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 P0R0US SETS AND ADDI TI VITY OF LEBESGUE MEASURE

 The aim of this paper is to compare some set-theoretic

 cardinal character i st i es of the ideal of o- porous sets with those

 similar cardinals associated with the notions of measure and

 category which have been extensively studied by A. W. Miller,

 J. Ihoda, S. Shelah, and others. We will prove that every set of

 reals of cardinality less than the additivity of the ideal of

 Lebesgue measure zero sets is cr-porous7 the real line can be

 covered by a family of closed porous sets of cardinality of any

 cofinal family of the ideal of Lebesgue measure zero sets and it

 is consistent that the minimal cardinality of a set which is not

 ff-porous is greater than the minimal cardinality of an unbounded

 family of functions from . In fact, we will prove all these

 for the ideal of cr-strongl y symmetrically porous sets.

 If A is a subset of the real line R , I = (a,b) is

 an open interval then we denote by A(A,I) the length of the

 largest open subinterval of I which does not intersect A and

 A* (A, I) is the largest 6 > 0 such that

 (a,a+ď) u <b-cf,b) is disjoint with A . The porosity and the

 symmetric porosity of A at c € R is the number

 p(A,c) = lim sup ^ A< A » (c-ßic+e) ) /e and e-K.>+ ^
 *

 s(A,c) = lim sup A (A, (c-e,c+e))/e , respectively.

 We say that A is porous (resp. strongly porous, resp. strongly

 symmetrically porous) if p(A,a) > 0 (resp. p(A,a) = 1 ,
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 resp. s(A,a) = 1 ) for every a € A . We say that A is

 or-porous (resp. cr-strongly porous, resp. cr-strongly symmetrically

 porous) if it is a countable union of porous (resp. strongly

 porous, resp. strongly symmetr i cal 1 y porous) sets. See C113.

 The author would like to thank professor L. Bukovský -for

 directing his attention to porous sets and for valuable

 discussions on the subject matter of this work.

 Let us recall some notation and cardinal character i sti cs.

 By co we denote the set of natural numbers, i.e.

 to = CO, 1, 2, Each natural number is a von Neuman ordinal,

 i.e. n = <0, 1, ..., n-13 , 0=0 and n < m iff n € m (and

 n < m iff n •= m) ■ Let x , y be sets. Then '%y is the set of

 all functions from x into y : 0'(x) is the power set of x ,

 i.e. (P(x) is the set of all subsets of x ; Cx3ao is the set

 of all finite subsets of x ? aox = U nx ; lxi denotes the
 ne co

 cardinality of x and observe that if s e nx then I si = n .

 But if I is an interval of reals then III denotes the length

 of I .

 p denote the minimal cardinality of a family F •= (Meo) such

 that I) Fq is infinite for every finite F^ •= F and for every
 infinite x = co there is y e F such that x - y is infinite

 (see C2D). Since uniform ultrafilter is a such family, p < 210 .

 Let (P,<) be a partially ordered set. A set SP is

 said to be cofinal in P if for every p c P there is q e P0

 such that p < q ; P^ is unbounded if no element of P dominates

 all elements of P^ .

 b(P,<) =s mini I Pq I; P i s an unbounded subset of P > ,

 d(P,£) ss mini I Pq I; P^ is a cofinal subset of P > .
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 Let 'J •= tu(Cio3ao) , i.e. 7 is a family of functions from to

 into the family of finite subsets of 10 . For f,g c 7 we put

 f < g iff g eventually dominates f , i.e. V^n f (n) £ g(n) .

 We use symbols V°"n , BKh as abbreviations for (3m) <Vn>m) ,

 (Vm) (3n>m) . We will simply write b(£F) , d (J) instead of

 b CJ, <) , d(î,<) . Particulary we denote b = b(Wto) and

 d = d(tUcu) . This is well defined because co S Li oD<W .

 Let Cl '= (?'(£) be an ideal. Let us define:

 add CD = mineral 5 3Q £ CI and UCl0 * CI > - b(D,S> ,

 cov(D) = mini I 3Q I s S Cl and UCl0 = R } .
 non (CD = mini I Al; A £ R and A ť 3 3- ,

 cof (CI) = min< I Cl I* CIQ Ç CI and VA € D 3B € 30 A S B > =
 = d ( Cl 7 •= ) .

