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 SOME SYMMETRIC COVERING
 LEMMAS

 The first significant investigation of the symmetric derivative was that of
 Khintchine [9] in 1927. As well as obtaining some elementary properties by
 elementary and unoriginal means he introduces the first interesting and new
 technique into the study in order to obtain the fact that a measurable func-
 tion with a symmetric derivative on a set is differentiable almost everywhere
 on that set. Basically his argument is that if there is a uniform estimate on
 the symmetric difference quotient of a function / on a set E then at points
 that are both density points of E and points of approximate continuity of
 / a similar estimate for the ordinary difference Quotients is available. This
 kind of an argument has been repeated often in subsequent years. For ex-
 ample in Stein and Zygmund [16, p. 266] this method is used to prove that
 measurable functions are continuous at almost every point of measurable sets
 on which they are symmetrically continuous; while they do not acknowledge
 Khintchine specifically as a source of the techniques they use, the ideas are
 easily traced to him and they suggest that the result had been known for
 some time.

 A basic ingredient of the Khintchine proof is the use of points of ap-
 proximate continuity and so the technique applies primarily to measurable
 functions. Thus, for example, something new is needed in order to investigate
 the points of symmetric continuity of a function that is not given a priori to
 be measurable. For a function / that is everywhere symmetrically continuous
 classical methods can still be made to work. Let u>/(x) be the oscillation of
 / at X. Then w/ is symmetrically continuous too and it is measurable. Thus
 the Stein- Zygmund theorem shows that it must be a.e. continuous. Together
 with a theorem of Fried [8] this shows that / is a.e. continuous too. This
 argument is due to David Preiss and can be considered to replace that in [11].

 More recently, no doubt motivated by the arguments in [9] and [11],
 Uher [20] with some considerable technical skill has refined these techniques
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 further still in order to give apparently definitive answers to questions of this
 nature in the study of symmetric continuity and symmetric derivatives. In
 this article we wish to introduce (or re-introduce) the reader to these argu-
 ments by presenting them in the form of covering lemmas, thus continuing
 the program suggested in [17] and [13]. Among the applications considered
 are some well known theorems as well as a few that seem to be new. The

 proofs are given in separate sections later in the article.

 1 Covering relations

 We have elsewhere in this Exchange ([17], [13]) defined a symmetric full cover
 on the real line to mean a collection S of closed intervals with the property
 that for every real x there is a ¿(a:) > 0 so that

 [x - h,x + h] E S

 for every 0 < h < 6(x). Such a notion evidently arises naturally in a study of
 symmetric limits. For example if a function / is everywhere symmetrically
 continuous then the collection of intervals

 {[a, 6] : |/(6) - /(a) I < e}

 is a symmetric full cover of the real line for every t > 0.
 There are some technical problems in adopting this definition that are

 resolved by a slight shift of viewpoint. It is traditional in derivation theory
 to convert notions of interval functions by considering an interval function
 [a, 6] - ► /i([a,6]) as instead a function of two variables h(a,b ) defined in the
 plane R2. Then the interval [a, 6] corresponds to the planar point (a, 6) and
 limit processes on the line correspond to limit process in the plane. If we
 wish to focus only on symmetric type limit processes it is often more natural
 to associate the interval [a, 6] more closely with its midpoint by selecting the
 point ((a + 6) /2, ( b - a)/ 2) to represent this interval. Thus we think of the
 scheme

 (x, h ) < - ► [x - h,x + h]

 OT

 [a, b] i - ► ((a + ò)/2, (b - a)/ 2) .
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 The point (x, h) is the vertex of an isoceles right-angled triangle whose hy-
 potenuse is the interval [x - h,x + h] on the x-axis. We say (x, h) is the
 vertex for the interval [x - h,x + h] and that the interval [x - h,x + h] and
 the vertex (a:, h) are associated.

 Thus we convert from collections of intervals to subsets of R2 but retain

 the notion of coverings. Occasionally we refer to subsets of R2 as vertex sets.
 We shall allow vertex sets to contain points below the x-axis; the point (x, h)
 with h < 0 can still play a role in some of our definitions and will usually
 indicate that the interval [x + h, x - h' is traversed in the reverse direction
 in some sense.

 Definition 1 A set V C R2 is said to be a full symmetric cover for a set
 £cR provided that for every x € E there is a positive number ¿(x) so that

 0 < t < <5(x) => ( x,t ) € V.

 In order for a convenient expression of our covering theorems we require
 a notation for a theorem like that in [13] in terms of the vertex set. If we
 wish to have partitions such as

 a = xq < x !<...< x„_i < xn = b

 we can adopt the following scheme.

 Definition 2 Let V C R2 be a vertex set and a and b real numbers. We
 write

 V : a^b

 if there is a finite sequence of numbers {xo, xi, . . . , xn_i, xn} so that a = xo,
 b - xn and each pair

 ((x»+i + Xi) 1 2, (xi+i - Xi) ¡2) € V.

 If the sequence may be chosen increasing (i.e. a = xo < xi < . . . <
 xn_i < x„ = b) then we say that V allows a partition of the interval [a, 6],
 Note that in the definition each of the transitions x¿ x,+i is obtained by
 a reflection about the midpoint, above which the vertex point must belong
 to V. If Xi > x,+ 1 then this reflection goes backwards and requires, in this
 definition, that the vertex point in V lie in the lower half plane below the
 midpoint.
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 2 Density covering lemmas

 The classical theorem of Khintchine [9, p. 217] was the first in a series of
 studies devoted to investigating the fundamental properties of measurable
 functions on which a symmetry condition is imposed; it was proved there
 that a measurable function that is symmetrically differentiable on a set must
 be almost everywhere in that set differentiable in the ordinary sense. The
 geometrical arguments involved in the proof of that theorem may be (over-
 simply) described as noting that a symmetric covering relation that holds
 uniformly on some set E imposes strong conditions at the density points of
 E. Similar ideas have reappeared in later works, for example in [16], [2,
 Lemma 1, p. 17] and [20, Lemma 2, pp. 426-427].

 We can present the essence of these arguments as a single covering lemma
 involving the density points of a set on which some uniform covering relation
 is given; because the idea is implicit in the article of Khintchine [9] we shall
 attribute the lemma to him.

 We follow Uher [20] in presenting this in both a measure density and
 a category density version using the same arguments. For the measure-
 theoretic version the notation d(E) denotes the set of (exterior) density points
 of E ; that is to say

 In the category version we take, as in [20],

 c(E) = R ' Closure ([J {(a, b) : (a, b) fi E is first category}) .

 (Note that this set is somewhat smaller than the analogous notion in [10,
 p. 83] being, in the language of that treatise, the interior of the set of points
 of second category.) In the statements of the lemmas and in their proofs we
 write b(E) to denote either d(E) the set of density points of E or, alterna-
 tively, c(E) the set of category density points of E. With either interpretation
 we have the following covering lemma that it is appropriate to attribute to
 Khintchine.

 Lemma 3 (Khintchine) Let E C R, V C R2 and 77 > 0. We suppose that

 X E E, 0 <t<r¡ =>• (x, t) € V
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 and that z G b(E). Then there is a positive number è so that for every point
 0 < 'z - x| < S there is a set A - A(a:) with z G b(A) such that for all a G A

 z < a < X =r> V : a x

 and

 z > a > x ==4> V : x a

 by two reflections in V.

