FOROUS SETS AND ADDITIVITY OF LEBESGUE MEASURE

```
The alm of this paper is to compare some set-theoretic cardinal characteristics of the ideal of orporous sets with those similar cardinals associated with the notions of measure and category which have been extensively studied by A. W. Miller, J. Ihoda, S. Shelah, and others. We will prove that every set of reals of cardinality less than the additivity of the ideal of Lebesgue measure aero sets is o-porous, the read line aan be covered by a family of closed porous sets of cardinality of any cofinal family of the ideal of Lebesgue measure aero sets and it is consistent that the minimal cardinality of a set which is not g-porols is greater than the minimal cardinality of an unbounded family of functions from \(\omega_{\omega}\). In fact, we will prove all these for the ideal of or-strongly symmetrically porous sets.
If \(A\) is a subset of the real line \(F, I=(a, b) \quad i s\) an open interval then we denote by \(\lambda(A, I)\) the length of the largest open subinterval of \(I\) which does not intersect A and \(\lambda^{*}(A, I)\) is the largest or \(\equiv 0\) such that \((a, a+\sigma)(b-\sigma, b) \quad i s d i s j o i n t\) with \(A\). The porosity and the symmetric porosity of \(A\) at \(c \in \mathbb{F}\) is the number
\(P(A, c)=1\) im \(\sup _{\varepsilon \rightarrow 0+} \lambda(A,(c-\varepsilon, c+\varepsilon)) / \varepsilon\) and \(\left.S(A, C)=1 i m \sup _{\varepsilon \rightarrow 0}\right)+\lambda^{*}(A,(c-\varepsilon, c+\varepsilon)) / \varepsilon\), respectively. We say that \(A\) is porous (resp. strongly porous, resp. strongly symmetrically porous) if \(p(A, a)>0\) (resp. \(p(A, a)=1\),
```

```
resp. }5(A,a)=1\mathrm{ ) for every a E A . We say that A is
s-porous (resp. o-strongly porous, resp. \sigma-strongly symmetrically
porous) if it is a countable uniorr of porous (resp. strongly
porous, resp. strongly symmetrically porous) sets. See [11].
    The author would like to thank professor L. Bukovskiy for
directing his attention to porous sets and for valuable
discussions on the subject matter of this work.
    Let us recall some notation and cardinal characteristics.
By w we denote the set of natural numbers, i.e.
w={0, 1, 2, ...3. Each natural number is a von Neuman ordinal,
1.e. n={0,1,\ldots, n-1う, O=\varnothing and n<m iff n m m land
n sm iff n =m). Let }x\mathrm{ ( 
all functions from }x\mathrm{ into y : (r)(x) is the power set of }x\mathrm{ ,
i.e. }F(x) is the set of all subsets of % ; [%]`w is the se
of all finite subsets of }x;*\mp@subsup{w}{x}{}=\mp@subsup{U}{n=w}{n}x;|x| denotes the
cardinality of }\because\mathrm{ and observe that if sen}\mp@subsup{n}{~}{\prime}\mathrm{ then lsl = n .
But if I is an interval of reals then |I| denotes the length
of I .
    P denote the minimal cardinality of a family F }\equiv(|)(\omega)\mathrm{ such
that li Fo is Infinite for every finite Fo, {F and for every
infinite % m w there is y E F such that }x\mathrm{ - y is infinite
(see [2]). Since uniform ultrafilter is a such family, p = 2w.
```



```
said to be cofinal in P if for every P E F there is q E Fo
such that P \Xi q : F', is unbounded if no element of F'dominates
all elements of F'O.
b(F,\Xi)=min{|F'|; F' FO is an unbounded subset of F',
d(F,s)=min{|F
```

```
    Let FS'w([\omega]`(w), i.e. Fis a family of functions from }
into the family of finite subsets of }\omega\mathrm{ . For f,ge F we put
f 三
We use symbols }\mp@subsup{\forall}{}{c\prime\prime}n, \exists\mp@subsup{\exists}{n}{cc
(\forallm)(\existsn>m), We will simply write b(F), d(F) instead of
```



```
d = d( }\mp@subsup{}{(\omega)}{(\omega)}\mathrm{ . This is well defined because }\omega\subseteq[\omega\mp@subsup{]}{}{<\omega}
    Let y 
```



```
non(y) = min{|A|; A = { and A&{},
```



```
=d(7, E).
```

