continuous functions.1

 In [6] there was posed the following problem:

 Problem 1 Does the condition c(C**) hold for the family C ** of all non-
 constant continuous functions?

 In the present note we answer this question in the negative.

 Notation. We consider real functions defined on the real line. A functin
 / is said to be

 • a Darboux function iff f(J) is an interval for every interval 7,
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 • nowhere constant iff for no y G R the set f"ì(y) contains a non-degenerate
 interval,

 • of the Cesaro type iff there exist non-degenerate intervals /, J C R such
 that f~l(y) is dense in I for each y G «7,

 • cliquish iff for each e > 0, every non-empty open set U C R contains a
 non-empty open set W such that 'f(x) - f(y) | < e whenever x,y G W ,

 • of the Cantor type with respect to a Cantor set F iff F is a nowhere
 dense perfect set and / is increasing, continuous, strictly increasing in
 the points of F and constant on every component of the complement of
 F.

 Recall that / : R - ► R is cliquish if it is point wise discontinuous (i.e. the
 set C(f) of all points at which / is continuous is dense in R) [1]. Moreover, if
 / is Darboux and not cliquish then it is of the Cesaro type [4] (cf [9]).

 Theorem 1 For each Darboux function f there exists a Cantor type function
 g such that f + g is Darboux .

 Proof. First assume that / is cliquish. Then the set C(f) is residual, so
 there exists a Cantor set C contained in C(f) (see e.g. [7], Lemma 5.1). Let
 g : R - ► [0, 1] be a function of the Cantor type with respect to C. Then / + g
 has the Darboux property on each component of the complement of C and it
 is continuous at each x G C. Therefore f + g has the Darboux property at
 each x G R and consequently it is Darboux (see [2], p. 100 for the definition
 of a Darboux point of a real function).

 Now assume that / is not cliquish. By Gibson's theorem [4] / is of the
 Cesaro type. Let K and J be compact intervals such that for each y G J the
 level set /-1(y) is dense in K. Let J = [c,d]. We shall choose a Cantor set
 FC A'.

 Lemma 1 Assume that f is a Darboux function on I and f~l(y) is dense in
 I for each y G (c, d). Then for each n G N there exist an interval Io C I and
 co , do G [-00,00] such that

 (J) c0 < c, d < do,

 (2) f~l(y) is dense in I0 for each y G (coìdo)f

 (3) f(x) G (c0 - 1/n, do + 1/n) for each x G Io-
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 Proof. Fix n £ N. Put

 Co = inf{z < c : f"l(y) is dense in I for each j/G(:,¿)}.

 Note that if Co > - oo then there exist a non-degenerate interval J C I and
 z G (co - 1/n, co) such that z £ /(J). Therefore f(x) > cq - 1/n for x e J. If
 Co = oo then put J = I.

 Now let

 do = sup{z > d : f~l(y) is dense in J for each y G (co, *)}.

 Observe that if do < oo then there exist a non-degenerate interval Io C J and
 z G (do, do + 1/n) such that z £ /(/o). Therefore f(x) < do + 1/n for x € Jo-
 If do = oo then Io = J.

 It is easy to verify that /o,co,do satisfy all conditions (1) - (3).
 □

 Lemma 2 Assume thai f is a Darboux function on I and f~l(y) is dense in
 I for each y G (c, d). Then there exists a Cantor set C C I such that for every
 iGC, if x is not isolated in C from the right (left) then for each n G N there
 exist a component J of I 'C and cjydj G [-00,00] such that

 (1) J C (x, x-f 1/n) (J C (x - 1/n, x)),

 (2) cj <c, d< dj ,

 (3) f~1(y) is dense in J for each y G (cj,dj),

 (4) f(x) G (cj - 1/n, dj + 1/n).

 Proof. Let En be the family of all finite binary sequences of the length equal
 to n and let E = (JnEn. By Lemma 1 we can choose (inductively) a net
 (/<7 )<r£S of closed subintervals of I such that

 (i) if <t C 6 then Is C

 (ii) if cr and 6 are inconsistent then Ia C' I $ =0,

 (iii) for each a G E there exist ca,da such that

 • c0 < c, d < da,

 • f'l(y) iS dense in /<7 for each y G (c*, da),

 • f(Ia) C (c* - 1/n, d0 + 1/n) for each cr G En.
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 Then C = fìngN U *€£ ^ ^as ^ie re<ļuired properties.
 □

 Let g : I - ► [0, A] be a Cantor type function for C, where C is chosen as in
 Lemma 2 and h = (d - c)/2. We shall verify that / + g is a Darboux function.
 Fix xo,£i and y such that xq < x' and y0 < y < t/i , where y,- = (/ + <7)(r,) for
 i = 0, 1. There are two possible cases: either y < d - h or y > c -f h. Assume
 that e.g. the first case holds (the proof is similar in the other case). Now we
 have two subcases.

 First., assume that there exist a component J = (a, 6) of I'C and tj G [0, h ]
 such that xo G [a, b) and g(x) = tj for each x G [a, b], Then f(xo) = y0 - tj <
 y - tj < d. By the assumptions on /, there exists x G (£o,*i) fl J such that
 f(x) - y - tj, SO (/ + g)(x) = y.

 Now assume that xo is an accumulation point of C from the right. Put
 / = y - y0. Since g is continuous at xo and C fulfils the conditions (1) - (4) of
 Lemma 2, there exist a component J of I ' C and cj,dj G [~oo, oo] such that

 • |<7(xo) - O I < */2, where g(x) = tj for x G «/,

 • J C (xo, ®i),

 • /"Hy) iS dense in J for each y G (cj,dj), where cj < c, d < dj,

 • /(*o) € (cj - t/ 2, dj 4- */2)-

 We shall verify that y - tj G (cj, dj). Since y < d, y - tj < d < dj. On the
 other side, y = y0 + ť = /(x0) + ý(x0) + t > cj + ^(x0) + //2 > cj + ťj. Thus
 y - tj > cjy so f(x) = y - tj for some z G J, and consequently (/ + ^)(x) = y.

 □

 Corollary 1 There is no universally bad Darboux function for lhe class of all
 non-constant continuous functions.
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