 The covering argument of Lemma 3 has been used in some form frequently
 in the literature. For the most part it is limited in usefulness to obtaining
 the properties of measurable functions. In order to remove the measurability
 assumption far more subtle geometrical arguments are needed. The most
 penetrating analysis has been provided by Uher in his articles [19] and [20].
 We present here the main covering argument of Uher (from [20, Lemma 1,
 pp. 423-426]) in the form of a covering lemma which has a number of im-
 portant applications. As before for any set E let b(E ) denote either d(E)
 the set of density points of E or, alternatively, c(E) the set of "category
 density " points of E. In the statement of the theorem if b(E) = c(E) then
 the phrase for "for almost every point x G b(E)n must be interpreted in the
 category sense, i.e. as "for all but a first category subset of c(E)n . Under
 either of these interpretations we have the following theorem which is directly
 attributable to Uher.

 Lemma 4 (Uher) Let E C R, VļjVļ C R2 and t) > 0. We suppose that
 V = V1U Vļ, that

 x € E, 0 < t < T] =» (x, t) € Vi

 and for almost every point x G b(E ) there is a positive number ¿(x) so that
 either

 0 < t < S(x) =ï ( x,t ) G V2

 or alternatively
 0 > t > -S(x) => ( x,t ) G V2.

 Then for any z G b(E) there is a neighborhood U of z (which depends only
 on z, E and r') so that for any x G U

 Z < X =£ V •. Z x
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 and

 X < z V : X z

 by three reflections in V' and two in .

 3 Applications

 3.1 Some preliminaries

 We shall require a number of weak continuity conditions in our study. The
 following definition is a version of two forms of continuity known in the
 literature as qualitative-continuity and quasi- continuity. (For these notions,
 due to S. Marcus and S. Kempisty respectively, see [18, p. 21 and p. 26].)
 Remember that c(A ) denotes the set of category density points defined in
 the preceding section.

 Definition 5 A function / is said to be quasi- qualitatively continuous (or
 simply qq-continuous) at a point x if

 { V ■ ' f(x)-f(y)' <e}nA^<l)

 for every positive number e and for every set A with x € c{A).

 In order to better understand the notion recall that in order for / to be
 continuous at a point x then for every e > 0 the set

 {y ■ l/(*)-/(y)l < e}

 contains an open interval about x. In order for / to be quasi-continuous
 there that set must contain an open subinterval of every neighborhood of
 x. In order for / to be qualitatively continuous it must be residual in an
 open interval about x. Finally then in order for / to be qq-continuous there
 it must be residual in some open subinterval of every neighborhood of x.
 Our only applications of this notion will use the observation that if / is
 qq-continuous at a point x and the point x belongs to c(A) then there is a
 sequence of points an G A with an -* x and f(an ) - > f(x).

 The notion of qq-continuity while formally apparently very weak is equiv-
 alent to the property of Baire. We prefer to use the "weaker" version in the
 statements of the theorems that require some kind of continuity, but it is
 well to keep in mind that we have not obtained stronger results.
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 Theorem 6 A function f has the property of Baire if and only if it is qq-
 continuous everywhere excepting a set of the first category.

 In fact the proof will show that a function that is qq-continuous at every
 point of a dense set must have the property of Baire. The notion of qq-
 continuity suggests that we should require also a similar weakening of the
 notion of approximate continuity.

 Definition 7 A function / is said to be quasi-approximately continuous (or
 simply qa-continuous) at x if

 {y • l/(*)-/(y)l

 for every positive number e and for every set A with x (E d(A).

 We shall use this terminology since it allows a parallel development be-
 tween the measure-theoretic and category-theoretic versions of certain the-
 orems. However, again, it should be noted that this formally weaker re-
 quirement than approximate continuity is almost everywhere the same as
 the stronger requirement. A function is measurable if and only if it is almost
 everywhere approximately continuous; the same is true for qa-continuity.

 Theorem 8 A function f is measurable if and only if it is almost everywhere
 qa-continuous.

 The proof will show moreover that a function that is qa-continuous at
 the points of a set of full outer measure must be measurable.

 3.2 Local symmetry

 There was a query posted in an early issue of this Exchange (see [6]) whether
 a set (or function) that is everywhere locally symmetric need be measurable.
 In view of Charzynski's theorem ([4]) this property, which is more severe
 than the property of that theorem, would require that such a function is
 even continuous everywhere excepting a scattered set. As Davies [5] and
 Ruzsa [14] pointed out in the next issue of the Exchange a sharper result
 than this is possible: such a function is constant off of a closed countable set.

 If we ask instead what is the nature of the set of points at which an
 arbitrary function might be locally symmetric the two covering Lemmas 3
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 and 4 provide what seems to be a complete analysis. In the theorem we let
 LS / denote the set of points at which / is exactly locally symmetric, that is
 to say the points x at which there is a positive number ¿(x) so that

 0 < t < S(x) =>■ f(x - t) = f(x + t).

 We let Lf denote the set of points at which / is constant (a function is
 constant at a point x if it is constant in a neighborhood of the point x).
 Evidently the set L/ of points of constancy of / is open and an elementary
 compactness argument shows that / is constant on each component of that
 set.

 Our theorem is first in a series of results all of which follow from the

 basic covering theorems and all of which have as their theme a comparison
 of conditions that hold symmetrically with conditions that hold in an ordi-
 nary sense. Thus here we compare a form of "symmetric constancy" with
 ordinary "constancy"; later we compare symmetric continuity with ordinary
 continuity, symmetric differentiability with ordinary differentiability, sym-
 metric monotonicity with ordinary monotoni city and so on. In each case
 the arguments and statements of results are closely related and, as far as
 possible, we try to preserve the same form of expression and proof in order
 to show the unity. A single general theorem encompassing all the variants is
 possible but not very informative.

 The theorem asserts that the set LS/ ' L/ is very small except in what
 might be considered pathological cases; the example provided in [20, p. 429]
 shows that these extreme cases can occur. Note in the statement of the

 theorem that a set that contains no measurable set of positive measure has
 inner measure zero and a set that contains no second category set with the
 Baire property is residual in no open interval; the theorem could have been
 expressed in this language instead.

 Theorem 9 Let f be an arbitrary function, let LS / denote the set of points
 at which f is exactly locally symmetric and let Lf denote the set of points at
 which f is constant. Then the set

 LS, ' L,

 contains no measurable set of positive measure and no second category set
 having the Baire property. If furthermore, qaC¡ and qqCj denote the sets of
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 points at which f is qa-continuous and qq-continuous respectively then

 qaCf Pi LS/ ' Lj

 has measure zero and

 qqCj fi LSj ' Lf

 is first category.

 As corollaries we have immediately the following observations.

 Corollary 10 Let f be a measurable function. Then the set LSj of points
 at which f is exactly locally symmetric is measurable.

 Corollary 11 Let f be a function with the Baire property. Then the set LS j
 of points at which f is exactly locally symmetric has the Baire property.

 Corollary 12 Let f be a function that is locally symmetric at each point of
 a measurable set E. Then there is an open set G containing almost every
 point of E so that f is constant on each component of G.

 Corollary 13 Let f bè a function that is locally symmetric at each point of
 a set E that has the Baire property. Then there is an open set G containing
 all but a first category subset of E so that f is constant on each component
 of G .

 Corollary 14 Let f be a function that is locally symmetric at each point of
 a set residual in R. Then f is constant on each component of a dense open
 set G.

