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SOME REMARKS ON DENSITY
TOPOLOGIES ON THE PLANE

The aim of this note is to prove that the topological spaces (R?,d?) and
(R2,d x d) are not homeomorphic.

Let N denote the set of positive integers, Q the set of rational numbers, R
the real line, R2 the plane, £!, £? the families of Lebesgue measurable sets on
the real line and on the plane, respectively.

If A € L', then m;(A) denotes the Lebesgue measure of A, i = 1,2.

Let A € L', z € R. The density of A at z is defined as follows:

mi(AN(z—h,z+h))
2h '

d(A,z) = hl-i.r&

If d(A, z) = 1, then we say that z is a density point of A. The set of all density
points of A is denoted by d(A).

The family of sets d = {A € L! : A C d(A)} forms a topology called density
topology (see [4]). In the analogous way we define the density topology d? on
the plane, using in the definition of the density of A at a point (z, y) the square
(z—-h,z+h)x(y—h,y+h).

Let d x d denote the product of two density topologies.

If 7 is a topology, then by B(7), Gs(7), F,(7) we denote the families of
Borel sets, G5 sets and F, sets with respect to the topology 7, respectively.

Observe first that most of the topological properties (for terminology see
[3], Chapter 1) of the spaces (R?,d?) and (R2,d x d) are the same. It is easy
to see that these topological spaces are not separable because countable sets
are closed in both of them.

From Theorem 2 and 3 in [2] and from Theorem 2.3.11 in [1] it follows that
the topological spaces (R?,d x d) and (R?, d?) are completely regular but not
normal. Consequently, they are not Lindeldf spaces (see Th. 3.8.2 in [1]).

Theorem 1 The spread, the weight and the Lindelof-degree of (R2,d x d) and
(R2,d?) are equal to 2%o.
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PROOF. Let C be the Cantor set of Lebesgue measure zero. It is easy to see
that C x {0} is a closed discrete subspace of cardinality 2X° of both of the
spaces (R?,d?) and (R?,d x d). Consequently the spread of these spaces is
equal to 2Ro,

From Theorem 4.10 in [5] and from the table of invariants of operations in
[1] it follows that the weights of both topological spaces are equal to 2Xe.

Theorem 2.1 (b) in [3] implies that the Lindelof-degrees of (R?,d?) and
(R?,d x d) are less than or equal to 2%°. On the other hand, the family of
sets {Uz,z € C}, where C is the Cantor set of Lebesgue measure zero on the
z-axis and

Us =R x [(00,0)U(0,00)] U [(R\C) U {z}] x R,

isa d x d - and d? - open cover of R? which has no subcover of cardinality less
than 2%,

The cellularities of (R2?,d x d) and (R?,d?) are equal to Ro because of
C.C.C. It is easy to see that only finite sets are compact in both the spaces.

Theorem 2 The densities, the tighiness, the w-weighls and the characters of
(R2,d?) and (R2,d x d) are greater than Ro but not greater than 2%,

PROOF. Since countable sets are closed with respect to both the topologies,
therefore the densities of those two topological spaces are greater than Ro.
Also, from Theorem 2.1 (b) in [3] it follows that the density is not greater
than the weight for every topological space. Consequently, the densities of
(R?,d?) and (R?,d x d) are not greater than 2%o.

From Theorem 2.1 (a) in [3] it follows that the w-weight of each of the
topological spaces is greater than Ro but not greater than 2%e,

Theorem 2.1 (e) in [3] implies that the character is not greater than the
weight for every topological space. Consequently, the characters of (R?,d?)
and (R?,d x d) are not greater than 2%°. On the other hand, from Theorem
4.11 in [5] it follows that the characters of (R, d) and (R2, d?) are greater than
Ro. By the table of invariants of operations in [1)], the character of (R?,d x d)
is greater than Ry, too.