In the following L, K, F and S denote the ideal of Lebesgue measure zero sets, the ideal of sets of first category, the ideal of σ-strongly porous sets, and the ideal of o-strongly symmetrically porous sets respectively. Some facts about the ideals L and K are summarized (see [3]) in the following diagram:

The cardinals increase (not necessarily strictly) from south-west to north-east. The diagram is called Cichon's diagram in Europe and kunen-Miller chart in the rest of the world.

```
    Every porous set has measure zero and is nowhere dense. Buth
the ideals }F\mathrm{ and }S\mathrm{ are included in the ideal }\mp@subsup{F}{}{+}\mathrm{ of o-porous
sets. F. Galvin and A. W. Miller [S] noticed that p is the
minimal cardinality of a subset of the real line which is not
a r-set. Let us recall the definition of r'set. A family a
is an w-cover of a set A if for every finite A
VEa such that AOEV.A set A is a r'set if for every open
w-cover a of A there is a sequence < v vn; n E w>e w}a|\mathrm{ such
that }x=\mp@subsup{U}{n\inw}{}\mp@subsup{|}{m>n}{}\mp@subsup{V}{m}{\prime}\mathrm{ . I. Reclaw [10] proved that if A@R
is a r-set then A is o-porous. Reclaw's proof can be slightly
improved to show that every r-set on R can be covered by
countably many closed strongly symmetrically porous sets. The
natural question is how large can non(P) and non(S) be. Of
course p \leq non(S) \leq non(P) \leqmin{non(L),non(K)} . It is well
known that p \leq b (see e.g. [2]) and even p \leq add(K) since
p \leq cov(K) (see e.g. [4]) and add(K) = min{cov(K),b) (see [9]
or [3]). The inequality b { non(P) is not provable in ZFC since
in the generic extension by adding }\mp@subsup{\omega}{2}{}\mathrm{ Laver reals (see [b]),
b}=\mp@subsup{\omega}{2}{}\mathrm{ and non(L) = w, Neither the inequality non(s) s b is
provable in ZFC (Theorem 7). On the other hand, add(L) s b holds
(see [S]) and add(L) is another lower estimate of non(S)
(Theorem 3).
    The inequality p < non(S) is possible because the inequa-
lity p < add(L) is consistent. But we cannot decide whether any
of the cases non($) < non(P) and P { nom(P) < mininon(K),
non(L)) is possible and what is true for add(K) and d. Can
the additivity of these ideals be greater then m, ? L. Zajicek
[12] proved that P}\not=\mp@subsup{P}{}{+}\mathrm{ and D. Preiss asks (oral comunication)
```

```
whether the ideals F and F F
cardinal characteristic. The question is still oper..
    We will need some combinatorial characterizations of add(L)
and cof(L) . Let ge m}
\mp@subsup{L}{g}{\prime}={h:h:\omega->[\omega]<\omega and \foralln |h(n)| =g(n); ,
#g}={fE\mp@subsup{|}{\omega}{\omega
\mp@subsup{f}{g}{\prime}={h;h:\omega->[\omega]}\leqslant\omega\mathrm{ and }1\textrm{im}\mp@subsup{m}{n->\infty}{}|h(n)|/g(n)=0}
    The next theorem is well known; its first part is completely
proved in [1] and the second part can be proved by using the same
ideas. In fact, both can be done uniformly at the same time.
For our purpose the modification of this theorem formulated in
Theorem 2 will be more useful.
```

Theorem 1. Let $g E{ }^{\omega} \omega$ be monotone unbounded. Then

A function $g e{ }^{\omega}{ }_{\omega}$ is said to be finite-to-one if the inverse image of any finite set is finite or, equivalently, if there is a permutation π of ω such that $9(\pi()$.$) is monotone$ unbounded.

Theorem 2. Let $g E{ }^{\omega} \omega$ be finite-to-one. Then $\operatorname{add}(L)=b\left(f_{g}\right)$ and $\operatorname{cof}(L)=d\left(f_{g}\right)$.

Notice that it is enough to prove this theorem in the case g is monotone unbounded. In the proof we will need the next lemma.

Lemma 2.1. Let $g \in{ }^{\omega} \omega$ be mpnotone unbounded. Then $b=b\left(\Psi_{g}\right)$ and $d=d\left(F_{g}\right)$.