 3.3 Symmetric monotonicity

 We turn now to an investigation of Belna, Evans and Humke [2] on the
 structure of the set of points of symmetric monotonicity. Let SI/ denote the
 set of points at which the function / is symmetrically nondecreasing and let
 I j denote the set of points at which / is nondecreasing in the ordinary sense.
 That is at points x G SIj the relation f(x - t)< f(x + 1) must hold for all
 sufficiently small t while at points x € If the relation f(x') < f(x) < f(x")
 holds for x' < x < x" sufficiently close to x. The Borei structure of If is
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 easy to obtain; it is of type (see, for example, [18, p. 116]). Belna, Evans
 and Humke proposed to study the nature of the set SI¡ 'Ij . We obtain the
 following theorem in our usual fashion from the covering Lemmas 3 and 4.
 As the proof follows the same lines as that for Theorem 9 it may be omitted.

 Theorem 15 Let f be an arbitrary function, let SIf denote the set of points
 at which f is symmetrically nondecreasing and let If denote the set of points
 at which f is nondecreasing in the ordinary sense. Then the set

 si, ' I,

 contains no measurable set of positive measure and no second category set
 having the Baire property . If furthermore , qaCj and qqCj denote the sets of
 points at which f is qa-continuous and qq-continuous respectively then

 qaCj PI SIf ' If

 has measure zero and

 qqCf n si¡ ' i}

 is first category.

 From this we immediately obtain the following corollaries. The first is a
 theorem of Belna, Evans and Humke (as cited above) and the second is a
 category analogue; their category version uses a different assumption on the
 function.

 Corollary 16 (Belna, Evans and Humke) If f is measurable then SIf
 is measurable and SIf ' // has measure zero.

 Corollary 17 If f has the Baire property then SIf has the Baire property
 and SIf ' If is first category.

 Thus for well behaved functions the set SIf ' If is small both in the sense
 of measure and of category. For examples illustrating that this cannot be
 much improved see the article [2].
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 3.4 Symmetrie semi-continuity

 We turn now to the problem of determining the continuity properties of
 functions that are symmetrically continuous. A function / is symmetrically
 continuous at a point x if

 lim/(z + h) - f(x - h) = 0.
 h - ►O

 A little more generally / is said to be upper (lower) symmetrically semicon-
 tinuous at x if

 lim sup /(a; + h) - f(x - h) < 0 fliminf/(x + h) - f(x - h) > o) .
 h-*o ' h^° /

 It is symmetrically semicontinuous if it is either upper or lower symmetrically
 semicontinuous.

 The reader may recall that the first result of this type in the literature
 is the theorem of Fried [8] asserting that everywhere symmetrically contin-
 uous functions are continuous at the points of a residual set. The measure-
 theoretic version is given by the theorem of Stein and Zygmund [16, Lemma 9]
 showing that, at least for measurable functions, the symmetrically continuous
 functions are almost everywhere continuous. The measurability assumption
 was dropped in Preiss [11] in 1971 and Belna [1] in 1983 in related theorems.
 Finally the complete analysis of the situation was provided by Uher [20] in
 1986 who showed that both the measure-theoretic version and the category
 version follow from the same geometric arguments and that the more natural
 assumption of symmetric semicontinuity was enough for these results. It was
 Uher's analysis of this problem that led to the covering lemmas that are our
 main concern.

 Our basic theorem in this section is due to Uher [20] and it combines a
 measure-theoretic version with a category version by appealing to the cover-
 ing Lemmas 3 and 4. Note that it is directly analogous to Theorems 9 and 15
 both in statement and in proof.

 Theorem 18 (Uher) Let f be an arbitrary function, let SSf denote the set
 of points at which f is symmetrically semicontinuous and let C/ denote the
 set of points which f is continuous in the ordinary sense. Then the set

 ss, ' c,
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 contains no measurable set of positive measure and no second category set
 having the Baire property. If, furthermore, qaCj and qqCj denote the sets of
 points at which f is qa-continuous and qq-continuous respectively then

 qaCj fi SSf ' Cf

 has measure zero and

 qqCj H SSf ' Cf

 is first category.

 This theorem can be restated in somewhat different language; here is a
 version from Uher [20, Theorem 1, p. 425] which follows from Theorem 18
 above both in the measure-theoretic version and in the category version.

 Corollary 19 (Uher) Let SSD] denote the set of points at which a function
 f is not symmetrically semicontinuous. Then f is continuous at almost every
 point of the set R 'd(SSDf) and continuous at all but a first category subset
 ofR'c(SSDf).

 We now easily draw a number of further corollaries from the main theo-
 rem, all again attributable to Uher.

 Corollary 20 A function that has at every point a finite or infinite sym-
 metric derivative is measurable.

 Corollary 21 Let the function f be symmetrically semicontinuous at every
 point. Then f is continuous at every point excepting a set of measure zero
 and first category. In particular f is measurable and has the Baire property.

 Corollary 22 Let the function f be measurable; then f is continuous at
 almost every point at which it is symmetrically semicontinuous.

 Corollary 23 Let the function f have the Baire property; then f is con-
 tinuous at all but a first category subset of the set of points at which it is
 symmetrically semicontinuous.

 We have too as corollaries the following theorems of Belna [1], Fried [8]
 and Stein and Zygmund [16] to which we have already alluded.
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 Corollary 24 (Belna) Let the function f be symmetrically continuous at
 almost every point of a measurable set E. Then f is continuous almost
 everywhere in E.

 Corollary 25 (Fried) Let the function f be symmetrically continuous on a
 set residual in R. Then f is continuous at every point excepting a set of first
 category.

 Corollary 26 (Stein and Zygmund) Let f be a measurable function and
 suppose that f is symmetrically continuous at each point x of a measurable
 set E. Then f is continuous at almost all points of E .

 3.5 Boundedness

 While continuous functions are bounded in every compact interval the as-
 sumption of symmetric continuity has no such consequence; indeed the func-
 tion f(x) = x~2 is symmetrically continuous (even symmetrically differen-
 tiate) but unbounded at the origin. Even so the points of unboundedness of
 a symmetrically continuous functions cannot be too large as a simple argu-
 ment shows. The set E = {x : limsupj,^ |/(y)| = oo} for a symmetrically
 continuous function / is easily shown to be locally symmetric at every point.
 Consequently using the characterization of locally symmetric sets mentioned
 earlier we can prove the following theorem.

 Theorem 27 Let f be an everywhere symmetrically continuous function.
 Then the set

 E = {x : lim sup |/(y)| = oo}
 y-*x

 is closed and countable.

 We can ask too whether a weaker condition such as

 |/(x + h) - f(x - Ä)| = 0(1) as h - ► 0

 requires / to be bounded at any points. By our usual methods the following
 theorem may be proved. In the theorem we let BS/ denote the set of points
 at which / is symmetrically bounded, i.e. points x at which

 lim sup I f(x -f h) - f(x - /i)| < -foo,
 /i- o
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 and we let B/ denote the set of points at which / is bounded (a function
 is bounded at a point x if it is bounded in a neighborhood of the point x).
 Evidently the set B/ of points of boundedness of / is open and an elementary
 compactness argument shows that / is bounded on each compact subset of
 that set. For a proof one need only adapt the arguments in the proof of
 Theorem 9 to this situation.

 Theorem 28 Let f be an arbitrary function, let BSj denote the set of points
 at which f is symmetrically bounded and let Bj denote the set of points at
 which f is bounded. Then the set

 BS, ' B,

 contains no measurable set of positive measure and no second category set
 having the Baire property. If, furthermore, qaCf and qqCj denote the sets of
 points at which f is qa-continuous and qq-continuous respectively then

 qaCf fi BSf ' Bj

 has measure zero and

 qqCj H BSj ' Bj

 is first category.

