Elzbieta Wagner-Bojakowska, Institute of Mathematics, University of Lódź, 90-238 Lódź, Poland.

SOME REMARKS ON DENSITY TOPOLOGIES ON THE PLANE

The aim of this note is to prove that the topological spaces $\left(\mathbb{R}^{2}, d^{2}\right)$ and ($\mathbb{R}^{2}, d \times d$) are not homeomorphic.

Let \mathbb{N} denote the set of positive integers, \mathbb{Q} the set of rational numbers, \mathbb{R} the real line, \mathbb{R}^{2} the plane, $\mathcal{L}^{1}, \mathcal{L}^{2}$ the families of Lebesgue measurable sets on the real line and on the plane, respectively.

If $A \in \mathcal{L}^{i}$, then $m_{i}(A)$ denotes the Lebesgue measure of $A, i=1,2$.
Let $A \in \mathcal{L}^{1}, x \in \mathbb{R}$. The density of A at x is defined as follows:

$$
d(A, x)=\lim _{h \rightarrow 0^{+}} \frac{m_{1}(A \cap(x-h, x+h))}{2 h} .
$$

If $d(A, x)=1$, then we say that x is a density point of A. The set of all density points of A is denoted by $d(A)$.

The family of sets $d=\left\{A \in \mathcal{L}^{1}: A \subset d(A)\right\}$ forms a topology called density topology (see [4]). In the analogous way we define the density topology d^{2} on the plane, using in the definition of the density of A at a point (x, y) the square $(x-h, x+h) \times(y-h, y+h)$.

Let $d \times d$ denote the product of two density topologies.
If τ is a topology, then by $\mathcal{B}(\tau), \mathcal{G}_{\delta}(\tau), \mathcal{F}_{\sigma}(\tau)$ we denote the families of Borel sets, \mathcal{G}_{δ} sets and \mathcal{F}_{σ} sets with respect to the topology τ, respectively.

Observe first that most of the topological properties (for terminology see [3], Chapter 1) of the spaces (\mathbb{R}^{2}, d^{2}) and ($\left.\mathbb{R}^{2}, d \times d\right)$ are the same. It is easy to see that these topological spaces are not separable because countable sets are closed in both of them.

From Theorem 2 and 3 in [2] and from Theorem 2.3.11 in [1] it follows that the topological spaces $\left(\mathbb{R}^{2}, d \times d\right)$ and $\left(\mathbb{R}^{2}, d^{2}\right)$ are completely regular but not normal. Consequently, they are not Lindelöf spaces (see Th. 3.8.2 in [1]).

Theorem 1 The spread, the weight and the Lindelöf-degree of $\left(\mathbb{R}^{2}, d \times d\right)$ and $\left(\mathbb{R}^{2}, d^{2}\right)$ are equal to $2^{N_{0}}$.

Proof. Let C be the Cantor set of Lebesgue measure zero. It is easy to see that $C \times\{0\}$ is a closed discrete subspace of cardinality $2^{N_{0}}$ of both of the spaces $\left(\mathbb{R}^{2}, d^{2}\right)$ and $\left(\mathbb{R}^{2}, d \times d\right)$. Consequently the spread of these spaces is equal to $2^{N_{0}}$.

From Theorem 4.10 in [5] and from the table of invariants of operations in [1] it follows that the weights of both topological spaces are equal to $2^{N_{0}}$.

Theorem 2.1 (b) in [3] implies that the Lindelöf-degrees of $\left(\mathbb{R}^{2}, d^{2}\right)$ and $\left(\mathbb{R}^{2}, d \times d\right)$ are less than or equal to $2^{N_{0}}$. On the other hand, the family of sets $\left\{U_{x}, x \in C\right\}$, where C is the Cantor set of Lebesgue measure zero on the x-axis and

$$
U_{x}=\mathbb{R} \times[(\infty, 0) \cup(0, \infty)] \cup[(\mathbb{R} \backslash C) \cup\{x\}] \times \mathbb{R}
$$

is a $d \times d$ - and d^{2} - open cover of \mathbb{R}^{2} which has no subcover of cardinality less than $2^{N_{0}}$.

The cellularities of $\left(\mathbb{R}^{2}, d \times d\right)$ and $\left(\mathbb{R}^{2}, d^{2}\right)$ are equal to \aleph_{0} because of C.C.C. It is easy to see that only finite sets are compact in both the spaces.