 In the following L , K , F and S denote the ideal of

 Lebesgue measure zero sets, the ideal of sets of first category,

 the ideal of cr-strongly porous sets, and the ideal of cr-strongly

 symmetrically porous sets respect i vel y . Some facts about the

 ideals L and K are summarized (see C33) in the following

 di agram:

 cov(L)

 b

 I I

 The cardinals increase (not necessarily strictly) from south-west

 to north-east- The diagram is called Cichon's diagram in Europe

 and Kunen-Miller chart in the rest of the world.
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 Every porous set has measure zero and is nowhere dense. Both

 the ideals P and $ are included in the ideal F* of or-porous

 sets- F. Galvin and A. W. Miller C53 noticed that p is the

 minimal cardinality of a subset of the real line which is not

 a V-set. Let us recall the definition of V-set. A family (L

 is an w-cover of a set A if for every finite A^ S A there is

 V e Oj such that A^ S V . A set A isa V-set if for every open
 ur-cover (L of A there is a sequence < V ; n e u> > e co<£ such

 n

 that X s U fi .. V .1. Rec ław Cl OD proved that if A •= R
 new m,-n m

 is a V-set then A is cr- porous. Rec law 's proof can be slightly

 improved to show that every V- set on R can be covered by

 countably many closed strongly symmetr i cal 1 y porous sets. The

 natural question is how large can non(P) and non(S) be. Of

 course p S non (S) :£ non(P) £ mi ní non (L) ,non (K) > . It is well

 known that p < b (see e.g. C23) and even p £ add (K) since

 p S cov(K) (see e.g. C43) and add (K) « minicov (K) ,b3 (see C93

 or C3D). The inequality b < non(P) is not provable in ZFC since

 in the generic extension by adding to2 Laver reals (see C6D),
 b » and non(L) = . Neither the inequality non(S) :S b is

 provable in ZFC (Theorem 7). On the other hand, add(L) < b holds

 (see C83) and add(L) is another lower estimate of non(S)

 (Theorem 3) .

 The inequality p < non(S) is possible because the inequa-

 lity p < add(L) is consistent. But we cannot decide whether any

 of the cases non(S) < non(P) and p < non(P) < minCnon(K),

 non(L)} is possible and what is true for add (K) and d . Can

 the additivity of these ideals be greater then co^ ? L. Zajíček
 C123 proved that P * P+ and D. Preiss asks (oral comunication)
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 whether the ideals P and P+ can be distinguished by some

 cardinal characteristic. The question is still open.

 We will need some combinatorial characterizations of add (L )

 and cof(L) . Let g € Cüco be arbitrary. Let us denote
 < " til

 = C h ; h s co Leo D " and Vn lh(n)l < g(n) > ,
 9

 ■J = -C f € tUco ; lim f ( n ) / g ( n ) = 0 > »
 g n->cc'

 S = C h ; h s co Cco3 xŁ0 and lim lh(n) l/g(n) = 0 > .
 g n-*co

 The next theorem is well known; its first part is completely

 proved in CI 3 and the second part can be proved by using the same

 ideas. In fact, both can be done uniformly at the same time.

 For our purpose the modification of this theorem formulated in

 Theorem 2 will be more useful.

 Theorem 1. Let g e COco be monotone unbounded. Then

 add(L) = mini 1 71 ; 'J" •= COco and 3 ye 'J B^n y(n) £ >;(n)i and
 g

 cof (L) = minilJCl : £ £ and Vy£C°co 3xe# V^n y(n) € x(n)3- .
 9

 A function g € Ł°co is said to be finite-to-one if the

 inverse image of any finite set is finite or, equi val enti y , if

 there is a permutation ur of co such that g(jr(.)> is monotone

 unbounded .

 Theorem 2. Let g e ŁOco be finite-to-one. Then

 add iL) =s b (if ) and cof (L) = d <£P ) .
 9 g

 Notice that it is enough to prove this theorem in the case g

 is monotone unbounded. In the proof we will need the next lemma.