 As corollaries we have immediately the following observations.

 Corollary 29 Let f be a measurable function. Then the set BSj of points
 at which f is symmetrically bounded is measurable.

 Corollary 30 Let f be a measurable function. Then f is bounded at almost
 every point at which it is symmetrically bounded.

 Corollary 31 Let f be a function possessing the Baire property. Then f is
 bounded at every point at which it is symmetrically bounded except possibly
 for a set of the first category.

 359



 3.6 Relations among derivates
 There is by now an extensive literature devoted to the study of the relations
 that hold among the various generalized derivatives. The first such theorem
 traces back to Levi who showed that while a function can easily have different
 one sided derivatives at a given point there can be a disagreement between
 the two one sided derivatives only on a countable set. For a review of some of
 this literature as it applies to Dini derivatives, approximate Dini derivatives,
 qualitative derivatives etc. see [18, Chapters 6 and 7].

 A relation between the symmetric derivates and the ordinary derivates
 of measurable functions was first established by Khintchine. This was com-
 pleted by Uher [20, Lemma 2, p. 426]. The following is a version of that
 theorem with a few refinements, presented in our usual form.

 Theorem 32 Let f be an arbitrary function. Then the set

 {i:3D/0r)#75/(x)}

 contains no measurable set of positive measure and no second category set
 having the Baire property. If, furthermore , qaCj and qqCj denote the sets of
 points at which f is qa-continuous and qq-continuous respectively then

 qaCj D {x : W f{x) ± Df{x)}

 has measure zero and

 qqCj n {x : SDf(x) ^ Df(x)}

 is first category.

 As corollaries we immediately have the following assertions. The first two
 of these are due to Filipczak [7].

 Corollary 33 (Filipczak) Let the function f be measurable. Then the fol-
 lowing relations between the extreme symmetric derivates and the ordinary
 derivates must hold almost everywhere:

 Wf = Df(x ) and SDf(x) = Df(x)
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 Corollary 34 (Filipczak) Let the function f be measurable. Then the ex-
 treme symmetric derivates SD f and, SD f are measurable too.

 Corollary 35 Let the function f have the Baire property. Then the relations
 between the extreme symmetric derivates and the ordinary derivates

 ŠDf = Df(x) and SDf(x) = Df{x)

 hold off of a set of the first category.

 Finally we should mention that these results provide a perspective on the
 classical theorem of Khintchine. It is well known (see, for example, Saks [15,
 p. 230 and p. 234]) that a function / is differentiable at almost every point
 at which the inequality D f(x) < oo holds. The estimates just obtained show
 that, at least for measurable functions, the inequality D f(x) < oo is almost
 everywhere equivalent to the inequality SD f(x) < oo and so the Khintchine
 theorem follows too as a corollary.

 Corollary 36 (Khintchine) Let f be a measurable function. Then f is
 differentiable at almost every point x at which

 ,. f(x + h) - f(x - h)
 ,. limsup

 /i- o 2 h

 4 Proofs

 In the proofs of the covering lemmas a careful handling of density arguments
 is needed. This is most easily presented by cataloging the usual properties of
 density that are used in such proofs. The following properties (taken directly
 from Uher's presentation in [20]) are readily established for the density notion
 and are all that are needed in constructing the geometric arguments used in
 all of the proofs.

 Lemma 37 Let d(E) denote the set of exterior density points of an arbitrary
 set E defined as

 d{E) v ' = Ļ : h-+o lim 2 h = A . v ' ' h-+o 2 h J
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 Then the following properties hold for all sets of real numbers.
 (1) If AC B then d(A ) C d(B).
 (2) If'JAn = A then d(A) ' U^(-^n) has measure zero.
 (3) If A'B and B ' A both have measure zero then d(A) = d(B).
 (4) d(d(A)) = d(A) for any set A.
 (5) A ' d(A) has measure zero for any set A.
 (6) d(a + ßA) = a + ßd(A) for any set A and real numbers a and ß.
 (7) A is measurable if and only if |á(A) ' A' - 0.
 (8) If A is measurable then d(A H B) = d(A) fl d(B) for any set B.
 (9) If 0 is a density point for each of the sets A', Aļ, •••Ak, all but one
 of which are measurable then for every p > 0 there is a positive number
 S so that whenever 0 < r < 8, (a, 6) C (- r, +r) with b - a > T¡p and
 max{|ai|, |c*2|, . . . |ofjt| } < r then the set

 k

 (a, 6) n P| (a,- + A,)
 «=i

 has positive measure.

 The dual properties for the category notion are identical subject to the
 correct translation. For "measure zero" read "first category", for "positive
 measure" read "second category", for "measurable set" read "set with the
 Baire property" and, of course, replace d(A) by c(A). The above properties
 now translate directly into the following. By displaying them as identical
 formally with the density properties it is easy to see how a proof for the
 density case translates quickly to a proof for the category case.

 Lemma 38 Letc(E) denote the set of second category points of an arbitrary
 set E defined as

 c(E) = R' Closure (ļj {(a, 6) : (a, b) fi E is first category .

 Then the following properties hold for all sets of real numbers.
 (1) If AC B then c{A) C c(B).
 (2) If'JAn = A then c(A) ' Uc(An) is first category.
 (3) If A'B and B'A are both first category then c(A) = c(B).
 (4) c(c(j4)) = c(j4) for any set A.
 (5) A ' c(A) is first category for any set A.
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 (6) c(a + ßA) = a + ßc(A) for any set A and real numbers a and ß.
 (7) A has the Baire property if and only if c(A) ' A is first category.
 (8) If A has the Baire property then c(A D B) = c(A) fl c(B ) for any set B.
 (9) If 0 belongs to each of c{A'), c(A2), ■ . . c(Ak) where all but one of the sets
 Ai, A2, . . . Ak have the Baire property then for every p > 0 there is a positive
 number 8 so that whenever 0 < r < 8, (a,b) C (- r, +r) with b - a > T¡p
 and max{|ai|, |of2 1, • • • l^fcl} < t then the set

 k

 (a,6)n P)(a, + Ai)
 «'= 1

 is second category.

 4.1 Proof of lemma 3

 Let us take b(E) = d(E) and give the language of the density proof. (For
 convenience the single point at which a translation for the b(E) = c(E) proof
 must be made is indicated.) Also we will shift everything to the origin and
 assume that the point z is 0. We argue just on the right at 0 as the situation
 on the left is similarly handled.

 We use Lemma 37(9) to choose 6 < 77 so that if 0 < x < 6 then the set

 2b{E) n(2£-x)n(0,x)

 is nonempty. This just uses the sets A' = 2 b(E) and Aļ = 2 E and the
 numbers ai = 0 and a2 = -x; since 0 € 2 b(E) and 0 € b(2E) the property of
 Lemma 37(9) even shows that the set 2b(E)C'(2E- x)fl(0, a:) can be arranged
 to have positive measure [to be of the second category]. If 0 < x < 8 then
 we choose

 u G b(E) D (E - 'x) fl (0, |x).

 Note that u G b(E) so that, by Lemma 37(6), we know that 0 € b(2E - 2 u).
 Thus if we define

 A = (2 E - 2 u) fi (-2 u, 2 u)

 then we have 0 € b(A) as we require.
 For any point a Ç. A, 0 < a < x then we can exhibit V : a x by a

 scheme of two reflections

 a <2u < x
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 O a 2 u X

 Figure 1: Two reflections in the proof of Lemma 3.

