Real Analysis Exchange Vol 15 (1989-90)

Michał Morayne and Sławomir Solecki, Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, POLAND.

MARTINGALE PROOF OF THE EXISTENCE OF LEBESGUE POINTS

The usual proof of the existence of Lebesgue points of a summable function is via Vitali's covering theorem or its modifications. We give here an alternative proof which reduces geometric considerations to a very simple lemma. Our proof is based on Lévy's martingale convergence theorem.

Let *A* be a family of sets and let X be any set. Then $A \mid X = \{A \cap X : A \in A\}$. By σA we denote the σ -field generated by A. Let Z be the set of all integers. The symbol χ_{Λ} wi11 stand for the characteristic function of a set Α. The n-dimensional Lebesgue measure in \mathbb{R}^n will be denoted by λ (the same symbol λ will be used for each positive integer n). For any measure space $(\Omega, \mathcal{F}, \mu)$ we shall denote by $L_{\mu}(\Omega)$ the family of real functions f measurable with respect to ${\mathcal F}$ such that $f_{\Omega}|f| d\mu < \infty$. If Ω is an open subset of \mathbb{R}^{n} , \mathcal{F} will be the family of Lebesgue measurable sets and $\mu = \lambda$. For a subset X of \mathbb{R}^n and a vector $x \in \mathbb{R}^n$ put $x + X = \{x + y : y \in X\}$.

Let $f \in L_1(U)$, where U is an open subset of \mathbb{R}^n . We say that $x \in U$ is a *Lebesgue point* of f if $(1/\lambda(Q_m)) \int_{Q_m} |f(s) - f(x)| ds \to 0$ for each sequence of cubes Q_m such that $x \in Q_m \subseteq U$, $m = 1, 2, ..., and \lambda(Q_m) \to 0$ (without loss of generality we can assume that x is the center of Q_m , i.e., $Q_m = x + (-\delta_m, \delta_m)^n$ for some $\delta_m > 0$).

Let (Ω, \mathcal{B}, P) be a probability space. Let $f \in L_1(\Omega)$ and \mathcal{P} be a σ -algebra (i.e. a σ -field containing Ω) contained in \mathcal{B} . Let $E(f|\mathcal{P})$ denote a function measurable with respect to \mathcal{P} such that $f_A f dP = f_A E(f|\mathcal{P}) dP$ for each $A \in \mathcal{P}$. Its existence is guaranteed by the Radon - Nikodym theorem.

Let us now recall the theorem in question.

THEOREM 1 (H. Lebesgue). Let $f \in L_1(\mathbb{R}^n)$. Then almost every point of \mathbb{R}^n is a Lebesgue point of f.

An essential role in our proof of the above theorem will be played by the following theorem of P. Lévy ([3], Theorem 9.4.8, p.340; for an elementary proof see [2], Theorem 1.4; see also Remark 2 below).

THEOREM 2 (P. Lévy), Let (Ω, \mathcal{B}, P) be a probability space. Let $\{\mathcal{B}_{\mathbf{m}}: \mathbf{m} \geq 1\}$ be an increasing sequence of σ -algebras contained in \mathfrak{B} and $\mathfrak{B}_{\infty} = \sigma \bigcup \mathfrak{B}_{\mathbf{m}}$. Then for each function $\mathbf{f} \in L_1(\Omega)$ $\lim_{\mathbf{m} \to \infty} \mathrm{E}(\mathbf{f} \mid \mathfrak{B}_{\mathbf{m}})(\omega) = \mathrm{E}(\mathbf{f} \mid \mathfrak{B}_{\infty})(\omega)$ for almost every $\omega \in \Omega$. We need two lemmas.

their union covers \mathbb{R}^n .

LEMMA 1. Let (Ω, \mathcal{B}, P) be a probability space and $f \in L_1(\Omega)$. Then f is the limit of a uniformly convergent sequence of functions $f_m \in L_1(\Omega)$ with $f_m(\Omega)$ countable, m = 1, 2, ...

Proof. Let $A_m^k = f^{-1}((k/m, (k+1)/m])$ and $f = \sum_{k \in \mathbb{Z}} (k/m) \chi_{A_m^k}$, for k, m $\in \mathbb{Z}$, m > 0. Then sup { $|f(\omega) - f_m(\omega)| : \omega \in \Omega$ } $\leq 1/m$ and $f_m \in L_1(\Omega)$.

Let $T = \{0, 1/3\}^n$. Let us define for $t \in T$ and $m \in \mathbb{Z}$ a covering of \mathbb{R}^n $\mathcal{A}_m^t = \{ t + ((k_1 \cdot 2^{-m}, (k_1+1) \cdot 2^{-m}) \times \ldots \times (k_n \cdot 2^{-m}, (k_n+1) \cdot 2^{-m})) : k_i \in \mathbb{Z}$ for $i \in \{1, \ldots, n\}$. Let us notice that the elements of \mathcal{A}_m^t are pairwise disjoint and

LEMMA 2. Let $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and for $t \in T$ let I^t be the unique element of A_m^t such that $x \in I^t$. Let δ be a real number satisfying $3^{-1} \cdot 2^{-m} > \delta > 0$. Then $x + (-\delta, \delta)^n \subseteq U\{I^t : t \in T\}$.

Proof. Let $x_i \in I_i \cap J_i$ where $I_i = (k_i \cdot 2^{-m}, (k_i+1) \cdot 2^{-m}]$ and $J_i = (p_i \cdot 2^{-m} + 3^{-1}, (p_i+1) \cdot 2^{-m} + 3^{-1}]$ for some (unique) $k_i, p_i \in \mathbb{Z}$. Since the distance from each end-point of I_i to the end-points of J_i is greater than δ , $(x_i - \delta, x_i + \delta) \subseteq I_i \cup J_i$. As $\bigcup \{I^t : t \in T\}$ is the Cartesian product of the sets $I_i \cup J_i$, i = 1,...n, the result follows.

