
 Real Analysis Exchange
 Vol. 18(2), 1992/93, pp. 459-464

 Dr. Harry Poppe,  Universität Rostock, Fachbereich Mathematik, PF 999,
 0-2500 Rostock 1, Germany

 CONVERGENCE OF EVENLY

 CONTINUOUS NETS IN GENERAL
 FUNCTION SPACES

 Abstract

 For topological spaces X, Y let Yx , C(X,Y) denote the sets of all
 functions from X to Y and of all continuous functions from X to Y

 respectively. We consider nets of functions from these spaces which are
 evenly continuous or pointwise equicontinuous, and for such nets the
 relationship between pointwise convergence and topological convergence
 is studied. We find that in Yx for an evenly continuous net pointwise
 convergence (to a function from Yx) implies topological convergence.
 Conversely, if Y is an uniform space and (/,•) a pointwise equicontinuous
 net then T/iliminf T/, implies the pointwise convergence of (/,) to /.
 By an example is shown that in the second assertion the equicontinuity
 of (/,) cannot be replaced by even continuity. As corollaries of our
 results we get some results of T. Neubrunn and Ł. Holà [6] and of G.
 Beer [1] respectively. Moreover, a relationship to the lower semi-finite
 graph- topology is established.

 1. Introduction

 We consider topological spaces X, Y' by Yx , C(XiY) we denote the sets
 of all functions from X to Y and of all continuous functions from X to Y

 respectively. Let (/»),€/ be an arbitrary net from yA and we assume that (/,•)
 is evenly continuous (in the sense of J. L. Kelley and A. P. Morse see [3], [10]).

 For such a net we study in Yx the relationship between the convergence
 with respect to the topology of pointwise convergence rp and topological con-
 vergence, which means the Hausdorff convergence of the graphs of the func-
 tions /,*. At this our main goal in this note is to show by an example that
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 the assumption that (/,•) is evenly continuous is too weak for proving that
 r/iliminf r /,• implies the pointwise convergence of (/,•) to /, where (/,•) is a
 net from YA, f G Yx and liminfT/,- denotes the closed limit inferior of the
 net of graphs (r/,).
 To prove this implication instead of this assumption, we must assume that
 Y is a uniform space and (/,•) is a pointwise equicontinuous net. As corollaries
 of our results we get some results of T. Neubrunn and Ł. Holà [6] and of G.
 Beer [1] respectively.
 Moreover, we get as a corollary for nets in Yx a relationship of tp- con-
 vergence and convergence with respect to the graph-topology T' (see [9] for a
 definition of t').
 For sake of completeness and for explaining the notation we will define
 the (well-known) notion of topological convergence for a net of subsets of a
 topological space (see also [2], [4], [10]).

 (1) Let X be a topological space and let (j4«)í€(/,<) be a net of subsets of X

 a) The set liminf -A,- := {x € X : for each neighborhood U of x there exists
 i zziu € I such that t' > iv implies Ai H U ^ <ļ>} is called the closed limit
 inferior or the closed topological lower limit of the net (-4,-).

 b) The set lim sup A¡ := {x 6 X : for each neighborhood U of x there exists
 a subnet (Bk)keKu °f su°h BtHU ^ <f> for each k € Ku] is
 called the closed limit superior or the closed topological upper limit of
 the net (Ai).

 c) We say that (j4¿) converges topologically to the set A'X and A is the
 topological limit or the closed topological limit of the net (j4,-), A =
 t - lim Ai , iff lim inf Ai = lim sup Ai = A .

 Remark 1 liminf j4,-ilimsupj4,- obviously holds , and thus A = t - 'im Ai is
 equivalent to Aliminf j4t'ilimsupj4t-ij4.

 2. Pointwise and topological convergence

 In the first part of the following theorem we use the general assumption that
 the net (/,•) is evenly continuous, but in the second part we must assume that
 Y is a uniform space and (/,•) is pointwise equicontinuous. In the next section
 we will show by an example that this stronger assumption cannot be dropped,
 as was announced in the introduction.

 We will use the well-known notion /,• -^ / of continuous convergence of a
 net (fi) from Yx to / € Yx . Especially a splitting topology r for Yx can be



 Convergence of Continuous Nets 461

 characterized by: for each net (/,•) from Yx , / G Yx fi / implies /,• /
 (see [10]).
 (2) Theorem:

 1. Let X,Y be topological spaces, (/,•) an evenly continuous net from Yx
 and let be / € Yx . Then /,• / implies t - limT/j = T/.

 2. Let be A' a topological space and (V,») an uniform space, where a
 denotes the set of all entourages of the uniform structure. Let (/,•) be
 a pointwise equ ¡continuous net from Yx and let be / G Yx . Then
 r/iliminfr/i implies /,• /.

 3. Under the assumptions of 2., we find that /¿ -£-+ / is equivalent to
 r/i liminfr/¿.

 Proof.

 1. If (fi) is evenly continuous and (/,•) converges pointwise to / then (/,•)
 converges continuously to / too, which implies by a theorem of O. Frink
 that t - limT/,- = Tf holds (see [7], [10]).

 2. This proof we get by straightforward arguments: let x G X and V(f(x))
 be an arbitrary neighborhood of f(x)i where V G ot' we find a sym-
 metric entourage W G ex such that W o W'V. Since (/,•) is pointwise
 equicontinuous there exists a neighborhood U of x such that z Gì/ and
 i G / imply (/»(s), /¿(s)) G W. Now we have (xìf(x)) G T/ and hence
 (x,/(x) G liminfr/,- too implying that we find Ìq G I and for each
 i > ìq points (ziì Wi) G (U x H^(/(x)) fi T/,-; since z» G Í7, = /¿(z,) G
 iy(/(x)) we have (/,(zt), /¿(x)) G and (/,-(z¿), /(*)) G W implying
 /t(x) G V(f(x)).