Proof. Let $i l l$ be the family of all unbounded functions from

```
w into \omega. Mll is cofinal in }\mp@subsup{\omega}{\omega}{}\mathrm{ . We will define a family
```



```
such that F=Ei(II) and
    (a) if fef flhen f(a(f))(n) > f(n) for all but finitely
many n E w,
    (D) if nE lil theri }\alpha(B(h))(n)>h(n) for all n.
    Let us define
G(f)(n)=min{k; \forallm=-k f(m)<g(m)/(n+1)},
E(h)(n)=minik; (m+1)k\geqg(n)} if max i\leqmm(i)<n\leq
Emax i\leqm+1 }h(i)\mathrm{ and }E(h)(n)=0\mathrm{ otherwise.
    We will verify conditions (a), (b).
    (a) Let fE F and let n E w. Then either fi(x(f))(n)=0
```

and then $r_{1} \because \alpha(f)(0)$ or there is $m \in \omega$ such that
$m a x_{1 \leq m} \alpha(f)(i)<n \geq m a x_{i \leq m+1} \alpha(f)(i)$. In the latter case by the
defintion of $E, F(x(f))(n) \geq g(n) /(m+1)$ and by the definition
of $\alpha, g(n) /(m+1)\rangle f(n)$ since $\alpha(f)(m) \leq n$.
(b) Denote $m=\max _{i \leq-n+1} h(i)$. Then $E(h)(m) \geq g(m) /(n+1)$. The definition of a implies $\alpha\left(F_{j}(h)\right)(n)>m \geqq h(n)$.

The mappings α, E are monotone (with respect to eventual dominance) and if $t E \notin$ and $h E$ ill then using (a) and (b) we have:
$Q(f) \approx M$ implies $f 三 E(h)$, and
$E(h) \equiv f$ implies $h \equiv x(f)$.
To finish the proof it is sufficient to observe that the
following lemma holds:

Lemma 2.2 ([J]). Let $\left(F, \leq_{F}\right),\left(Q, \leq_{Q}\right)$ be partially ordered
sets and let $Q: F \rightarrow Q$ and $E: Q \rightarrow P$ be mappings such that $Q(p)=Q$ implies $p s_{F} B(q)$ for all $p \in F, q \in Q$. Then $b\left(F, S_{F}\right) \leq b\left(Q, E_{Q}\right)$ and $d\left(Q, \leq_{Q}\right) \leq d\left(F, s_{F}\right)$.

Froof of Theorem 2. According to Theorem 1, since every element of ω_{ω} we can identify with an element of s_{g}, we have $b\left(f_{g}\right) \Sigma \operatorname{add}(L)$ and $\operatorname{cof}(L) \leq d\left(f_{g}\right)$.

Let π be a fixed one-to-one mapping from $[\omega]^{<} \omega$ into ω.
Let us define several mappings:
E: $\exists_{g} \rightarrow{ }_{\omega}^{\omega}$ by $B(f)(n)=\max \left\{m ; \forall k>n \quad f(k) m^{2}<g(k), \quad\right.$,
$d: f_{g} \rightarrow{ }^{\omega}{ }_{\omega}$ by $\sigma(h)(n)=\pi(h(n))$,
and for every $f \in \mathcal{F}_{g}$ let $\varepsilon_{f}: \mathscr{L}_{f(f)} \rightarrow \mathscr{f}_{9}$ be defined by
$\varepsilon_{f}(x)(n)=U K: \pi^{-1}(k) ; k \in x(n)$ and $\left|\pi^{-1}(k)\right|<f(n) ;$.
It $f E \mathcal{F}_{g}$ then $f(f)$ is monotone unbounded and $f \cdot \beta(f) \in \mathcal{F}_{g}$.
Thus the mappings ε_{f} are well defined. Moreover, if $f \in \mathcal{F}_{g}$ and $\therefore \in \mathscr{L}_{B(f)}$ then
(*) $1 f \quad H_{1} E \mathscr{E}_{f}$ and $\forall \mathcal{E N}_{n} \sigma(h)(n) \in x(n)$ then $h \leq \varepsilon_{f}(x)$. We will show that add $(L) \leq b\left(f_{g}\right)$. Let $f \equiv f_{g}$ and $|\Psi|$ © $\operatorname{add}(L)$. Since $\operatorname{add}(L) \leq b$, by Lemma 2.1 , there is
 such that for every $h \in\left\{, \forall^{\infty}(\mathrm{n} \sigma(h)(n) \in x(n)\right.$.