 (see Figure 1) and we have only to check that the vertex points are in V .
 But the midpoint of the first reflection is (a + 2 u) /2 = u + |a and a E A C
 2 E - 2u so that tí + |a G E. Certainly then ( u + |a, (2 u - a)/ 2) G V since
 (2 u - a)/ 2 < Tļ.
 The midpoint of the second reflection is (x + 2u)/2 = « + but by choice
 u G E - so this too is in E and again ( u + (x - 2u)/2) G V since
 (a: - 2u)/2 < r¡.

 4.2 Proof of Lemma 4

 The proof is given in the language of the measure-theoretic version but is
 easily translated for the category version. We simplify by translating to the
 origin so that we may take z = 0. Also it is enough to prove that U may be
 selected so that V : z x for x on the right of z in U . We suppose there
 is a set of measure zero N so that every point x of b(E ) ' N has the local
 property of the theorem. Because of these local assumptions on V? we may
 by well known methods obtain disjointed sequences of sets {E+} and {E~}
 covering the set b(E)'N so that

 x G E+, 0 < t < 1/m ==> ( x,t ) G V2

 and

 x G E~, 0 > t > -1/m = > ( x,t ) G V2.

 We perform in advance the computations necessary to the argument.

 Lemma 39 If 0 G b(E) then a number 8 > 0 may be chosen so that for any
 0 < x < S the set j4(x) defined as

 (2 e - x) n (i b(E ) + fx) n b(E) n (¡b(E) + |x) n (§&(£) + fx) n (f*,*)

 364



 has positive measure [is second category].

 PROOF. In the measure-theoretic version each of the sets in the expression
 for A(x) has 0 as a density point and all but one of them is measurable;
 consequently Lemma 37(9) provides a number 8 so that this set has positive
 measure. The category version is similar.

 Lemma 40 If the set -<4(x) defined as

 (2 E - x) n (i b(E ) + fx) n b(E) n (§ b(E) + fx) n ( 'b{E ) + fx) n (fx,*)

 has positive measure [is second category] then it has a point in common with
 one of the sets

 b ((E + fx) n E
 or

 b ((E + fx) n e;)
 for some integer q.

 PROOF. By definition

 A(x) C (6(E) + fx) n b{E)

 and, by Lemma 37(6),

 b(E) + fx = ĶE + fx).

 Together these give

 A(x) C 6 ((£ + fx) n t(E)) . (1)
 Recall that the union Um=i U E~ contains almost every point of b(E).

 Consequently the union
 OO

 u {(E + fx) n E¿) U ((E + fx) n E-)
 771= 1

 contains almost every point of (E+ |x)fl6(E). From (1) and Lemma 37(2),
 we conclude that one of the sets

 ¿(x)n&((£ + fx)n£+)
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 or

 A(x)n6((£+fx)ną-)
 for some integer q = 1,2, 3,. . . has positive measure; if not then A{x) has
 measure zero in contradiction to our assumptions. This completes the proof
 of the lemma.

 The third lemma continues these computations.

 Lemma 41 If y is a point in the set A(x) and

 C= U (t - /c(t),t] U UM + «(*))
 tec- tec+

 where n(t) = min{£, |x} for t e E+ U E~,
 OO

 C+ = (£ - fx + iy) n U J5+
 771 = 1

 and
 OO

 C- = (E - fx + 'y) n U E-,
 m- 1

 then y € b(^C + |x).

 PROOF. Since the set Um=i U E~ contains almost every point of b(E)
 the set C must contain almost every point of

 (E - fx + |y) n b(E).

 Therefore

 4(C) 3 b ((E - fx + i y) n b(E)) = b((E- f X + ģs,)) n b(b(E))

 by Lemma 37(8). Thus we have from Lemma 37(4) that

 b(C) D (b(E)~ fx +i¡,)n b(E). (2)
 Since by definition y € A(x) C 'b(E) + 'x it follows that 2(y - |x) € b(E).

 Similarly the fact that y G ^4(x) C § b(E) + | x entails that | (y - |x) 6 b(E).
 A simple computation now shows

 2 (y - H + - 'y - f (y - kx) e ķe)
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 and hence that 2 (y - |x) 6 b(E) - | x + ^y . Together with (2) this shows
 that 2 (y - |x) Ç. b(C ) or equivalently

 y € 'b{C) + fx = b (|C + fx)

 as required.

 The final lemma completes our preliminary computations.

 Lemma 42 If y is a point in the set

 A(x) n (b (( E + fx) n Eļ) u b((E + fx) n E;))

 then there is a number ß with 1/q > ß > 0 so that one of the two sets

 ( 'C + fx) n (E + fx) n Eļ n {y - ß,y)

 or

 i'c + I«) n (E + ix) n Eq n (y, y + ß)
 is nonempty.

 PROOF. By definition y € A(x) C (|x,x) so that a positive number ß may
 be chosen smaller than min{^, |} in such a way that (y - ß, y + ß) C (fx, x).

 If y belongs to the set b ((E + |x) D Eļ Ì then, since by Lemma 41 y also

 belongs to the set 6(|C + |x), we see that y is a density point of both sets
 (E+ļx)f)E+ and |C+|x. Since the set C is a union of intervals it is a Borei
 set (see, for example, [3, p. 57] for a proof) so that in particular 'C + fx is
 measurable. Consequently the set

 ('C + fx) n (E + f*) n E * n (» - ß,y)

 has positive measure. If, on the other hand,

 y € b [{E + fx) n E;)

 a symmetrical proof shows that

 (2^ + !x) ^ (E + I1) ^ Eq n (f> y + ß)
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 / i ' (c5i^5)
 / , X / (C3,«3) i ' /' (C1 / ? "1 , X ). /N. Nv

 y' '.(c2,h2) / '/ N.

 O a:i X2 #4' / %3 %
 (c4, /14)

 Figure 2: Five reflections in the proof of Lemma 4.

 has positive measure. This completes the proof.

 Let us now continue the proof of the main theorem. The strategy of the
 proof is to choose a neighborhood U so that if x 6 U, x > 0 then we may
 select a sequence

 0 - X0, 3C' y 3?2) Xļļ 3?4, 3-5 - 3)

 with centers c, = (x¿ + x,_i)/2 so the centers ci, C3 and C5 are from E where
 a forward reflection from V' is easily obtained and, more delicately, so that
 the centers c2 and C4 are from the sets £*+ or E~ where a small forward or
 backward reflection from V2 is available. The scheme is exhibited in the figure
 (Figure 2) where for purposes of illustration the reflection for the c2 point is
 forward but the reflection for the C4 point is backward. All possibilities of
 course have to be considered.

 By Lemma 39 there is a positive number 8 which we may select smaller
 than T] so that the set A(x) is nonempty whenever we choose a point x 6
 (0, ¿). Thus our choice of neighborhood U is evidently to be (-5, Í) and it is
 clear that 8 may depend on E and 77 as well as the point of density chosen
 in b(E) (here taken as 0) but is independent of the other variables in the
 statement of the theorem.

 We begin by using Lemma 39 and 40 to select a point xą 6 A(x) that is
 also in one of the sets

 b ((E + fx) n E+)
 or

 b ((E + fx) n E-)
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 for some integer q. By the way A(x ) is defined the midpoint C5 = (x4+x)/2 €
 E because xą 6 A C 2 E - x. Also 0 < x - C5 < r) so (C5, x - C5) € V'.