Theorem 2 The densities, the tightness, the π-weights and the characters of $\left(\mathbb{R}^{2}, d^{2}\right)$ and $\left(\mathbb{R}^{2}, d \times d\right)$ are greater than \aleph_{0} but not greater than $2^{\aleph_{0}}$.

Proof. Since countable sets are closed with respect to both the topologies, therefore the densities of those two topological spaces are greater than \aleph_{0}. Also, from Theorem 2.1 (b) in [3] it follows that the density is not greater than the weight for every topological space. Consequently, the densities of $\left(\mathbb{R}^{2}, d^{2}\right)$ and $\left(\mathbb{R}^{2}, d \times d\right)$ are not greater than $2^{\aleph_{0}}$.

From Theorem 2.1 (a) in [3] it follows that the π-weight of each of the topological spaces is greater than \aleph_{0} but not greater than $2^{\aleph_{0}}$.

Theorem 2.1 (e) in [3] implies that the character is not greater than the weight for every topological space. Consequently, the characters of $\left(\mathbb{R}^{2}, d^{2}\right)$ and $\left(\mathbb{R}^{2}, d \times d\right)$ are not greater than $2^{N_{0}}$. On the other hand, from Theorem 4.11 in [5] it follows that the characters of (\mathbb{R}, d) and $\left(\mathbb{R}^{2}, d^{2}\right)$ are greater than \aleph_{0}. By the table of invariants of operations in [1], the character of $\left(\mathbb{R}^{2}, d \times d\right)$ is greater than \aleph_{0}, too.

It is easy to see ([3], Th. 2.1 (f)) that the tightness of a topological space is not greater than the cardinality of this space. On the other hand, countable sets are closed in $\left(\mathbb{R}^{2}, d^{2}\right)$ and $\left(\mathbb{R}^{2}, d \times d\right)$. Consequently, the tightness of each of the considered spaces is greater than \aleph_{0} but not greater than $2^{\aleph_{0}}$.

If we suppose Martin's Axiom or the continuum hypothesis, then all cardinal functions from the last theorem are equal to $2^{N_{0}}$ (compare [5], Th. 4.12). If $E \subset \mathbb{R}, a \in \mathbb{R}$, then we put $E-a=\{x-a, x \in E\}$.

Let $A=\{(x, y) \in(0,1) \times(0,1): y-x \in \mathbb{Q}\}$. We have

$$
A=\bigcup_{w \in \mathbb{Q}}\left([(0,1) \times(0,1)] \cap\left\{(x, y) i n \mathbb{R}^{2}: y-x=w\right\}\right)
$$

so, A is a set of type \mathcal{F}_{σ} with respect to the Euclidean topology on the plane and also with respect to the topology $d \times d$.

Theorem 3 The set A is not of type \mathcal{G}_{δ} with respect to the topology $d \times d$.
Proof. For every $H \subset \mathbb{R}^{2}$ we shall denote $W(H)=\{y-x:(x, y) \in H\}$. We shall prove that if U is a \mathcal{G}_{δ} set in the $d \times d$ topology containing the set A, then $W(U)$ is uncountable. Since $W(A) \subset \mathbb{Q}$, this will imply that A is not a \mathcal{G}_{σ} set in the $d \times d$ topology.

Let $A \subset U=\bigcap_{n=1}^{\infty} G_{n}$, where each G_{n} is a $d \times d$ - open set. Suppose that $W(U)$ is countable, and let $W(U)=\left\{w_{n}\right\}_{n \in \mathbb{N}}$. We shall construct a sequence of non-empty compact sets $F_{0 \mathrm{~J}} F_{1 J} \cdots$ such that $F_{n} \subset G_{n}$ and $w_{n} \notin W\left(F_{n}\right)$ for every $n=1,2, \ldots$.