 3. If (fi) is pointwise equicontinuous, then (/,•) is evenly continuous also [3]
 and hence assertion 3. follows from 1. and 2.

 Remark 2 If (fi) is evenly continuous and Y is regular , then we have {/, } i
 C(''Y) and ihe rp-closure is also evenly continuous and hence is contained in
 C(X,Y). Moreover if Y is regular and fi /, then f is continuous (see [10]).
 Henee if Y is regular (or Y is an uniform space), we can work in C(X, V).

 We want to give some comments on the assertions of the theorem.

 a) Assertion 1. clearly holds if (/,•) is not evenly continuous but is pointwise
 equicontinuous. In this form assertion 1. generalizes a result of G. Beer
 [1], who proved it for the case of sequences in C(X , V), where X> Y are
 metric spaces.
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 b) Corollary: Let us consider the assumption of assertion 2; let r be a
 splitting topology for Yx . Then r/i lim infT/,- implies /,• /.

 Proof. By Theorem (2), 2. r/i lim infT/, implies /,• /; since a pointwise
 equicontinuous family is evenly continuous the pointwise convergence of (/,•)
 to / implies the continuous convergence as was pointed out in the proof of
 assertion 1. But from /,• -^/ we obtain /,• / too.

 Remark 3 For instance for r we can use lhe . compact-open topology in the
 corollary . For the compact-open topology in C(X,Y) and sequences from
 C(X, Y), where X , Y are metric spaces the assertion of the corollary was
 proved by T. Neubrunn and L. Holà [6].

 3. An example

 Let be X = [0,1], Y = [0, -foo], where for both spaces we consider the Eu-
 clidean topology. We want to construct a sequence (/„) and a function / from
 Yx (even we can choose (/n), / from C(X1 V)) such that hold:

 1. T/iliminfr/n

 2. ( fn ) is evenly continuous

 3. (fn) does not converge pointwise to /.

 r o, *€[i,i]
 Let be for n = 1,2, ... ,/„ : /n(x) = < and let /

 { -n2x + n, z€[0,i)
 be the zerofunction on X . Clearly /n, / 6 C(-Y,y). Since (/n(0)) = (n),
 assertion 3. holds, and using the definiton of lim inf it is not hard to see that
 assertion 1. holds, too. We will prove assertion 2. using the classical definition
 of even continuity [3]: for each (x,y) € Xx Y and each neighborhood V of y we
 must find neighborhoods U of x and W of y such that for each n, fn(x) G W
 implies fn(U)iV .

 We have the possibilities 1. y = 0 and 2. y > 0. If y = 0 and x £
 {1, Ì, . . .} then we can find such a small neighborhood W of y such that
 fk(x) = /fc(~) € W holds only if Jfc > n. But then choosing U in such a
 way that ^1(1-1-, I ~L-), n > 1 (or 1], if n = 1) and fn{U)'V , since
 /n(I) = 0 = y and fn is continuous, we find that fu(U)'V and /*(17) = {0}iV
 for k > n hold.

 If y = 0 and i ^ {i : n = 1,2,...} we should distinguish between x = 0
 and 0 < a? < 1. Ifx = 0we can choose W = [0, and an arbitrary U yielding
 M0) & W for each Jfc . Hence the implication n € {1,2,...} and /n(0) € W
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 implies fn(U) 'V is true. If 0 < x < 1 let be < x < £ and let be W
 be a small neighborhood of y such that fk(x) G W holds only for k > n -f 1.
 Choosing U in such a way that U'(- -) holds, we find: fk(x) G W implies
 fi'V) = {0}iV.
 Now we consider y > 0 and we remark at first that as is easily seen in

 {(i, y)|0 < x < 1, 0 < y} only two graphs of functions from the sequence (/n)
 intersect in a common point. If Tf denotes the graph of a function / we have
 three cases:

 a) (x,y) &Tfk for each

 t>) y) € F/* for one Jfc, and

 c) (x, y) € r/fc for two numbers k .

 In each case we can then find a small neighborhood W of y such that for a)
 fk(x) & W for each Ar, for b) fk(x) E W only for one k and for c) fk(x) € W
 only for two distinct numbers k . For b) and c) we have y = fk(x) and since
 each function /* is continuous for each of the three cases we find U such that
 the implication fk(x) G W implies fk(U)'V is true.

 Remark 4 Clearly the constructed family ( fn ) is not pointwise equicontinu -
 ous. For another example of such a family of functions see [10].

 4. An application to the topology Ti

 The topology t' for Yx is the lower semi-finite topology in the sense of Michael
 [5] for the set of all graphs {T/ : / G Va }. For a net (/,•) and / from Yx in
 [9] was shown:

 1. fi ^ f implies U /
 2. fi / is equivalent to Tfi lim inf T/,-.

 Combining this with theorem (2), 2. we get:

 (3) Let X be a topological space, let y be a topological or a uniform space
 respectively. Let (/,•) be a net in Yx and let be / G Yx . Then we have:

 a) fi -X / implies /,• /

 b) if (fi) is equicontinuous then /,• / implies /,• /.

 Proof of b): /,• / implies f/i lim inf Tfi which yields by (2), 2. /,• /.
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