 Associated with the point x4 € >l(i) by Lemma 42 there is a number
 0 < ß < 1 fq so that a point c4 may be chosen from one of the sets

 {'c + fx) n (E + fx) n JE+ n (x4 - ß, x4)

 or

 {'c + fx) n (E + fx) n e~ n (x4, x4 + ß).

 If c4 is in the former set then c4 € E+ and 0 < x4 - c4 < ß < ^ so that
 (c4,x4 - c4) € Vļ. On the other hand if c4 is in the latter set then c4 £ E~

 and 0 < C4 - x4 < ß < ^ so that again (c4,c4 - x4) € Vi and in this case the
 reflection goes backwards (as illustrated in the figure).

 It remains only tò determine x' and Ci and the whole sequence 0 =
 x0,xi,x2,x3,x4,x5 = x will then be known. We set xi = 2(c4 - |x) and we
 choose a point c2 € C+ so that Xi € (cļ - k(c2), c2] or alternatively we choose
 c-i € C' so that Xi € [c2, (c2 + «(c2)). Such a choice is available: for we have
 xi = 2(c4 - |x) and c4 € ('C + |x) so that xi is in C.

 This completes the definition of the sequence of reflections that carries
 0 to x and we have only to complete the verification that the vertex points
 in V have been used. We already know the reflections about c4 and C5 use
 points in V2 and Vi respectively. For ci this is not difficult: recall that
 ci = (0 + xi)/2 = c4 - |x. Since c4 was chosen in E + |x this means that ci
 is in E. But 0 < xi - cj < 7/ so the point (ci,xi - ci) G Vi. For c2 this is
 immediate: recall that either xi € (c2 - /c(c2),c2] or else X' 6 [c2,c2 + «(c2))
 and hence either (c2, c2 - Xi) € V2 or else (c2, xi - c2) € Finally for c3 we
 have

 X2 + X3 (2c2 - xi) + (2c4 - x4)
 °3 ~ 2 2

 and since by definition Xi = 2(c4 - |x) we have c3 = c2 + |x - |x4. But c2
 by definition belongs to the set C+ U C~ which is a subset of E - 'x + |x4.
 Consequently C3 Ç. E and so (03, X3 - C3) € Vi.
 This completes all the checking and we have produced the sequence of

 five reflections giving V : 0 x. If - 6 < x < 0 symmetrical arguments
 would obtain V : x 0 and so the proof is complete.
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 4.3 Proof of Theorem 6

 As for the measurability results we will prove below it is possible to char-
 acterize functions with the Baire property in terms of separation properties
 and for that we shall require some preliminary lemmas. Recall that sets A
 and B are said to be separated by a set M if A C M and B fl M = 0.

 Lemma 43 A function f has the Baire property if and only if for every
 a < b the sets

 U = {x : f(x) < a}
 and

 V = {x : f(x) > b}

 can be separated by a set which has the Baire property .

 PROOF. Certainly the condition is necessary. To show it is sufficient we
 show, under its assumption, that for any real number c the set of points

 Ec = {x : f(x) < c }

 has the Baire property. For each natural number n choose a set Mn with the
 Baire property so that

 Mn D {x : f{x) < c }
 and

 Mn n {x : f(x) > c + 1/n} = 0.

 It is an easy matter to verify that
 OO

 H Mn = {x : f(x) < c}
 n=l

 which exhibits the set Ec as having the Baire property as we require.

 Lemma 44 Suppose that the subsets U and V of the reals cannot be sepa-
 rated by a set with the Baire property and that h is a positive function defined
 on U U V. Then there are a positive number e and a nonempty Qs set P of
 R with the following properties.
 (a) P is residual in some interval I.
 (b) The sets P ' {x G U D P; h(x) > e} and P ' {x (ż V C' Pļ h(x) > e}
 contain no second category set with the Baire property.
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 PROOF. Just for this proof let us say that sets A and B are simply separated
 if they can be separated by a set with the Baire property. If for each k =
 1,2,... the sets {x € U; h(x) > 1 /k) and {x € V ; h(x) > 1 /k} could be
 separated by a set, say M*, with the Baire property then U and V would
 be separated by Uj^i -Mfc* Hence there is a positive number e such that
 the sets U' = {x € U; h(x) > e} and V' = {x G V; h(x) > e} cannot be
 separated.

 Next we observe that whenever Eļ,E2, . ■ ■ are pairwise disjoint sets with
 the Baire property such that the sets A fl Ei and B D Ei are separated, say
 by Mi, then the sets A fl U^« and B f''JEi are separated by U(£«' ^ M,).
 From this we can deduce that there is a set A C R such that A has the Baire

 property, the sets U' fi A and V' fi A can be separated and that the set R ' A
 contains no second category set B with the Baire property for which the sets
 U' D B and Vi D B can be separated.

 To see this choose, if possible, a second category set E' with the Baire
 property so that Uļ fl E' and V'C'Ei can be separated. Continue inductively
 choosing for any ordinal ß a second category set

 Eß c R ' (J E a
 a<ß

 with the Baire property so that U' fl Eß and Vi fl Eß can be separated. While
 the process may continue transfinitely we know that any collection of disjoint
 second category sets with the Baire property is countable (eg. [10, p. 256])
 so that by the observation just made in the preceding paragraph the sets
 U' fl (J Ea and Vi fi (J Ea can be separated.

 The set R ' (J Ea has the Baire property and must itself be of second
 category otherwise U' and Vi can be separated. Thus if we take A = (J Ea
 then, by its construction, the set R ' A contains no second category set B
 with the Baire property for which the sets U' fi B and Vi DJ? can be separated.

 We select a set P C A so that the assertion 44(a) holds. Clearly P is
 the required set since the assumption that, for example, the set P ' {x €
 U Pi P; h(x) > e} contains a second category set B with the Baire property
 immediately implies that the sets {x G U fi B) h(x) > e} and {x € V fl
 B ; h(x) > e} are separated by B.

 We now complete the proof of Theorem 6. Recall ([10, p. 400]) that a
 function / has the Baire property if and only if there is a set Z residual in
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 R so that / is continuous relative to Z. Thus a function / that has the
 property of Baire is certainly qq-continuous everywhere off of a set of the
 first category. Suppose then to prove the converse that / is qq-continuous
 except at the points of a set N of first category. In view of Lemma 43 it is
 enough to show that for every a < b the sets

 U - {x : f(x) < a}

 and

 V = {x : f(x) > 6}

 can be separated by a set having the Baire property.
 If not then by Lemma 44 there is a set P residual in an interval I so that

 U and V are full in P in a category sense. Since / is qq-continuous at every
 point x G U ' N each of these points has the property that x ^ c{V) since
 that would require U fi V ^ 0; for the same reason every point x G V ' N
 has the property that x ^ c(U). But this is impossible for then any point
 of category density p of P, which is then also a point of density for both U
 and V since these sets are full in P, can belong to neither U nor V. But P
 is residual in I which provides our contradiction.

 Thus U and V can be separated by a set with the Baire property for all
 a < b and so / has the Baire property as required.

 4.4 A simpler proof of Theorem 6

 The proof just given for Theorem 6 has the advantage of being easy to trans-
 late for the measure-theoretic version (Theorem 8). This preserves a degree
 of symmetry between the measure theory and category results. Unfortu-
 nately efforts to preserve such relations often can become forced, and here is
 no exception. The referee has a supplied a more elegant and revealing proof
 that directly addresses the category situation. We present this here.