Then, by (*), $H_{1} 三 \varepsilon_{f}(\%)$ holds for every $h \in \mathscr{f}$. Therefore $\operatorname{add}(L)=b\left(\Psi_{g}\right)$.

Let $\exists \equiv F_{9}$ be a family of cardinality d such that every element of \boldsymbol{F}_{9} is dominated by an element of \mathcal{F}. By Lemma 2.1 such family exists. Using Theorem 1 , assign to each $f \in \mathcal{F}$
a $x_{f} \equiv \mathscr{x}_{f(f)}$ of cardinality cof(L) such that
$\forall y \in{ }^{\omega} \omega \exists x \in x_{+} \forall \forall_{n} y(n) \in x(n)$.

Then the family $f=\left\{\varepsilon_{f}(x) ; f \in \mathcal{F}\right.$ and $\left.x_{E} \in K_{f}\right\} \equiv f_{g}$ has cardinality $\operatorname{cof}(L)$ since $d \leq \operatorname{cof}(L)$ (see [g] or [J]), and by (*), every element of f_{9} is dominated by a member of f. Therefored($\left.\mathcal{F}_{9}\right) \equiv \operatorname{cof}(L)$ and so $d\left(F_{9}\right)=\operatorname{cof}(L)$.

Theorem $\underset{\sim}{3}$. $\operatorname{add}(\mathbf{L}) \equiv \operatorname{non}(S)$ and $\operatorname{cov}(S) \leq \operatorname{cof}(\mathbf{L})$.

Froof. We will show that the ideal \mathbf{S} contains some ideal
S_{f} such that $\operatorname{add}(L) \equiv \operatorname{add}\left(S m_{f}\right)$ and $\operatorname{cof}\left(S m_{f}\right) \leq \operatorname{cof}(L)$ and Sma contains all singletons. Instead of F we can and we will confine ourselves to the closed interval $\langle 0,1\rangle$.

Let us denote:

 onto $<0,1$ 〉 defined by

$$
\psi_{f_{1}}(x)=\sum_{n \in \omega} \frac{x(n)}{\infty(0) \epsilon(1) \ldots(n)}
$$

i.e. the sequence x is the Cantor expansion of the real $\psi_{6}(x)$.
 a closed subinterval of $\langle 0,1\rangle$ of length $1 /\left(0(0) A_{i}(1) \ldots(n-1)\right)$. (Let us recall that ϕ is the empty sequence and if s is a sequence of length n with values $s(0), s(1), \ldots, s(n-1)$ then sif denotes the sequence of length $n+1$ which extends s and $s(n)=k$). Thus $I_{\phi}^{\beta}=\langle 0,1\rangle$ and if $|s|=n$ then I_{s}^{β} is dividedinto $\alpha(n)$ intervals $I_{5}^{\prime-}, k$, $k \in(n)$ with disjoint interiors and of the same length, i.e. $\left.I_{s}^{f i}=U \in I_{5}^{f i} k ; k \in \kappa(n)\right\}$
 For $n: T_{\rho} \rightarrow[\omega]^{* \omega}$ let us denote


```
Let }\mp@subsup{H}{f}{\prime}={h:\mp@subsup{T}{0}{}->[\omega\mp@subsup{]}{}{<<\omega};1im\mp@subsup{m}{n->\infty}{\prime}\mp@subsup{h}{}{*}(n)/\operatorname{log}(\rho(n))=03
For o }|W,h\in\mp@subsup{H}{\rho}{}\mathrm{ and }m\in\omega\mathrm{ put
```



```
A
    A set A = <0, 1> is said to be 0-small if A}\leqq\mp@subsup{A}{0,h}{}\mathrm{ for
some he Ho, Let Smo denote the family of all o-small sets.
Smfis an ideal since the set }\mp@subsup{H}{\rho}{\prime}\mathrm{ is upward directed (in the
ordering f sm iff f(s) sh(s) for all but finitely many
s\in T\rho
Since for every }x\in\mp@subsup{X}{f}{}\mathrm{ , there is an }h\in\mp@subsup{H}{f}{\prime}\mathrm{ with }x(m)\inh(x|n
for all n, Sme contains all singletons.
```

Lemma 3.1. For each $\omega \in W, \operatorname{add}(L) \leq \operatorname{add}\left(S m_{\rho}\right)$ and $\operatorname{cof}\left(S m_{\mu}\right) \leq \operatorname{cof}(L)$.

