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 CONVERGENCE THEOREMS FOR THE VARIATIONAL INTEGRAL

 1. Introduction

 The variational integral is a kind of nonabsolute integrals

 originally defined by R. Henstock [1], It is equivalent to the Riemann

 complete integral [2]. In [3], Yoto Kubota has shown some elementary

 properties of the integral, including the important Cauchy and Harnack

 extensions. In this paper, we shall establish some significant convergence

 theorems for the integral.

 Definition 1.1 Let [a,b] be a compact interval on the real line, and 6(Ç) a

 positive real function defined on [a,b] . The finite set

 P - {Xq, xļf .... xp; iļ

 is said to be a 6- fine division over [a,b] if

 a - x~ < x, < . . . < x -b and
 0 1 . . . p

 G [*i.1,xļ] c (Çi - ¿(^), + fi(ÇL)) for i - 1, 2

 Alternatively, we write

 P - { [u,v] ; £} (1.2)

 where [u,v] denotes a typical sub interval in the division, and

 £ G [u, v] c (É - Í(Ç). ? + ««)). (1-3)

 Definition 1.2 An interval function S is said to be superadditive if, for any

 two adjacent non- overlapping intervals 1^ and I^, we have

 S ( I x U I2) > sd^ + S(I2) (1.4)

 Definition 1.3 Let f : [a,b]

 to be variationally integrable on [a,b] if there is a function F such that,

 for every e > 0, there is a £(£) : [a,b]

 interval function S such that

 0 - S ( [ a , a] ) < S( [a,b] ) < c (1.5)

 and that whenever £-£(£) <u<£ <v<£ +£(£) we have
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 |F(u,v) - f(0(v - u)| < S(u.v) (1.6)

 where F(u,v) - F(v) - F(u) . Here F is called the primitive of f. For

 convenience, when f is variationally integrable on [a,b] we write f G (V) , and

 (V) p5 f(x)dx - F(b) - F(a) (1.7)
 a

 2. A basic convergence theorem and its simple corollaries

 We state and prove the following basic convergence theorem.

 Theorem 2.1 Let f^ e (V) with primitives F^, n - 1, 2, . .., to
 f(x) everywhere in [a,b] as n - > ®, and F^(x) converge pointwise to a limit
 function F(x) . Then in order that f e (V) with primitive F, and

 lim (V) f0 fn(x)dx - (V)!*0 f(x)dx (2.1)
 n->® a a

 it is necessary and sufficient that, for every c > 0, there exists M(£) taking

 integer values such that, for infinitely many m(£) > M(£), there is a ¿m(£) :
 [a,b] - > (0, ®) and a superadditive interval function S on [a,b] such that

 0 - S( [a, a] ) S S( [a,b] ) < e

 and whenever £ - 6 (£)<u^£^v<£ + $ (i)we have
 m m

 I Fm(0 (u,v) * F<u'v>l * S([u,v]) (2.2)
 where F (u, v) - F (v) - F (u) and F(u,v) - F(v) - F(u) .

 m mm

 Proof. As n - > fn(x) tends to f(x) everywhere in [a,b] . Thus, given
 e > 0, there is a M(x) taking integer values such that

 |fn(x) - f(x)| < c for all n > M(x) . (2.3)

 If f G (V) with primitive F, then, for the above c > 0, there is a

 *0(O: [a»b] - > (0» °°) and a superadditive interval function Sq such that

 0 - SQ( [a, a] ) < S0([a,b]) < €

 and that whenever £ - <u<£íSv<£ + £q(0 we have

 |F(u,v) -f({)(v-u)| SSQ([u,v]). (2.4)
 Similarly, for each n, there is a ¿n(£) > 0* an(* a superadditive

 interval function S such that
 n

 0 - Sn([a,a]) < Sn([a,b]) < e2"n
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 and that whenever Ą - ¿n<0 <u<£<v<£ + Sn(0 we have

 |Fn(u.v) - fn<0(v - u)l * Sn(u,v) (2.5)

 Now put 6m(0 - min{í0(í), «*(£)> and
 oo

 s([u,v]) - Sq( [u,v] ) + c(v - u) + £ Sn([u,v])
 n-1

 then S is a superadditive interval function, and

 0 - S( [a, a] ) < S( [a,b] ) < c(2 + b - a).