 Lemma 2.1. Let g e l°co be mpnotone unbounded. Then

 b = bCJ ) and d = d ('J ) .
 g 9
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 Proof- Let ÌÌ) be the -family of all unbounded functions from

 lo into w . 1ÏI is cofinal in - We will define a family

 J = J cofinal in 3" and mappings a : 7 ^ ID and ß : ITI 7
 g 9

 such that :T = Č (Iii) and

 (a) if f € 'J then č(a(f))(n) > f (n) for all but finitely

 many new,

 (b) if h e '111 then ct(Č(h))(n) > h(n) for all n •

 Let us define

 a(f)(n) = minCk ; Vm>k f (m) < g(m)/(n+l) > ,

 č (h ) (n > = mi n Ck ; (m+1 ) k > g (n ) > if max . - h ( i ) < n <
 i ^=m

 i: max L« h(i) and £(h)(n) = 0 otherwise . il-m+1 L«

 We will verify conditions (a) , (b).

 (a) Let f e 7 and let n € to . Then either £ (a <f ) ) <n ) = 0

 and then n < a(f ) (0) or there is m e co such that

 ma;; a(f)(i) ; n < ma>: . ^ « a(f)(i) . In the latter case by the ižďt) iism+1 . ^ «

 defintion of ß , Č(ct(f))(n) >g(n)/(m+l> and by the definition

 of a ? g(n)/(m+l) > f(n) since a(f)(m) < n •

 (b) Denote m = max .. , h (i ) . Then ß (h) (m) > g (m) / (n + 1 ) .
 i^=n .. + , l

 The def i ni 1 1 on of et i mpl i es a, ( ß (h ) ) (n ) > m 2: h (n ) .

 The mappings a, ß are monotone (with respect to eventual

 dominance) and if f e 'J and h e ťíll then using (a) and (b) we

 have:

 a(f) < h implies f < ß(h) , and

 ß(h) < -f implies h S alf) ,

 To finish the proof it is sufficient to observe that the

 following lemma holds:

 Lemma 2.2 (C33). Let (P,< ) f (Q,SJ be partially ordered
 r Li
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 sets and let a : P Q and P : Q -+ P be mappings such that

 ct(p) q implies p <p ß(q) for all p € P , q € Q . Then

 b<P,<p> < b(Q,<Q> and d<Q,<Q) < d(P,<p) .

 Proof of Theorem 2- According to Theorem 1, since every

 element of ^uj we can identify with an element of y , we have
 g

 b(tf ) < add (L ) and cof(L) < d(¿P > .
 g g

 Let irr be a fixed one-to-one mapping from CcoDsU) into co .

 Let us define several mappings:

 £ : -+ cuco by P(f)(n) = max C m ; Vk>n fdcJm^ < g(k) Î ,
 g

 6 s ¿P -*■ ÜJüj by rf ( h ) ( n ) = jt ( h ( n ) ) ,
 g

 and for every f € J let er : # r v -*• ¿P be defined by
 g f p ( # f r > v g

 e^(x)(n) = U-C jt * ( k ) ; k e x (n> and I jt *<k)l < f (n) > .
 If f e 'J' then P(f) is monotone unbounded and f-ß(f) e !J
 g 9

 Thus the mappings e , are well defined. Moreover, if f € J and
 f , g

 " ( f ) then

 (*) if h and V°"n ď(h)(n) e x(n) then h < e^(x) .
 We will show that add(L) < b(¿P ) . Let ¿P S & and

 g 9

 Itfl < add(L) . Since add(L) < b , by Lemma 2. 1 , there is

 f e GF such that ¿P •= £. and, by Theorem 1, there is x e v
 g f p (f ) v

 such that for every h € ¿P, V^'n ó (h) (n) e x(n) .

 Then, by (*) , h < c^(x) holds for every h c ¿P . Therefore
 add (L) = b (tf ) .

 g

 Let :J •= 'J be a family of cardinality d such that every
 g

 element of 'J is dominated by an element of 'J . By Lemma 2.1
 g

 such family exists. Using Theorem 1, assign to each f € 7

 a X ^ of cardinality cof(L) such that

 V y e Wüa 3 x e X^ VCc'n y ( n ) € x ( n ) .
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 Then the family S = C ©-(x) ; f € ¡7 and x e Xx > '= ¿P has f T g

 cardinality cof(L) since d < cof (L) (see ÍQ1 or C33), and

 by (*) , every element of S is dominated by a member of S .
 9

 Therefore d ( 'J ) < cof(L) and so d CJ ) = cof(L).
 9 9

 Theorem 3. add(L) < non(S) and cov(S) < cof (L ) .

 Proof. We will show that the ideal S contains some ideal

 Srn such that add(L) < add(Sm_) and cof (Sm. ) < cof(L) and
 P v

 Sm contains all singletons. Instead of Fš we can and we will
 v

 confine ourselves to the closed interval <0,1 > .