Proof. For every $A \in S_{\rho} f i x$ some $\alpha(A) E H_{\rho}$ such that $A \subseteq A_{\rho, \alpha(A)}$. Then $\alpha(A) \leq h$ implies $A \subseteq A_{\rho, h}$. By Lemma 2.2, $b\left(H_{\rho}\right) \leq \operatorname{add}\left(S m_{\rho}\right)$ and cof $\left(S m_{\rho}\right) \leq d\left(H_{\rho}\right)$. Since the function $g_{1}(s)=" t h e ~ g r e a t e s t ~ i n t e g e r ~ l o w e r ~ t h a n ~ l o g(o(|s|)) "$ for $s \in T_{\omega}$ is finite-to-one, $H_{0}=\left\{h: T_{\rho} \rightarrow[\omega]^{\langle\omega} ; \lim |s| \rightarrow \infty h(s) / g_{1}(s)=0\right\}$ and $\left|T_{\rho}\right|=\omega, H_{\rho}$ correspondes to some f_{g} with a ginite--to-one and $b\left(h_{\rho}\right)=b\left(s_{g}\right)$ and $d\left(H_{\mu}\right)=d\left(s_{g}\right)$ and so Theorem 2 concludes the proof.

Lemma ड.2. For every $\rho \in W, \quad \mathrm{Sm}_{\rho} \subseteq \mathbf{S}$.
Froof. Let $h \in H_{\rho}$ be arbitrary. We will prove that $A_{\rho, h}$
is o-strongly symmetrically porous. Since $A_{0, h}^{m}=A_{0, g}^{0}$ for some $g \in H_{\rho}$, it is enough to show that $A=A_{\rho, h}^{O}$ is strongly
symmetrically porous. Let $a=\varphi_{\sigma^{\prime}}(x)$ be an arbitrary element of A. We will show that $s(A, a)=1$.

Let $m \in \omega$ be arbitrary. Let us denate $k(i)=4 H^{*}(i)+1$.
There is $n \in \omega$ such that $\left|I_{x+n}^{\beta}\right|<1 / m$ and $(2 m+1)^{k(n)} \leq \alpha^{\prime}(n)$ since $\quad \lim n_{n \rightarrow \infty} h^{*}(n) / \log (\rho(n))=0$.
Denote $k=k(n)$. Let $v=\{-m,-m+1, \ldots, m-1, m\}$.
Then $|v|=2 m+1$. Let $\left\{J_{t} ; t \in U_{i \leq k}{ }^{i} v\right\}$ be a family of closed intervals such that if $r=0 \times 0$.... O (k times) then $J_{r}=I_{x+(n+1)}^{\rho} ; J_{t}=U\left\{J_{t-\gamma_{j}} ; j \in V\right\}$ when $t \in i^{i}$ for $i<k$ and the intervals $J_{t} \sim_{j}, j \varepsilon v$ have disjoint interiors, the same length and $J_{t^{-}}{ }_{j}$ is on the left of $J_{t}{ }^{\prime}(j+1)$. Thus $\left|J_{\phi}\right|=\left|J_{r}\right|(2 m+1)^{k} \leq\left|J_{r}\right| \alpha(n)=\left|I_{x \mid n}^{\infty}\right|$. Therefore, there is $s \in T_{f},|s|=n$ such that $I_{s}^{\alpha}, I_{x}^{\infty}, \quad$ are neighboring intervals and they cover $J_{\varnothing} \cap\langle 0,1\rangle$ jointly. Each interval $J_{t} \cong\langle 0,1\rangle$ with $|t|=k$ is an interval I_{s}° for some s, $|s|=n+1$. If $s E T_{\text {fi }},|s|=n$ then A intersects at most $2 h^{*}(n)$ intervals among $I_{S_{i}^{\prime}}^{N_{i}}$, $i \in \operatorname{Ci}(n)$ (neighboringintervals have non-empty intersection). Therefore, A intersects at most $4 h^{*}(n)<k$ intervals among $J_{t},|t|=k$. Let us denote $J_{i}=J_{r l i}$ for $i \leq k$. Then $J_{i+1} \leq J_{i}$ have the same centre, $\left|J_{i}\right|=(2 m+1)\left|J_{i+1}\right|$ and for some $i<k, A \cap\left(J J_{i}-J_{i+1}\right)=\varnothing$. Fix such an i and put $\varepsilon=m J_{i+1} \mid$. Then $\varepsilon<1 J_{\phi} \mid<1 / m$ and $A \cap(a-\varepsilon, a+\varepsilon) \equiv A \cap J_{i} \subseteq J_{i+1}$. That is why $\lambda^{*}(A,(a-\varepsilon, a+\varepsilon)) \equiv \varepsilon-\left|J_{i+1}\right|=(1-1 / m) \varepsilon$. Since m was arbitrary, $s(A, a)=1$. This concludes the proofs of the lemma and Theorem 3.