 Hence it follows that whenever £ - ¿m(0 <u<£<v<f+ ¿m(£)
 we have

 |F(u,v) - Fm(i)(u,v)|
 <; ļ F(u,v) - f(0(v - u)| + |f(0(v - u) - fm(i)(e)(v - u) I
 + lFm(0(U'V)-fm(0(0(V-U)|
 * S( [u,v] ) (2.6)

 that is, the conditions are necessary.

 Similarly, we prove that the conditions are sufficient.

 Theorem 2.2 (Vitali 's convergence theorem) If the following conditions are
 satisfied:

 (i) f (x) tends to f(x) as n - > ® almost everywhere in [a,b]

 where f^ e (V) , n - 1 , 2 , ... ;

 (ii) the primitives of f^, n-1, 2, ..., are uniformly absolutely
 continuous uniformly in n, i.e., UAC on [a,b] ,

 then F^(x) converges pointwise to a limit function F(x) an n - > and for
 every e > 0, there is an integer N and there is a superadditive interval

 function S such that, for infinitely many n > N, and every [u,v] c [a,b] , we
 have

 0 - S( [a, a] ) < S( [a,b] ) < c

 and

 |Fn(u,v) - F(u,v) I < S( [u,v] ) (2.7)
 where F(u,v) - F(v) - F(u) .

 Proof. For simplicity, we may assume that ^n(x) tends to f(x) as n - » ®
 everywhere in [a,b] . First, it is well-known that [4;p.37], for every c > 0,

 there is an integer N, for every partial division of [a,b] given by

 a < a1 < bT < a2 < b2 ... < a^ < bk < b
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 whenever n, m > N, we have

 k

 X lF„<V v - W vi < e<4 + b - a> <2-8>

 Then lim F^(u,v) - F(u,v) exists for any subinterval [u,v] of
 [a,b] . It follows that we can find a subsequence °f su°h that

 ¿'Vi)'"!' "l' " F(,i' "l' I < <2"J (2'9)
 for any partial division as given above and for. j - 1, 2, .... Then

 put

 Sj([u,v]) - Sup XlFn(j)(vi',v') _ F(u',v')| (2.10)
 where the supremum is over all divisions of [u,v] , and put

 CO

 S( [u, v] ) - I S . ( [u, v] ) . (2.11)
 j-1 J

 Then S is a superadditive interval function and whenever n(j) £ N, for

 every [u,v] c [a,b] , we have

 0 - S( [a, a] ) < S( [u, v] ) < e

 and

 lFn(j)(u»v) - F(u,v)| £ S( [u,v] ) < €.
 Hence the theorem is proved.

 Corollary 2 . 3 Under the conditions of Theorem 2.2, we have f € (V) , and

 lim (V) J0 fn(x)dx - (V) J* f(x)dx (2.12)
 n->® a a

 Corollary 2.4 Theorem 2.2 holds true with (2.7) replaced by

 co(Fn - F; [u,v]) < S( [u,v] ) (2.13)

 where o> denotes the oscillation of F - F over [u, i » v] j . n i » j

 Corollary 2.5 (Monotone convergence theorem) If the following conditions are

 satisfied:

 (i) tenc*s to f(x) almost everywhere in [a,b] as n - > « where

 fn e (V), n - 1, 2,
 (ii) the primitive F (x) of f (x) converge to a limit function F(x)

 n n

 for all x;
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 (iii) fļ(x) < f2(x) < . .., for X belonging to [a,b] ,
 then f G (V) , and

 lim (V) J0 J fn(x)dx - (V) J P f(x)dx (2.14) n->co J a J a

 Corollary 2.6 (Dominated convergence theorem) If the following conditions
 are satisfied:

 (i) f (x) tends to f(x) almost everywhere in [a,b] as n - > ® where f e (V) ,
 n n

 n - 1, 2, ... ;

 (ii) g(x) < f (x) < h(x) almost everywhere in [a,b] , n - 1, 2,

 where g, h e (V), then f e (V), and

 lim (V) Jb fn(x)dx - (V) Jb f (x)dx (2.16)
 n->® a a

 3. The controlled convergence theorem

 In this section, we shall establish a more general convergence

 theorem for the variational integral, namely, the controlled convergence

 theorem [4] .

