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 SOME REMARKS ON DENSITY

 TOPOLOGIES ON THE PLANE

 The aim of this note is to prove that the topological spaces (R2,d2) and
 (R2,d X d) are not homeomorphic.

 Let N denote the set of positive integers, Q the set of rational numbers, R
 the real line, R2 the plane, Cl>C2 the families of Lebesgue measurable sets on
 the real line and on the plane, respectively.

 If A G C' then mi(A) denotes the Lebesgue measure of A , i = 1,2.
 Let A G C1, X G R. The density of A at x is defined as follows:

 J(AiX)= v ; ib, + v ; h-+ o+ 2h

 If d(A , x) = 1, then we say that x is a density point of A . The set of all density
 points of A is denoted by d(A).

 The family of sets d = {A G C1 : A C d(A)} forms a topology called density
 topology (see [4]). In the analogous way we define the density topology d 2 on
 the plane, using in the definition of the density of A at a point (x, y) the square
 (x - h, x + h) x (y - ft, y + h).

 Let dx d denote the product of two density topologies.
 If r is a topology, then by #(r), (7¿(r), Ta{r) we denote the families of

 Borei sets, Qķ sets and Ta sets with respect to the topology r, respectively.
 Observe first that most of the topological properties (for terminology see

 [3], Chapter 1) of the spaces (R2, d2) and (R2, d x d) are the same. It is easy
 to see that these topological spaces are not separable because countable sets
 are closed in both of them.

 From Theorem 2 and 3 in [2] and from Theorem 2.3.11 in [1] it follows that
 the topological spaces (R2,d x d) and (R2,d2) are completely regular but not
 normal. Consequently, they are not Lindelöf spaces (see Th. 3.8.2 in [1]).

 Theorem 1 The spread , the weight and the Lindelöf- degree o/^R2,dxd) and
 (R2,d2) are equal to 2N°.
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 Proof. Let C be the Cantor set of Lebesgue measure zero. It is easy to see
 that C X {0} is a closed discrete subspace of cardinality 2N° of both of the
 spaces (R2,d2) and (R2,ef x d). Consequently the spread of these spaces is
 equal to 2No.

 From Theorem 4.10 in [5] and from the table of invariants of operations in
 [1] it follows that the weights of both topological spaces are equal to 2No.

 Theorem 2.1 (b) in [3] implies that the Lindelöf-degrees of (R2,cf2) and
 (R2,d x d) are less than or equal to 2H°. On the other hand, the family of
 sets {Ux , x G C}, where C is the Cantor set of Lebesgue measure zero on the
 x-axis and

 Ux = R x [(oo, 0) U (0, oo)] U [(R 'C) U {*}] x R,

 is a dx d- and d? - open cover of R2 which has no subcover of cardinality less
 than 2Ko.

 The cellularities of (R2, d x d) and (R2, d2) are equal to Ko because of
 C.C.C. It is easy to see that only finite sets are compact in both the spaces.

 Theorem 2 The densities, the tightness , the w-weighis and the characters of
 (R2,of2) and (R2,d x d) are greater than Ko but not greater than 2K°.

 Proof. Since countable sets are closed with respect to both the topologies,
 therefore the densities of those two topological spaces are greater than Ko.
 Also, from Theorem 2.1 (b) in [3] it follows that the density is not greater
 than the weight for every topological space. Consequently, the densities of
 (R2,d2) and (R2,d x d) are not greater than 2Ko.

 From Theorem 2.1 (a) in [3] it follows that the tt- weight of each of the
 topological spaces is greater than Ko but not greater than 2No.

 Theorem 2.1 (e) in [3] implies that the character is not greater than the
 weight for every topological space. Consequently, the characters of (R2, d2)
 and (R2,d x d) are not greater than 2No. On the other hand, from Theorem
 4.11 in [5] it follows that the characters of (R, d) and (R2, d2) are greater than
 Ko. By the table of invariants of operations in [1], the character of (R2, d x d)
 is greater than Ko, too.

