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A REMARK ON ABSOLUTELY CONTINUOUS FUNCTIONS

In a previous note, [1], the authors obtained the following Lusin type theorem for
absolutely continuous functions.

THEOREM 1. A real function f on [0,1] is absolutely continuous if and only if for
every € > 0 there is a ¢ which is continuously differentiable such that the set E for which

f(z) # g(z) has measure less than ¢ and /}; |F(t)|dt < s,/ lg'(t)|dt < e.
E

Our present purpose is to show that this result is, in a certain sense, best possible.
In this regard, we need a known fact, (2], about continuous functions, to be described
presently. Let C be the set of continuous functions on [0,1] and, for every modulus of
continuity w, let Cy, be the functions in C' which satisfy this modulus.

THEOREM 2. For every modulus of continuity w, there is an f € C such that; for
every g € Cy, f(z) # g(z) almost everywhere.

We now state and prove the fact we need, which follows from Theorem 2.

THEOREM 3. For every modulus of continuity w, there is an f € C' such that, for
every g € C* with ¢' € Cy, f(z) # g(z) almost everywhere.
Proof. Let h € C be such that, for every k € Cy,, h(z) # k(z) almost everywhere. Let
k4
f(z) = / h(t)dt,0 < z < 1. Suppose there is a differentiable g such that ¢' € C,, and

f(z) = g(O:c) on a set E for which m(E) > 0. Almost every point of E is a point of metric
density 1 of E. Clearly, for every such z, f'(z) = ¢'(z). Hence, the set of points for which
f'(z) = ¢'(z) has positive measure. But, f'(z) = h(z), for every z. Since g' € Cy, this
contradicts the assumed property of h.

COROLLARY 1. For every modulus of continuity w there is an absolutely continuous
f such that, for every g € C?, with g' € Cy, f(z) # g(z) almost everywhere.

We remark that in connection with this topic the following metric suggests itself for
the set of absolutely continuous functions. For f and g in AC, let

(s, =m(E)+ [ 1f @+ [ g olar
where E is the set for which f(z) # g(z). It is a fact that AC is a Banach space with this

metric.
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