 We state without proof a theorem [3] which we need later.

 Theorem 3.1 If a function F is absolutely continuous on [a,b] , and if its

 derivative F' (x) - f(x) almost everywhere in [a,b] , then f e (V).

 Lemma 3.2 If the following conditions are satisfied:

 (i) ten(*s to f(x) almost everywhere in [a,b] as n - > ® where

 fn e (V), n - 1, 2, ... ;

 (ii) the primitive F of f converges to a continuous function F on [a,b] ;
 n n

 (iii) the primitive F of f is AC.(X) * uniformly in n, i.e. UAC * (X) , where X n n * *

 is a closed subset of [a,b] ,

 then, for every e > 0, there are at most finitely many points x^ G X for
 i - 1,2

 such that, for any 6-fine partial division P - l[u,v];£) with

 £ G X - {x^ I i - 1 , 2 , . . . , K} we have

 £|Fn(u,v) - F(u,v)| < c for infinitely many n £ N. (3.1)
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 Proof By conditions (ii) and (iii), F is AC * . (X) . Define G (a) - F (a),
 G (b) - F (b), G (x) - F (x) when x e X and linearly, on the complement of X.
 n n n n

 We shall prove that G^ is uniformly absolutely continuous on [a,b] .

 Suppose a, b € X and (a,b) - X - (J? - (c . , d.). Since F is UAC * (X) , J"1 J J n *
 then, for every e > 0, there is a 17 > 0, for every sequence of

 non -over lapping intervals {[a^,b^]} whenever a^, b. 6 X we
 have

 |u>(Fn; [a^ bj) < e (3.2)
 Take an integer K such that

 I (d, - c ) < n- (3.3)
 j>K+l J J

 •j K»

 Since F (x) converges to F(x) an n - > ®f then there exists an integer N such

 that, when x - c^ or d^ , j - 1, 2, . . . , K, for every n > N , we have

 |Fn(x) - F(x) I < '
 and consequently

 IF^Cj.dj) - FiCj.dj) I < 1
 Put

 # I F(c . , d. ) I + 1
 w # - max {

 dj ■ CJ

 and fļ - min{»;, c/w*} .

 Then, for every sequence of non -over lapping intervals {[a^, b^]}, whenever

 £ (b - a.) < rj , and n > N , we have
 i 1

 I „(Cn; Iaļ.bļ] ) s I .(0n¡ Ij) ♦ I I2) ♦ Z I3)
 s 3 < (3.5)

 where each [a^,b^] can be decomposed into at most three sub intervals I^,
 and 1^ such that I^, and 1^ denote respectively the intervals for which (i)
 the endpoints of the intervals belong to X, (ii) the intervals are contained

 in [Cj, d j ] where j < K, and (iii) the intervals are contained in [c^ , d j ]
 where j > K, giving each term in inequality (3.5) less than c.
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 In fact for the second term, assuming I ^ C [c^, d j ] for some j we have

 |F (c d )|

 W(Gn; I2) - |Gn(i2)| - ^ j cj |I2I
 |F(c d)|+l

 *

 j j
 ★

 Since is absolutely continuous on [a,b] for n - 1, 2, N , then we

 can modify the suitably such that, for every n, the inequality (3.5) still

 holds. Then is uniformly absolutely continuous on [a,b] , and there exists

 g^(x) such that G^(x) ■ a^most everywhere in [a,b] . For n ł 1, we can
 prove that gn(*) is convergent almost everywhere in [a,b] . Since Gn(x) and
 Fn(x) are differentiable almost everywhere in [a,b] , we have
 G'(x) - F' (x) - f (x) almost everywhere in X. Then f (x) - g (x) almost
 n n n n n

 everywhere in X.