It is easy to see ([3], Th. 2.1 (f)) that the tightness of a topological space
is not greater than the cardinality of this space. On the other hand, countable
sets are closed in (R2,d?) and (R?,d x d). Consequently, the tightness of each
of the considered spaces is greater than Ry but not greater than 2%e.

If we suppose Martin’s Axiom or the continuum hypothesis, then all cardi-
nal functions from the last theorem are equal to 2%° (compare [5], Th. 4.12).

IfECR, a €R,then weput E—a={z—a,z € E}.
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Let A= {(z,y) € (0,1) x (0,1) : y — z € Q}. We have

A= U ([(0,1) x (0, )] N {(z,y)inR? : y — 2 = w}),
weQ

so, A is a set of type F, with respect to the Euclidean topology on the plane
and also with respect to the topology d x d.

Theorem 3 The set A is not of type Gs with respect to the topology d x d.

PROOF. For every H C R? we shall denote W(H) = {y—z : (z,y) € H}. We
shall prove that if U is a G5 set in the d x d topology containing the set A,
then W(U) is uncountable. Since W(A) C Q, this will imply that A is not a
Go set in the d x d topology.

Let A CU =(azi Gn, where each Gy, is a d x d - open set. Suppose that
W(U) is countable, and let W(U) = {wn}nen. We shall construct a sequence
of non-empty compact sets FojFij - - - such that F,, C G, and w, ¢ W(F,) for
everyn=1,2,....

We put Fo = [0,1] x [0, 1]. Let n > 0 and suppose that F, = A, X By, has
been defined such that A,,, B, are compact subsets of R of positive measure.
Let f(t) = mi(An N (B, —t)), t €R. It is well known that f is a continuous
function of t. Since f(t) > 0 for some t (for example, if a and b are density
points of A, and Bj,, respectively, then f(b —a) > 0), we can select at € Q
such that t # wny; and f(t) > 0. Let z be a density point of A, N (B, —1).
Then (z,z +t) € A C Gn41 and hence there are d - open sets E, F C R such
that (z,2 +t) € E X F C Gn41- Then z is a density point of both of the
sets A, and E and z +t is a density point of both of the sets B,, and F. Let
0< 6 < |wp41 —1]/2, and let

A,,+1CA,,nEn(:c—6,z+6),
Boy1CBaNFN(z+t—6,z+1t+.6)

be closed sets of positive measure. Putting F41 = An41 X Bny1, we have
Fa41 C FuNGpyy and wpyy € W(Fny41), since (z,y) € Fryy implies [y—z —
t] < 26 and |wp4; — t] > 26.

In this way we have constructed the sets F, for every n = 0,1,... .
Then N2, Fn # 0; let (z,y) be a point of this intersection. Then (z,y) €
Nne;Gn = U and hence y — z € W(U). On the other hand, y — z € W(F,)
for every n, and thus y — z # w,, (n =1,2,...), which is a contradiction.

Remark 1 A more elaborate version of this proof gives that if U is a Gs
set in the d x d topology containing the set A, then W(U) contains a closed
uncountable set and hence ils cardinality is conlinuum.
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Corollary 1 The topological spaces (R%,d x d) and (R?,d?) are not homeo-
morphic.

PROOF. Observe that F,(d?) = £2. The inclusions
F,(d?) Cc B(d?) C L2

are obvious. If B € £2, then B = D U E where D is of type F, with respect
to the Euclidean topology on the plane, and my(E) = 0. Thus D € F,(d?)
and E is d?-closed. Consequently, B € F,(d?) and £? = F,(d?) = Gs(d?).

Suppose now that there exists a homeomorphism H : (R?, dxd) — (R?, d?).
The set A from the last theorem is of type F, with respect to the topology
d x d, so, H(A) is of type F, with respect to the topology d?. But F,(d?) =
G, (d?). Consequently, H(A) € Gs(d?) and A = H-1(H(A)) € Gs(dx d), which
contradicts Theorem 3.
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