Proof of Theorem 1. It is enough to prove that almost every point of the cube $(0, 1)^n$ is a Lebesgue point of f. Thus we may assume that $f \in L_1((0, 1)^n)$.

At first we suppose that f has a countable range. For m = 1, 2, ... and $t \in T$ we define $\mathscr{B}_{m}^{t} = \sigma \mathscr{A}_{m}^{t} | (0, 1)^{n}$. Let us notice that for each $t \in T$ the σ -algebra $\mathscr{B}_{\infty}^{t} = \sigma \bigcup_{m=1}^{\infty} \mathscr{B}_{m}^{t}$ is the σ -algebra of all Borel subsets of $(0, 1)^{n}$. Let $a \in \mathbb{R}$. By Theorem 2 for almost every $x \in (0, 1)^{n}$ we have

 $E(|f - a| | \mathcal{B}_{m}^{t})(x) \rightarrow E(|f - a| | \mathcal{B}_{\infty}^{t})(x) = |f(x) - a|.$ Thus for almost every $x \in f^{-1}(a)$

$$E(|f - a| | \mathcal{B}_{m}^{t})(x) \rightarrow 0.$$

Since f has a countable range we obtain

(*)
$$E(|f - f(x)||\mathfrak{B}_{\underline{m}}^{t})(x) \rightarrow 0$$

for almost every $x \in (0, 1)^n$.

We shall show now that such x is a Lebesgue point of f. For $t \in T$ we define a sequence $\{I_m^t : m = 1, 2, ...\}$, where I_m^t is the unique element of A_m^t such that $x \in I_m^t$. The inclusion $I_m^t \subset (0, 1)^n$ holds for each $t \in T$ and $m \geq K$ for some positive integer K. Then

$$E(|f - f(x)||\mathfrak{B}_{m}^{t})(x) = (1/\lambda(I_{m}^{t}))f ||f(s) - f(x)| ds.$$

Thus by (*) we have

$$\begin{array}{ccc} (\star\star) & (1/\lambda(I_{\mathbf{m}}^{t}))f \mid f(s) - f(x) \mid ds \rightarrow 0. \\ & I_{\mathbf{m}}^{t} \end{array}$$

For any $\delta > 0$ we find the unique m such that $2^{-m} \cdot 3^{-1} > \delta \ge 2^{-m-1} \cdot 3^{-1}$. By Lemma 2 we obtain

$$0 \le (1/(2\delta)^{n}) \quad f \qquad |f(s) - f(x)| \, ds \le x + (-\delta, \delta)^{n}$$

$$(1/(2\delta)^{n}) (\sum_{t \in T} f_{m}^{t} |f(s) - f(x)| \, ds) \le t \in T \quad I_{m}^{t}$$

$$3^{n} (\sum_{t \in T} (1/\lambda(I_{m}^{t})) f_{m}^{t} |f(s) - f(x)| \, ds).$$

Hence by
$$(**)$$
 x is a Lebesgue point of f.

Now let f be an arbitrary function from $L_1((0, 1)^n)$. By Lemma 1 f is the limit of a uniformly convergent sequence of functions $\{f_m : m = 1, 2, ...\} \subseteq L_1((0, 1)^n)$, where each f_m has a countable range. Let $A = \{x \in (0, 1)^n : x \text{ is a Lebesgue point}$ for each f_m , $m = 1, 2, ...\}$. Then $\lambda(\mathbb{R}^n \setminus A) = 0$.

Let
$$\mathbf{x} \in (0, 1)^n$$
 and let $Q \subseteq (0, 1)^n$ be a cube. Then
 $(1/\lambda(Q))f_Q|f(s) - f(x)| ds \leq$

$$\int_{0} |f_{s}(s) - f_{s}(x)| \, ds + 2 \, \sup \{|f(s) - f_{s}(s)| : s \in (0, 1)^{n}\}.$$

Hence if $x \in A$ and Q is a cube of center x we have

 $\lim_{\lambda \in Q} \sup_{\lambda \in Q} (1/\lambda(Q)) \int_{Q} |f(s) - f(x)| ds \le \lambda(Q) \rightarrow 0$

2 sup {
$$|f(s) - f_(s)| : s \in (0, 1)^n$$
 }

for m = 1, 2, Thus $\lim_{\lambda(Q) \to 0} (1/\lambda(Q)) f_Q |f(s) - f(x)| ds = 0. \blacksquare$ <u>Remark</u> 1. Theorem 1 implies Lebesgue's density theorem. L. Zajíček [5] and F. Cater [1] have recently proved the one dimensional version of this theorem without using a covering lemma.

<u>Remark</u> 2. It was pointed out to us by Professor K. Krickeberg and Professor M. Laczkovich that Lévy's theorem in the case of σ -algebras generated by countable partitions, the only one we use, was already known to de la Vallée Poussin [4].

REFERENCES

- F. Cater, Some analysis without covering theorems, Real Anal.
 Exch. 12(2) (1986/87), 533-540;
- [2] Y. S. Chow, H. Robbins, D. Siegmund, Great Expectations: The Theory of Optimal Stopping, Houghton Mifflin Company, Boston, 1971;
- [3] K. L. Chung, A Course in Probability Theory, Academic Press, New York and London, 1974;
- [4] Ch. J. de la Vallée Poussin, Sur l'integrale de Lebesgue, Trans. Amer. Math. Soc. 16 (1915), 435-501;
- [5] L. Zajiček, An elementary proof of the one-dimensional density theorem, Amer. Math. Monthly 86,4 (1979), 297-298.

Received June 28, 1989