We put $F_{0}=[0,1] \times[0,1]$. Let $n \geq 0$ and suppose that $F_{n}=A_{n} \times B_{n}$ has been defined such that A_{n}, B_{n} are compact subsets of \mathbb{R} of positive measure. Let $f(t)=m_{1}\left(A_{n} \cap\left(B_{n}-t\right)\right), t \in \mathbb{R}$. It is well known that f is a continuous function of t. Since $f(t)>0$ for some t (for example, if a and b are density points of A_{n} and B_{n}, respectively, then $\left.f(b-a)>0\right)$, we can select a $t \in \mathbb{Q}$ such that $t \neq w_{n+1}$ and $f(t)>0$. Let x be a density point of $A_{n} \cap\left(B_{n}-t\right)$. Then $(x, x+t) \in A \subset G_{n+1}$ and hence there are d - open sets $E, F \subset \mathbb{R}$ such that $(x, x+t) \in E \times F \subset G_{n+1}$. Then x is a density point of both of the sets A_{n} and E and $x+t$ is a density point of both of the sets B_{n} and F. Let $0<\delta<\left|w_{n+1}-t\right| / 2$, and let

$$
\begin{gathered}
A_{n+1} \subset A_{n} \cap E \cap(x-\delta, x+\delta), \\
B_{n+1} \subset B_{n} \cap F \cap(x+t-\delta, x+t+\delta)
\end{gathered}
$$

be closed sets of positive measure. Putting $F_{n+1}=A_{n+1} \times B_{n+1}$, we have $F_{n+1} \subset F_{n} \cap G_{n+1}$ and $w_{n+1} \notin W\left(F_{n+1}\right)$, since $(x, y) \in F_{n+1}$ implies $\mid y-x-$ $t \mid<2 \delta$ and $\left|w_{n+1}-t\right|>2 \delta$.

In this way we have constructed the sets F_{n} for every $n=0,1, \ldots$. Then $\bigcap_{n=1}^{\infty} F_{n} \neq \emptyset$; let (x, y) be a point of this intersection. Then $(x, y) \in$ $\bigcap_{n=1}^{\infty} G_{n}=U$ and hence $y-x \in W(U)$. On the other hand, $y-x \in W\left(F_{n}\right)$ for every n, and thus $y-x \neq w_{n},(n=1,2, \ldots)$, which is a contradiction.

Remark 1 A more elaborate version of this proof gives that if U is a \mathcal{G}_{δ} set in the $d \times d$ topology containing the set A, then $W(U)$ contains a closed uncountable set and hence its cardinality is continuum.

Corollary 1 The topological spaces $\left(\mathbb{R}^{2}, d \times d\right)$ and $\left(\mathbb{R}^{2}, d^{2}\right)$ are not homeomorphic.

Proof. Observe that $\mathcal{F}_{\sigma}\left(d^{2}\right)=\mathcal{L}^{2}$. The inclusions

$$
\mathcal{F}_{\sigma}\left(d^{2}\right) \subset \mathcal{B}\left(d^{2}\right) \subset \mathcal{L}^{2}
$$

are obvious. If $B \in \mathcal{L}^{2}$, then $B=D \cup E$ where D is of type \mathcal{F}_{σ} with respect to the Euclidean topology on the plane, and $m_{2}(E)=0$. Thus $D \in \mathcal{F}_{\sigma}\left(d^{2}\right)$ and E is d^{2}-closed. Consequently, $B \in \mathcal{F}_{\sigma}\left(d^{2}\right)$ and $\mathcal{L}^{2}=\mathcal{F}_{\sigma}\left(d^{2}\right)=\mathcal{G}_{\delta}\left(d^{2}\right)$.

Suppose now that there exists a homeomorphism $H:\left(\mathbb{R}^{2}, d \times d\right) \rightarrow\left(\mathbb{R}^{2}, d^{2}\right)$. The set A from the last theorem is of type \mathcal{F}_{σ} with respect to the topology $d \times d$, so, $H(A)$ is of type \mathcal{F}_{σ} with respect to the topology d^{2}. But $\mathcal{F}_{\sigma}\left(d^{2}\right)=$ $\mathcal{G}_{\boldsymbol{\sigma}}\left(d^{2}\right)$. Consequently, $H(A) \in \mathcal{G}_{\delta}\left(d^{2}\right)$ and $A=H^{-1}(H(A)) \in \mathcal{G}_{\delta}(d \times d)$, which contradicts Theorem 3.

References

[1] R. Engelking, General topology, PWN, Warszawa, 1977.
[2] C. Goffman, C. Neugebauer, T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-505.
[3] I. Juhász, Cardinal functions in topology - ten years later, Mathematisch Centrum, Amsterdam, 1980.
[4] J. C. Oxtoby, Measure and category, Springer-Verlag, New York, 1971.
[5] F. D. Tall, The density topology, Pacific J. Math. 62 (1976), 275-284.