 Let us denotes

 W = C P e w(.0 ; & is finite-to-one and Vn £«(n) > 1 > .

 If P e W then T. = C s c xC°iu : V n € dom(s) s(n) e £'(n)> and
 f-'

 X = ix € %j ; Vn x(n) e £'(n)> . Let a mapping from X^
 onto <0,1 > defined by

 _

 % _ Zi <c.

 new

 i.e. the sequence x is the Cantor expansion of the real <ť'^(x).
 n fi

 If s e T r> co then I = C <ť'„ (x) ; x € X. and s •= x> is
 *-• S

 a closed subinterval of <0,1> of length 1 /(#:• (0)*« ( 1 )...£• (n-1 ) ) .

 (Let us recall that 0 is the empty sequence and if s is a

 sequence of length n with values s(0) , s(l) , s(n-l) then

 s' 'k denotes the sequence of length n + 1 which extends s and

 s(n) = k ). Thus I^ = <0,1 > and if Isl = n then 1^' is
 divided into fi(n) intervals k € £*(n) with disjoint

 interiors and of the same length, i.e. 1* = UC I*,-.. 5 k e fi in) y
 s sk

 and v (x) is the unique element of fK l'"' k ; new}. v x r k n
 Í.U

 For h s -» ūcoD * let us denote
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 h*(n) = sup{lh(s)i 5 s e T n nco } . Notice that h*(n) < co .

 Let H, = Í h : T -+ CcoD^0 ; lim h* (n ) /1 og {fr (n ) ) = 0 ï. fr fr n-*co

 For fr e W , he H and m € co put

 X ™ . = ix e X. ; Vn >m x ( n ) e h ( x h n ) > ,
 fr , h . fr

 A™ = (X™ . ) and A. = U A™ . -
 fr , h fr fr , h . fj , h mew /ū,h .

 A set A •£ <0, 1> is said to be ¿»-small if A •= A. . for
 f-* y n

 some h e H. - Let Sm, denote the family of all ¿»-small sets. v fr

 Sm, is an ideal since the set H is upward directed (in the
 fr fr

 ordering f < h iff f (s) £ h(s) for all but finitely many

 s € T ) and f < h implies A, , £ A, . for f , h e H, . fr fr , f , fr , h . , fr

 Since for every x e X, there is an he H, with x(n) e h(xřn)
 fr fr

 for all n, Sm. contains all singletons.
 *-»

 Lemma 3.1. For each fr e M , add(L) < add(Sm^) and
 cof <Sm_ ) < cof (L) .

 v

 Proof. For every A e Sm, fix some a(A) e H, such that
 fr fr

 A £ AÄ . Then a(A) :£ h implies ASA,.. By Lemma 2.2,
 fr y a ( A ) fr f h

 b(H^) < add(Sm^) and cof (Sm^) < d(H^) . Since the function

 g1 (s) = "the greatest integer lower than log(£(lsl>) " for s c T. ^ i ^

 is finite-to-one, H_ = ih : T. «■* lim, ! , I h(s)/g,(s) 1 = 03- fr v ! s , I -KO 1

 and IT, I = co t H, correspondes to some ¿P with a g finite-
 fr fr g

 -to-one and b(h.) = b (¿P ) and d(H. ) = d(2f ) and so Theorem 2
 fr g *-» g

 concludes the proof.

 Lemma 3.2. For every fr € W , Sm^ S S .

 Proof. Let h e be arbitrary. We will prove that A^ h

 is <r- strongly symmetrically porous. Since A™ ^ *or
 some g e , it is enough to show that A = A^ ^ is strongly
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 symmetrically porous. Let a = be an arbitrary element

 of A . We will show that s(A,a) = 1 .

 *

 Let m e co be arbitrary. Let us denote k(i) = 4h (i) +1 .

 There is new such that ll^^l < 1/m and
 <2m+l)k*n* < #(n) since lim h* (n) /1 og (£» (n) ) = 0 .

 n-iKo

 Denote k = k(n) . Let v = -C-m , -m+1 , ... , m-1 , m 3 .