 For any function / and any set H let o;(/, i/, x) denote the oscillation of
 the restriction of the function / to the set H taken at the point x. If / is
 qq-continuous at the points of a residual set (or even just a dense set) then
 we shall show that / has the Baire property. It is evidently enough to show
 that for every integer n there is a residual set An such that u>(f, An, x) < 1/n
 for every point x (E An. In this case / is continuous relative to the residual
 set n~i An and so has the Baire property.
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 Let n be fixed. Let Ti denote the set of pairs (/, B) where I is an open
 interval, B C /, B is residual in I and u(f,B,x ) < 1/n for every x G B.
 Then for every interval J there is a pair (/, B) E Ti such that I C J. Indeed
 if x € J is a point of qq-continuity of / then the set

 C = {y: |/(:r) - /(î/)| < 1/(2 n)}

 must be residual in some open subinterval I of J and then (/, I fl C) G T~í-
 This implies that there is a sequence ( Ik,Bk ) € H such that D Im = 0 for
 k ^ m and UfcLi h is everywhere dense in R. Thus the set An = UfcLi Bk is
 residual and u>(f,An,x ) < 1/n holds for every x 6 An. This completes the
 proof.

 Note that this proof shows that if / is qq-continuous at the points of a
 dense set it must have the Baire property.

 4.5 Proof of Theorem 8

 It is evident that a measurable function, since it is almost everywhere ap-
 proximately continuous, must be almost everywhere qa-continuous. Thus it
 is enough to show that a function that is almost everywhere qa-continuous
 is measurable.

 We shall obtain our measurability results as separation properties and for
 that we shall require the lemmas of this section. Recall that sets A and B
 are said to be separated by a set M if A C M and B fl M = 0. The first
 lemma is just the elementary and well known observation that measurability
 may be characterized as a separation property.

 Lemma 45 A function f is measurable if and only if for every a < b the
 sets

 U = {x : f(x) < a}
 and

 V = {x : f(x) > b}

 can be separated by a measurable set.

 PROOF. This is identical to Lemma 43.

 The next lemma and its proof are reproduced from Preiss and Thom-
 son [12]. This gives a useful criterion <?f measurability in light of Lemma 45.
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 Lemma 46 Suppose that the subsets U and V of the reals cannot be sepa-
 rated by a measurable set and that h is a positive function defined on U U V.
 Then there are a positive number e and a nonempty compact subset P of R
 with the following properties.
 (a) The intersection IC'P has positive measure whenever I is an open interval
 meeting P.
 (b) The sets {x G U D P; h(x) > e} and {x G V D P' h(x) > e} are both of
 full outer measure in P.

 PROOF. If for each k = 1,2,... the sets {x G U', h(x) > 1 /k] and {a: G
 V; h(x) > 1 /k} could be separated by measurable sets, say Mk, then U and
 V would be separated by (J^lj PljtL, Mk. Hence there is a positive number
 e such that the sets {x G U; h(x) > e} and {x G V; h(x) > e} cannot be
 separated by a measurable set.

 Next we observe that whenever E', E2, ■ ■ ■ are pairwise disjoint measur-
 able sets such that the sets A D Ei and B fl Ei are separated by measurable
 sets, say Mi , then the sets Af]'J Ei and BC''JEi are separated by 'J(EiC'Mi).
 From this we easily deduce that there is a measurable set A C R such that
 the sets {x G U D A; h(x) > e} and {x G V fi A; h(x) > e} can be sepa-
 rated by a measurable set and that the set R ' A contains no measurable
 set B of positive measure for which the sets {x G U D B] h(x) > e} and
 {x G V fi B; h(x) > e} would be separated by a measurable set.

 Since the set R ' A has positive measure it contains a nonempty compact
 set P for which the assertion 46(a) holds. Clearly P is the required set since
 the assumption that, for example, the set P' {x G U Di3; h(x) > e} contains
 a measurable set B of positive measure immediately implies that the sets
 {xeUnB-, h(x) > e} and {x G V fi B] h(x) > e} are separated by B.

 We may now complete the proof of Theorem 8. Suppose that / is almost
 everywhere qa-continuous. It is enough to show that for every a < b the sets

 U = {x : f(x) < a }

 and

 V = {x : /(x) > b)

 can be separated by a measurable set. If not then by Lemma 46 there is
 a measurable set P of positive measure so that U and V are of full outer
 measure in P. Since / is almost everywhere qa-continuous almost every point
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 X in U has the property that x £ d(V) since that would require UC'V ^ 0; for
 the same reason almost every point x in V has the property that x £ d(U).
 But this is impossible for then any point of density p of P, which is then also
 a point of density for both U and V since these sets are full in P, can belong
 to neither U nor V . But almost every point of P is a point of density which
 provides our contradiction.

 Thus U and V can be separated by a measurable set for all a < b and so
 / is measurable. This completes the proof.

 4.6 Proof of Theorem 9

 It is enough to indicate the measure-theoretic version as the translation to
 the category version is easily carried out. As usual b(E ) denotes the set of
 density points d(E ) in the former version and the second category points
 c(E) in the latter.

 Let E be a subset of LS/ ' L/ and let

 V = {(x,t) : x e E, f(x - t) = f(x + <)}.

 By the assumptions in the theorem at each point a; € E there is a positive
 number 6(x) so that

 0 < 't' < 6(x) (x,t) 6 V.

 We firstly obtain, by standard methods, a partition { En } of E so that

 x e En, 0 < |ť| < 1 ļn =ï ( x,t ) 6 V.

 For the first part of the theorem we assume that E is measurable. We
 may apply the covering Lemma 4 with V' = Vļ = V to the set b(En) for under
 this measurability assumption on the set E almost every point of b(En) is
 contained in E and so, for almost every point x in b(En),

 0 < 't' < 6(x) => (x,t) e V.

 Thus we obtain that for any z 6 b(En) there is a neighborhood U of z so
 that, for any x E U,

 z < x => V : z x
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 and

 X < z =r- V : X z

 by five reflections in V . But each pair ( s,t ) G V has f(s + 1) = f(s - t ) and
 this easily establishes that f(x) = /(z) for any such x 6 U.

 Consequently each point z € b(En ) is a point of constancy of /. Accord-
 ingly b(En) C L/ and so E H b(En) = 0 for each n. But E = U£Li En so that
 b(E) ' IXLi b(En) has measure zero. But we also know that E ' b(E) has
 measure zero and from this it follows that E itself must have measure zero

 as required.
 We turn now to the second part of the theorem and drop the assumption

 that E is measurable. Take E = LS/'L/. Let z be a point in both b(En) and
 in qaCy. We have the conditions to apply the covering Lemma 3; therefore
 there is a positive number S so that for every point 0 < 'z - x' <6 there is
 a set Ax having z as a point of density and for all a € Ax,

 z < a < x V : a x

 and

 z > a > x =>■ V : x a

 by two reflections in V.
 Once again this gives /(a) = /(x) for such points. But z is a point of

 qa-continuity of / so that, since Ax has density 1 at z some sequence of
 points an in Ax can be found with f(an) - ► f(z). From this we conclude
 that f(z) = f(x) for all 'z - x| < 8 so that, again, z is a point of constancy
 of /. Thus qaCy fl b(En ) C L / and so qaCy fi E fi b(En) = 0 for each n.
 As before then we conclude that E D qaC ¡ itself must have measure zero as
 required.

 4.7 Proof of Theorem 18

 As before it is enough to indicate the measure-theoretic version as the trans-
 lation to the category version is easily carried out and again b(E) denotes
 the set of density points in the former version and the second category points
 in the latter. The proof is essentially that of Uher but rephrased to accom-
 modate the covering language promoted here.