 It is easy to see ([3], Th. 2.1 (f)) that the tightness of a topological space
 is not greater than the cardinality of this space. On the other hand, countable
 sets are closed in (R2, d2) and (R2, d x of). Consequently, the tightness of each
 of the considered spaces is greater than Ko but not greater than 2Ko.

 If we suppose Martin's Axiom or the continuum hypothesis, then all cardi-
 nal functions from the last theorem are equal to 2No (compare [5], Th. 4.12).

 If E C R, a G R, then we put E - a = {x - a, x G E}.
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 Let A = {(i, y) 6 (0, 1) x (0, 1) : y - x € Q}. We have

 A = (J ([(0, 1) x (0, 1)] D {(x, y)inR2 :y-x = u>}),
 u/£Q

 so, A is a set of type Ta with respect to the Euclidean topology on the plane
 and also with respect to the topology d x cf.

 Theorem 3 The set A is not of type with respect to the topology dx d.

 Proof. For every H C K2 we shall denote W(H) = {y - x : (x, y) G H}. We
 shall prove that if U is a Qs set in the d x d topology containing the set At
 then W(U) is uncountable. Since W (A) C Q, this will imply that A is not a
 Qa set in the dx d topology.

 Let A CU - PlnLi where each Gn is a d x d - open set. Suppose that
 W(U) is countable, and let W(U) = {tyn}n€N- We shall construct a sequence
 of non-empty compact sets FojFij • • • such that Fn C Gn and wn £ W(Fn) for
 every n = 1,2, ... .

 We put Fo = [0, 1] x [0, 1]. Let n > 0 and suppose that Fn = An x Bn has
 been defined such that Ani Bn are compact subsets of R of positive measure.
 Let f(t) = mi(j4n f I ( Bn - ¿)), t G R. It is well known that / is a continuous
 function of ť. Since f(t) > 0 for some t (for example, if a and 6 are density
 points of An and £n, respectively, then /(6 - a) > 0), we can select a t € Q
 such that t ^ u>n+i and f(t) > 0. Let x be a density point of An fi ( Bn - t).
 Then (x, x + ť) G A C Gn+i and hence there are d - open sets E,F C® such
 that (x,x + 1) E E x F C Gn+i- Then x is a density point of both of the
 sets An and E and x + 1 is a density point of both of the sets Bn and F. Let
 0 < 6 < |tün+i - ť|/2, and let

 An+i C j4nn£n(x-6,x + ¿),

 £n+ 1 c £nnFn(x + ť-ó,x + t+.6)

 be closed sets of positive measure. Putting Fn+i = An+i x 1, we have
 Fn+i C fnHGn+i and iyn+i ^ ^(Fn+i), since (x,y) € Fn+i implies | y-x-
 ť| < 26 and |u;n+i - 1| > 26.

 In this way we have constructed the sets Fn for every n = 0,1,... .
 Then fļnLi 0; let (x,y) be a point of this intersection. Then (x,y) G
 n~i Gn = U and hence y - x G W(U). On the other hand, y - x G W(Fn)
 for every n, and thus y - x ^ wn , (n = 1,2,.. .), which is a contradiction.

 Remark 1 A more elaborate version of this proof gives that if U is a Qs
 set in the dx d topology containing the set A, then W(U) contains a closed
 uncountable set and hence its cardinality is continuum.
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 Corollary 1 The topological spaces (R2,d x d) and (R2,d2) are noi horneo -
 morphic.

 Proof. Observe that P<r(d2) = C2. The inclusions

 jF,(<i2) c B(d2) C C2

 are obvious. If B G £2, then B = D U 2? where D is of type T9 with respect
 to the Euclidean topology on the plane, and 1712(E) = 0. Thus D G fo(d2)
 and E is d2-closed. Consequently, B G (d2) and C2 = Fa(d2) = öi(d2).

 Suppose now that there exists a homeomorphism H : (R2, dx d) - ► (R2, d2).
 The set A from the last theorem is of type Ta with respect to the topology
 d x d, so, H (A) is of type Ta with respect to the topology d2. But foid2) =
 G*(d2). Consequently, H (A) G Gs(d2) and A = H'i(H(A)) G (/¿(dxd), which
 contradicts Theorem 3.
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