 Then lvi = 2m + 1 . Let i ; te łv > be a family of

 closed intervals such that if r = . . ^0 ( k times) then

 J = lP xr(n+l) k , , i s ? J* t = U( J.A. ; j € v > when t c *v for i<k r xr(n+l) k , , i s t tj

 and the intervals ^'-'j * J € v have disjoint interiors, the

 same length and is on left of Jť"'(j + 1) " ^1,15
 IJ-I = IJ I (2m + l)k < IJ l£(n) = I 1^"' . I . Therefore, there is 0 r r xrn .

 s € T, , Isl = n such that I*' , I^k are neighboring P s , xrn

 intervals and they cover n <0, 1> jointly. Each interval

 J S <0, 1> with Iti = k i s an interval I*' for some s ,
 Ł S

 Isl = n + 1 . If s c T^ , Isl = n then A intersects at most
 2h*(n) intervals among I*',-,. , i € &(n) (neighboring intervals

 s 1

 have non-empty intersection) . Therefore, A intersects at most

 £•

 4h (n) < k intervals among Jt , 1 1 I = k . Let us denote
 J. = J L. for i < k . Then J ç J . have the same centre,
 i r ri i + 1 i .

 I J . I = (2m + 1 ) I J l+l I and f or some i < k , A n ( J . - J l+l . , , > = 0. 1 . l+l , i . l+l . , ,

 Fix such an i and put e = mlJ . . - I . Then e < IJ„J < 1/m and l+l . . - . 0

 A n (a-e,a+8) £ A n ~Ji+i " That is why
 *
 A (A, (a-e ,a+c) ) > e - = <l-l/m)e . Since m was

 arbitrary , s (A, a) = 1 . This concludes the proofs of the

 lemma and Theorem 3.

 Corollary 4. Every subset of the real line of cardinality
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 less than add(L) can be covered by countably many closed

 strongly symmetrically porous sets and the real line can be

 covered by cof (L) closed strongly symmetr i cal 1 y porous sets .

 Proof. The sets A™ ^ are closed strongly symmetrically
 porous.

 Both p and add(L) are lower estimates of non(S), but

 neither of them is better than another since the next two

 cons i st ene i es hol d s

 Con (add (L) < p) . Start with CH (in the ground model) and

 iterate forcing to0 times with or-centered partial orders of

 size to^ . In the generic extension, p = u>2 and, because no

 random real is added , cov(L) = to^ .
 t0l

 Con (p < add (L) ) . Start with wļ < 2W <2 and 2W is
 a regular cardinal number. Let X = Cf e ^tu ; Z 1/f (n) < 1>

 ñeco

 be ordered by f < g iff Vn f (n) < g(n) ( f is stronger

 than g ). X is a c.c.c. notion of forcing (see 33C of C43). In

 the generic extension by X , all the convergent series of the

 ground model are majorized by the generic series. Iterati vely,

 with finite support , add 2C0 generic series . In this extension
 to

 : 2lü < 2 remains true and so p =•■ to^ (see C2D), and any
 family of less than 2W convergent series is majorized by a

 to
 single convergent series and so add (L) = 2 (see C 1 3 ) .

 It is consistent that cof (L) < 2e0 (see C9D). Thus it is

 cosistent that cov(S) < 2e"0 .

 A ■= <0t1> is said to be small if it is £»-smal 1 for some

 e R . We have already shown that every small set is <y-strongly
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 symmetrically porous. The next theorem strengthens the Reel aw 's

 result CIO].

 Theorem 5. If A 'S <0,1 > is a V-set then A is small.

 Proof. Let A S <0,1 > be a V-set. We will -find & e R and

 h e H, such that ASA,..
 C' 2 O , h
 Let cr(n> = 2n . Let us fix a sequence < y_ ; n e w >

 n

 of distinct members of A . For every new and B e CA3n let

 g(B) = { s e T ; Isl = n and B n 9* 0 > . ūf course
 cr s

 lg(B) i ¿ 2n since each x c A can be in two neighboring 1^ .