 Let E be a subset of SS/ ' C/, let

 V(e) = {(x,ť) : x e E, f(x + t)~ f(x - t) < e},
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 let E+ denote the set of points in E at which / is upper semicontinuous and
 let E~ denote the set of points there at which / is lower semicontinuous.
 By the assumptions in the theorem at each point x G E there is a positive
 number ¿(x) so that V (e) has the properties

 x € E+ , 0 < t < S(x) =$■ (x,t) € y(e)

 and

 x € E~ , 0 > t > -6(x) ( x,t ) G y(e).

 As usual we partition the set E+ using the collection V(l/m) to obtain a
 partition {^m} of that set with the properties that

 x e E¿m, 0 < t < l/n => ( x,t ) € V(l/m).

 For the first part of the theorem if E is measurable then we may apply the
 covering Lemma 4 with Vi = V2 = V(l/m) to the set b(E+n) for, under the
 measurability assumption, almost every point of b(E*n) is contained in E
 and so for almost every point x in 6(£'^n) either

 0 < t < £(:r) =$■ ( x,t ) € V(l/m).

 or

 0 > t > S(x) ( x,t ) € V(l/m).

 Thus we obtain that for any z € b(E+n) there is a neighborhood U of 2 so
 that, for any x € U,

 z < x =>• V : z x

 and

 x < z => V : x z

 by five reflections in V{'¡m). But each pair (s, t) € V has f(s+t) - f(s-t) <
 l/m and this gives f(z)-f(x) < 5/m and f(y)-f(z) < 5/m for all x < z < y
 in U. Consequently

 liminf f(x) > f(z) - 5/m

 and

 lim sup /(y) < f(z ) + 5/m
 s/-*+
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 for all z in (J^Li H^mn)- From this it follows that

 liminf/(x) > f(z)

 and

 lim sup /(y) < f(z)
 y-+z+

 for all

 » e ñ Ü
 m= 1 n=l

 If we apply the same arguments to the set E~ we will have a parallel situation
 on the set

 * € ñ Ü b(E-n).
 m=l n=l

 By a well known theorem of W. H. Young (see [18, p. 53]) this means / is
 continuous at every point of

 OO OO

 A=nu K^n) u KKJ
 m=l n=l

 with at most countably many exceptions.
 Thus nearly every point of this set A is a point of continuity of / and

 therefore A C C/ U N for some countable set N and so E fi A has measure
 zero. But E = U^Li U E^n for each m so that

 OO OO

 KE) ' fi U M^n) U HE'«)
 771=1 71=1

 has measure zero. But we also have that E ' b(E) has measure zero and from
 this it follows that E itself must have measure zero as required.

 We turn now to the second part of the theorem. We drop the assumption
 that E is measurable and take E = SS/ ' C/. Let z be a point in both
 b(E+n) and in qaCy. We have the conditions to apply the covering Lemma 3;
 therefore there is a positive number 6 so that for every point 0 < 'z - xļ <8
 there is a set Ax having z as a point of density and for all a, b 6 Ax,

 z < a < X =» y(l/m) : a-^ x
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 and

 z > 6 > X =>• V(l/m) : x a

 by two reflections in V(l/m).
 Once again this gives f(x) - f(a) < 2/m and f(b) - f(x) < 2/m for

 all such points. But z is a point of qa-continuity of / so that since Ax has
 density 1 at z some sequences of points an > z > bn in Ax can be found with
 f(an) - y f(z) and f{bn) - ► f(z). Thus in almost the same manner as before
 we obtain

 liminf f(x) > f(z)
 X - ►£-

 and

 lim sup /(y) < f(z )
 y->z+

 for all
 oo oo

 2 e n u
 771 = 1 71=1

 Again we argue using the set E~ in the obvious manner, appeal to the the-
 orem of Young again and we can conclude that the set E D qaC ¡ itself must
 have measure zero as required.

 4.8 Proof of Theorem 32

 For the proof we notice that the relation SD f(x) < D f(x) must hold at
 every point; consequently the set of points where SD f(x) ^ D f(x) can be
 written as a countable union

 (J {x : SD/(x) < r < D/(a:)}
 r€Q

 where the union is over all rational numbers r. Therefore the theorem is

 proved by showing that each set of this form has the required property. This
 leads us to the following lemma; once we have proved this we will have
 completed the proof of the theorem.

 Lemma 47 Let f be an arbitrary function and K a real number. Then the
 set

 {x : ŠDf(x) <K}'{x-. Ďf(x) < K}
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 contains no measurable set of positive measure and no second category set
 having the Baire property. If, furthermore , qaCj and qqCj denote the sets of
 points at which f is qa-continuous and qq-continuous respectively then

 qaCj fi {x : W f{x) < K} ' {x : Df{x) < K }

 has measure zero and

 qqCj n {x : W f{x) < K } ' {x : Df(x) < K)

 is first category.

 PROOF. Again we indicate only the measure-theoretic version with b(E )
 denoting the set of density points. Let E be a subset of

 {x : SD /(x) < K) ' {x : Ď f(x) < K}

 and let

 V = {(x, t) : x € E, f(x + t) - f(x - t) < 2 Kt}.

 By the assumptions in the theorem, at each point x G E there is a positive
 number <5(x) so that V has the properties

 x G E, 0 < t < ¿(x) (x, t ) G V.

 As usual we obtain first a partition {¿?n} of the set E with the properties
 that

 x G En, 0 < t < 1/n =ï (x, t) G V.

 For the first part of the theorem if E is measurable then we may apply
 the covering Lemma 4 with Ví = = V to the set b(En) for, under the
 measurability assumption, almost every point of b{En ) is contained in E and
 so for almost every point x in b(En )

 0 < t < 6(x) => ( x,t ) G V.

 Thus we obtain that for any z G b(En) there is a neighborhood U oî z so
 that, for any x G U,

 z < x V : z x

 and

 x < z => V : x z
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 by five reflections in V. But each pair ( s,t ) (E V has f(s + t) - f(s - t) <2 Kt
 and this gives f(z) - f(x ) < K(z - x) and f(y) - f(z) < K(y - z) for all
 X < z < y in U. Consequently

 Ď f(z)<K

 at each such point.
 Thus the set b(En ) is contained in the set {a; : D f(x) < K} while E is

 disjoint from that set. But E = U£Li En so that

 OO

 b(E) ' U b(E„)
 n=l

 has measure zero. But we also have that E ' b(E) has measure zero and from
 this it follows that E itself must have measure zero as required.

 We turn now to the second part of the theorem. We drop the assumption
 that E is measurable and take E as the set

 {x : SD /(x) < K} ' {x : Ü f{x) < K}.

 Let z be a point in both b(En) and in qaC j. We have the conditions to apply
 the covering Lemma 3; therefore there is a positive number 8 so that for
 every point 0 < 'z - x| < 8 there is a set Ax having z as a point of density
 and for all o, b € Ax,

 a < x < z =ï V : a x

 and

 z < b < y =£• V : b^ y

 by two reflections in V.
 Once again this gives f(x) - f(a) < K(x - a) and f(y) - f(b) < K(y - b)

 for such points. But z is a point of qa-continuity of / so that since Ax has
 density 1 at z some sequences of points an > z > bn in Ax can be found with
 f(an ) - ► /(z) and f(bn) - ► f(z). Thus in almost the same manner as before
 we obtain

 ÏÏ f(z)<K

 at each such point so we conclude in the usual fashion that the set E D qaC ¡
 itself must have measure zero as required.
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