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ON LEVINSON’S INEQUALITY

The purpose of this paper is to give @ simple proof of s result
of S.Lawrence and D.Segslmsn [1] for 3-convex functions. Namely, S.
Lawrence and D.Segalmen proved the following generalization of the
well-known Levinson’s inequality for 3-convex functions:
THEOREM A. Let f be s continuous function defined on (0,23) for
which A3£(x) > O for s1l x in (0,28) end h>0 for which AZf(x) is
defined (i.e. for all x in (0,28) and h > O for which x+3h < 2g).

Let X),...,X, be numbers in (0,28) such that xl§ x2§ ...gxn snd
< :
xi+xn+l_i = 2‘, 1l= l,oco,no Then
1 5 1 3 <1 % 1 &
(1) = f(x.)=-f(= Zx;) == T f(2a-x;)-1f(= (28-x.))
Piaa 7 Pia1 Y Pia * T el .

with equelity if snd only if either all the x.

i ore equal or x. +

1
= 23’ i= l’coo’no

Xnsl-i
Here, we shsll prove the following:
THEOREM 1. Let f be a real-valued function defined on (0,2s) for
which AZA £(x) > 0 for sll x in (0,2a) end h >0, k > 0 such
thet x+h+ 2k < 23. Let Xyve++3X, be defined ss in Theorem A. Then
(1) is vslid with the ssme conditions for equslity.
Proof. As in [1] we hsve for h = 28-X,-X;, k = (xn-xl)/2, in

the case when Xq+X, < 23 and X, < Xns i.e« h >0, k>0,

0 < AiAhf(X) = f(xl+h+2k) - 2f(x1+h+k) + f(xl.,.h) - f(x1+2k)
+ 2f(x1+k) - f(xl)

710



= £(28-x,) - 2f(2a - (x,+x,)/2) + £f(2e-x ) - £(x,)
+ 2f((x1+xn)/2)-—f(x1). |
If either Xq+Xp = 28 or Xy = Xp we have equality in the sbove result.

Hence

(2)  £(28=(xy4x,)/2)=£((xy+x,)/2) S H(£(2mx, )=£(xp ) +£(20-x )-£(x)) 5
with equality if and only if either x; =x oOr x,+x =2a.

Of course, if xli a and xng @, then the gbove conditions are satis-
fied, and from (2) we have that the function x > f(2a-x) - f(x) is
strictly J-convex on (O4a]. Using this fect and inequslity (2) for
8ll relevant psirs of numbers we have:

n
ifl(f(2a-xi)-f(xi)) =

) igl %((f(2a-xi)-f(xi)) + (£(2a~x 4 _4) - £(xp,,1_4)))

nv

.gl(f(Za- (x54%,1_3)/2) = £((xz4%,,1_1)/2))
l=

nv

n
n(f(2a - % .zl(xi+xn+l-i)/2) - f(%
i

n
. E (x3+%p,1.3)/2))

1 2 1 2
= n(f(2s - & ‘lei) - f(-r-1 .lei)).
1l= 1=

In the last inequslity we used Jensen’s inequality for J-convex func-
tloz x +> f(28-x) - £f(x) and for numbers t; = <xi+xn+1-i
ti = g@. Equality conditions for Jensen’®s inequslity sre tl= ...='tn.

)/2 since

So, using the equslity conditions for (2) we obtasin that equslity in
(1) is valid if snd only if either all the x; are equsal or T
= 28’ i=1’ooo,no

Remgrks: It is noted in [1] that if f is continuous end Agf(x) > C

for 811l x snd h> 0, then AiAhf(x) > 0. The reverse implication is
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obvious. But, in Theorem 1 f can be discontinuous.

The above proof can be used for generslizstion of the above
result for functions of several variables.

By using the fact that x »> f(28-x) - f(x) is J-convex func-
tion on (0,a] and known results for J-convex functions we can obtsin

many new results.
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