 Let V (B ) = Int U( ij s se g(B) > ; BS V(B) .
 Let a = -C V(B) - í y > ; B e CA3n > and let & = U d
 n n neu» n

 & is an open w-cover of A . Therefore there is a sequence

 < V. ; k e w > e such that A S U fi. .. V. . Since
 K meto k>m .. k

 y„ e A , only finitely many sets V, may belong to Ū, . Thus
 n k n

 we can assume that from every family (L at most one element
 n

 was chosen. Let n^ , k e w be an increasing sequence of natural

 numbers such that n, 0 = 0 and V. e 0, and V. s V(B, ) for 0 k n^ k k
 some B^ with = *or k > 0 . Let TT^ be the family of
 all functions s with domain { i e u> ? n. < i < n. , > such K K *▼" , 1

 that s(i) c <j(i) for ail i , i.e. TT^ = Xícr(i); < i <

 Put P ( k ) = 1 17 ^ I . For s e TTk 1 et
 jī (s) « Zi s (n) or (n+1 )<r(n+2)...ör(n. . - -1 ) ; n, < n < nlx1 >. K K"*"l . K K+l

 It is not dificult to verify that jt. is a one- to- one function
 K

 from TT onto ť-(k) . Moreover, if x e X and ye X. is
 K «T

 defined by y(k) = jt <x Kn. ,n. ) ) then <fi (x) « <r> (y) . k k k+l <r &

 For s e T^ , I si = k let us define h (s) =

 *{nc0(k> ; łr1^1(s(0)) u. ..u »^(sťk-l)) u <n) e + •
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 Then h*(k) 5 2n^ and
 lim, h*(k) /log (£• (k) ) < lim, 2n, /1 og (or (n. - 1)) = 0 and so k-*» k-*» k + 1 k + 1

 h e H . For every B e CADn and new if <P <x) e SMB) then
 f> e

 x řn e g(B) . Therefore we haves f), V, . < £ fi ^ V(B. ,4) S k>m k+1 . < k>m ^ k+1

 •= V ( C x e X 5 Vk>m x hn. , .. € g(B. .-)>) = or <r k + , .. 1 k + 1

 = «'.({ y e X. ; Vk>m y(k) e h<yl'k)>) = A? . and so ASA... tj fj & , . h f> f h

 to
 Theorem 6. Let k be a cardinal number such that x. = k. .

 Then there is a generic extension in which 210 = k. , b = to^ and
 non(S) = cov(S) = cf (k) . Moreover , in this generic extension

 every subset of the real line of cardinality less than cf(>c) can

 be covered by countably many closed strongly symmetrically porous

 sets and the real line can be covered by cf(x) closed strongly

 symmetrically porous sets.

 In the proof of this theorem we will use the notion of

 forcing introduced by J. I. Ihoda and S. Shelah C63. It is called

 the meager forcing:

 For T •= <sU)2 denote n(T) = supilsl ; s e t > - Let T be

 the set of all r S <sUJ2 such that:

 ( i ) n (r) < to ,

 (ii) if s € t and k < isl then shk e t ,

 (iii) if se t and Isl < n(r) then s'~X> e t or s^l e t -

 For re T let Cr3 = i x e w2 ; xhn(r) e t > and

 t = -C s e t ; Isl = n(r) >. The meager forcing is the set

 M - {(r,H) ; r e T and H is a finite subset of ItI >

 ordered by (r,H) < (<r?K) iff ēr = r n n^<r)2 and K £ H .

 For each n e to let D(n) be the set of all conditions
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 ;r,H) e M such that Irl < (n(r) - n)/n .

 Lemma 6.1. For each n € u>, D(n) is a dense subset of M .

 Proof. Let (<r,K) € M be arbitrary. There are integers kt m

 such that n(r) < m < k , all xfm for x € K are different,

 and 2m < (k-n)/n . Choose r € T such that n(r) = k ,

 n (<j ) - - . i - i « m - i / • m _ , r n 2 - = 0", and . Irl i - i = I « 2 - n rl i (i.e. / • every se 2 _ nr , has

 exactly one extension in r ). Then (r,K) < (<xfK) and

 (r,K) e D(n) since Irl < 2m.

 Lemma 6.2. In the generic extension over the meager forcing,

 the set of reals of the ground model can be covered by countably

 many closed strongly symmetrically porous sets.

 Proof. To prove the lemma it is enough to show that the set

 of reals of the ground model is ¿»-small for some in the

 generic extension (see the proof of Lemma 3.2).

 Let G *= li be a V-generic filter over M . We are working

 in VLGD . The generic tree S = IK r ; (rt0) c 6 > has no

 endPDints and (r70) e G iff r = <x(n(r)) where

 tf" ( n ) = C t € 3 ; 1 1 I £ n > for new.

 The set C = C x e lu2 ; Vn xln e S } of all branches of S is

 a closed nowhere dense subset of w2 and for every x e tü2 n V

 there is y e C such that x (n) = y(n) for all but finitely

 many n € to .