 Since

 gn(x) - Fn(Cj , d j > / C d j - Cj) for x e (cj»dj)

 then gn(x) converges when F^(x) converges. It is easy to see that G^(x)
 converges to a limit function G(x) as n - > ®. Then, by Theorem 2.2, for every

 e > 0, there exists an integer N, and there is a superadditive interval

 function S such that, for infinitely many n ł N and every [u,v] c [a,b] , we
 have

 0 - S( [a, a] ) < S( [a,b] ) < e

 and

 lGn(U,v) ~ G(u,v)| < S ( [u, v] ) . (3.7)

 Now define 6(£) on X - { c j , dj | j - 1, 2, ..., K} such that
 0<6(£)<d - m*-n IK " xl '» x ■ cj or dj f°r J ™ 1» 2, . . . , K} .
 Then, for any 6-fine partial division P - ( [u,v] ; £} with £ G X -

 {c , dj|j - 1, 2

 Z|Fn(u,v) - F(u,v) I

 * XlFn(u.O - F(u,í)| + I|Fn(í,v) - F(£,v)| (3.8)

 For the first term on the right side of inequality (3.8), no change is

 needed to change when u belongs to X. When u belongs to ( c j » dj ) , j > K,
 then
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 |Fn(u,0 - F(u,OI

 < |Fn(u,d ) - F(u,dj ) I + |Fn(djtO - F(dyO'

 <, w(Fn; [cjt dj ] ) + »(F;[Cj, d j ] ) + |Gn(djtí) - G(djfOI

 and similarly for the second term on the right side of inequality (3.8). Then
 we obtain

 X|Fn(u,v) - F(u,v) I < 5«. (3.9)

 Theorem 3.3 (Controlled convergence theorem) If the following conditions are
 satisfied:

 (i) tenc*s to f(x) alniost everywhere in [a,b] as n - > ® where

 fn6(V),n-l, 2,

 (ii) the primitives of f^ converge to a continuous function F;

 (iii) the primitives F^ of f^ are UACG^, i.e., ACG^ uniformly in n,
 then f E (V) , and

 rb pb
 lim (V) J f^(x)dx - (V) J f(x)dx (3.10)
 n - » ® a a

 CO

 Proof. Let [a,b] - [Ji i Xj such that F_ E UAC^ÍX,) for each i. By Lemma i™l i i n * i.

 3.2, for each X. and every € > 0, there is an integer N. , and a positive
 i 1

 function S (£) defined on where G^ is a finite subset of X^, for any
 6^-fine partial division P - { [u,v] ; with £ e X^ - G^, we have

 I|Fn(u,v) - F(u, v) I < «21, n > N.

 Put Sj^ds.t]) - Sup X|Fn(u,v) - F(u,v) I (3.11)

 where £ is the sum over a 6*"-fine partial division P - {[u,v];£} of [s,t]

 with £ E (X^ - G^) n [s,t], and the supremum is over all the above divisions
 of [s,t]. Then is a superadditive interval function, and when n £ N^, we
 have 0 - S^([a,a]) < S^([a,b]) < c2 Since G - *s a denumerable set,
 put G - '*^1^ ~ 1» 2, ...}. Since the F^(x) and F(x) are continuous then
 define ^Tļ(xļc) at each point x^ such that

 "<Fn: • Sn(V' *k + 'A™ < <2'k""1
 "<F; '•* ■ W' W» < •2"k'n"1
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 'k ★

 whenever - ^(x^) <uSxfc^v<xk + ^(x^) • Put

 S0([u,v]) - I í2"k (3.12)
 where £ sums over in [u, v] . Then is an additive interval function, and

 0 - Sq( [a,a] ) 3 Sq( [a,b] ) < i. Put
 GO

 S( [s , t] ) - I Sļ( [s,t] ) + SQ( [s , t] ) (3.13)

 for [s,t] c [a,b], then S is a superadditive interval function, and

 n > we have 0 - S([a,a]) < S([a,b]) < 2c. Put

 Y1 " Xl' Yi"Xl - ^ for i - 2, 3, ...

 Define M(£) - when £ e Y^, and define ¿m(£) for infinitely many m(£) £ M(£)
 as follows: ¿m(0 - £*(£) when £ € - G, and ¿m(£) ■ w^en £ " € G-
 Then

 lFm(^)(u»v) - F(u.v) I £ S ( [u, v] ) (3.14)

 whenever £ - ¿m(£) <u^£^v<£+ ¿m(£) •

 By the basic convergence theorem (Theorem 2.1), then f € (V), and

 the inequality (3.10) holds.

 I am indebted to my supervisors Professor Lee Peng Yee and

 Professor Ding Chuan Song for sharing with me their knowledge and ideas.

 Their advice was invaluable in obtaining the results in this paper.
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