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 ON LEBESGUE INTEGRABILITY OF

 MCSHANE INTEGRABLE FUNCTIONS

 Abstract

 In this note we provide another direct proof of the Lebesgue integra-
 bility of McShane integrable functions

 It is well known that McShane and Lebesgue integrals coincide (see [2], [3],
 [4], [5]), but it is not easy to find direct proofs of the Lebesgue integrabili ty of
 McShane integrable functions, and in fact, we only know Ku bot a's proof (see
 [2]). In this note we provide another direct proof of this result.

 First let us recall the definition of McShane integral and some known facts
 about it which are needed in our proof. We will refer to [2] as an easy reference.

 Definition 1 Let 6 be a -positive function defined on the real interval [a, 6]. A
 tagged interval (s,[c,c/]) consists of an interval [c, r/] C [a, 6] and a point s in
 [a, b] (we do not assume s G [c, d]). The tagged interval (s, [c, d)) is subordinate
 to 6 if

 [c,d] C (s - 6(s),s + 6(s))

 Let V = {(st-, [c¿, di]) : 1 < ?■ < N) be afinitě collection of non-overlapping

 subintervals o/[a,6] . //[a, 6] = Uí=i[c*» " Ì€1 1 ^ î,s ca^c(^ a * a99ec ' partition
 of[a,b] (the points Si are the taggs ofV and the [c(,dj] are the intervals ofV).
 We sag that V is subordinate to 6 if (sj, [c,-,r/,]) is subordinate to S for each i.
 U f : [a,b] - ► M is a function , we denote

 N

 ¡iv) = £>/,• -<*.•)/(«.•)
 1 = 1
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 Definition 2 ([4]) The function f : [n , 6] - ► IR is McShane integrable on
 [a, b) if there exists cv G R with the following property : for each e > 0 there
 exists a positive function 6 on [a, 6] such that

 I m - «I < e

 whenever V is a tagged partition on [a, 6] subordinate to 6. We will denote

 * = (Af) J f f J a

 Proposition 1 (Henstock's lemma [ 2 , Proposition 3]) Let f be a McShane
 integrable function on [a, 6] and let 6 be a positive function on [a, 6] such that

 |/(7>)-(A/) f f'< e
 J a

 whenever V is a tagged partition of [ayb] subordinate to 6. Let {($,-, [c¿, d?,-]) :
 1 < i < N} one of such tagged partitions and let J be a subset of {1,..., N),

 then we have ^
 I £((</> -e,- )/(«,■ )-(*/) f' ^ f)'<t
 jeJ Jc>

 and j
 / j '/l<2c.

 jčJ Jc>

 Proposition 2 ([2, Proposition 6]) If f is a McShane integrable function on
 [a, 6], then its indefinite integral F is continuous , differentiable almost every-
 where, and F'{x) = f(x) almost everywhere.

 We can now give the announced proof.

 Theorem 1 (McShane) If f : [a, 6] - • IR is McShane integrable then it is
 Lebesgue integrable.

 Proof. Let / : [a, 6] - ► IR be a McShane integrable function, let F be the
 indefinite integral of /, let S be a positive function on [a, 6] such that

 i /m-m J f f'< i J a

 whenever V is a tagged partition on [c/, b] subordinate to <5, and let {(s¿, [c¿t </,•]) :
 1 < i < N } one of such tagged partitions. By Proposition 2, F' = f almost
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 everywhere, and theref ore, by a classical result on Lebesgue theory (see for
 instance [6, Theorem 8.19]), to prove that / is Lebesgue integrable on [a, 6] it
 suffices to show that F is of bounded variation on [a, 6], or, equivalently, on
 all the [c,-,d,-]. Fix ?'o G {l,...,Ar}, and let c,0 = xi < xn < • •• < xn = </,0.
 Since {(5,-0, : 1 < i < n - 1} are tagged intervals subordinate to é,
 we deduce from Proposition 1:

 »i-i

 £ |(x<+1 - Xi)fM - (F(xi+i ) - F(x,))| =
 1 = 1

 £|(xi+1-x,)/(*fo)-(A/) r+,/| < 2.
 i=l

 Therefore,

 n - 1

 52'F(xi+l)-F(xi)'<
 t'=l

 n - 1 n- 1

 'F(xi+i) - F(x¡) - (xi+j - x,)/(s,J I + ^ |/(sío)|(x, + 1 - x¡) <
 1=1 1=1

 2 + l/(Sio)l(rf»o -C'o).

 hence F is of bounded variation on [c,0, r/l0]. □
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