 By Lemma 6. 1, we can find in VCG3 an increasing sequence

 n^ , k e co of integers such that n^ = 0 and
 n » . i = mini n > 2n ; (or(n),0) € D(n.)> . Let us define

 ^ k + 1 ^
 <*(k) = 2 . Of course f> c W . For every k let be
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 <n. n, .)
 ^ ł ^ 1

 the one-to-one function -from ł 2 onto P(k) which is

 defined in the proof of Theorem 5 (for or s 2 ) .

 Let H* (k) = < n e <o(k) ; 3 t e k2 tu <n> c «r(nk+1> > and
 let h(s) = h*(lsl) -for s cT, . Since (<r(n. k+1 ),0) c D(n. ) we f> . k+1 k

 have: Ih (k) I £ lö"(n. . , ) I < (n. ,4 - n.)/n. and so k+1 . , k + ,4 1 k k

 lim lh*(k) l/log(0(k) ) = 0 . Therefore h c H. .
 k-Ke. O

 At last <0,1 > n V = (W2 r> V) £

 S ( i x e w2 ; 3 y c C V0 n x < n > * y(n) >) S

 •5 <0o ( i X € w2 ; s/°k 3t tu X ^<nk '"k+i * e *
 = <o . ( < y e X. ; V°°k y(k) € h(yřk)>) = A. . c SmA .
 v v f> v n P

 Lemma 6.3. The predicate " y codes a closed strongly

 symmetrically porous set" is flļ .

 Proof. Let ir ; n e to > be some standard enumeration of
 n

 10X10
 the set of all rational numbers. Let ye 2 . Then y codes

 a closed strongly symmetrically porous set C ,

 C = R - Ui (r^ ,rJ ; y(i,j> = 1 > iff

 (VaeR) C (Vi , j) ( y(i,j)=l -*a«(rt ,r .) ) -*

 -*■ (Vncio) <3i , i 2, j , j2, i , j e to)

 < y(i . tj.) = y<i„»j~> = 1 and 0 < r. < r. < 1/n and
 11 ¿1 1 J

 (r . - r . ) /r . > <n-l)/n and (a-r.,a-r.) •£ (r. fr . )
 jij J i 1 1 Ji

 and <a+r ,a+r . ) € (r . ,r . ) ) 3 •
 1 j i2 j2

 Proof of Theorem 6. Let k be an arbitrary cardinal number

 such that kw = k > tu, . Let li be a finite support iteration
 1 GL

 of the meager forcing M of length a , a < k. . Let G be

 a V-generic filter over M and let G be the restriction
 k. a
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 of G to M . On every step a+w , a Cohen real c is added
 a a

 and no function from VEG 1 dominates all functions of the
 wi

 family 7 « í c ; a e w, > . Since -finite support iterations o-f
 OL 1

 M preserves unbounded families (see E6D), the family 7 remains

 unbounded and so b = in VEGD . By c.c.c. of M , V and

 VEGD have the same cardinals and cof i nal i ti es. One can easily

 verify (using c.c.c- and I M I = 240 ) that 2W is k. in VEGJ .

 Let X c V be a cof inai subset of >c of cardinality cf(vc) .

 The set A = í c ; a € X > is not of first category and so
 CL

 A Í $ and non(S) cf(K-) . Similarly, the set A cannot be

 covered by less than cf (k.) sets of first category. Therefore

 cf (k.) < cov(S) . For a e X let us denote R = R n VEG 1 .
 a a

 Then R = LKR ; a € X > and R ■£ Rft whenever a < P .
 a a P

 By Lemma 6.2, for every a c X there are countably many closed

 strongly symmetrically porous sets B , n c w in VEG ^„3
 ct , n ct+ 1

 *
 which cover R . Let B be the closed set in VEĢU

 cl a,n

 with the same code as B has. Then by Lemma 6.3 and by
 a, n

 *
 Shoenfiëld s absoluteness lemma (see C73), B are closed

 a, n

 *
 strongly symmetrically porous in VEG3 and B n VEG = B

 gl -, n ct+ 1 et y n

 This proves cf (k.) < non(S) and cov(S) < cf (k.) . Therefore

 non(S) = cov(S) = cf(>c) .

 In the opinion of the referee and also of me i t should be

 interesting to know if the last theorem is true when instead of

 meager reals we iterate eventually different reals (and Hechler

 reals respectively) (see E93).
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