Corollary 4. Every subset of the real line of cardinality

```
less than add(L) can be covered by countably many closed
strongly symmetrically porous sets and the real line can be
covered by cof(L) closed strongly symmetrically porous sets.
    Proof. The sets }\mp@subsup{A}{G,h}{m}\mathrm{ are closed strongly symmetrically
porous.
```


a regular cardinal number. Let $x=\left\{f \in \omega_{\omega} ; \Sigma_{n \in \omega} 1 / f(n)<1\right\}$
be ordered by $f \leq g$ iff $\forall n f(n) \leq g(n)(f i s$ stronger
than 9). $\mathfrak{k i s}$ a c.c.c. notion of forcing (see 3ЗC of [4]). In
the generic extension by. , all the convergent series of the
ground model are majorized by the generic series. Iteratively,
with finite support, add $2^{(u)}$ generic series. In this extension
$\omega_{1} \because 2^{\omega} \because 2^{\omega} 1$ remains true and $s 0 \quad p=\omega_{1}(s e e[2])$, and any
family of less than 2^{ω} convergent series is majorized by a
single convergent series and so add(L) $=2^{\omega}$ (see [1]).
It is consistent that cof(L) 2^{ω} (see [9]). Thus it is
cosistent that $\operatorname{cov}(\$)<2^{\omega}$.
$A \leqq\langle 0,1\rangle$ is said to be small if it is p-small for some
$\Leftrightarrow E R$. We have already shown that every small set is o-strongly
symmetrically porous. The next theorem strengthens the Reclaw's result [10].

Theorem 5. If $A \leq\langle 0,1\rangle$ is a $\quad \mathrm{i}$ - set then A is small.

Proof. Let $A \subseteq\langle 0,1\rangle$ be a r-set. We will find a \quad f and $h \in H_{a}$ such that $A \leq A_{0, h}$.

Let $\sigma(n)=2^{n^{2}}$. Let us fix a sequence $\leqslant y_{n} ; n \in \omega$ of distinct members of A. For every $n \in \omega$ and $B \in[A]^{n}$ let $g(B)=\left\{s \in T_{a} ;|s|=n\right.$ and $\left.B n I_{s}^{\sigma} \neq \varnothing\right\}$ - Df course $\lg (B) \mid \leq 2 n$ since each $x \in A$ can be in two neighboring I_{s}^{σ}. Let $V(B)=\operatorname{Int} U\left\{I_{\Phi}^{\sigma}: \quad s \in g(B) ; \quad B E V(B)\right.$. Let $a_{n}=\left\{V(B)-\left\{y_{n}\right\} ; B E[A]^{n}\right\}$ and let $a=U_{n \in \omega} a_{n}$. a is an open w-cover of A. Therefore there is a sequence $\left.<V_{k} ; k \in \omega\right\rangle \omega_{a}$ such that $A \leq U_{m \in \omega} H_{k>m} V_{k}$. Since $y_{n} \in A$, only finitely many sets V_{k} may belong to u_{n}. Thus we can assume that from every family a_{n} at most one element was chosen. Let $n_{k}, k \in w$ be an increasing sequence of natural numbers such that $n_{0}=0$ and $V_{k} \in a_{n_{k}}$ and $V_{k} \underset{\sim}{ } V\left(B_{k}\right)$ for some B_{k} with $\left|B_{k}\right|=n_{k}$ for $k \geqslant 0$. Let Π_{k} be the family of all functions s with domain $\left\{i \in \omega ; n_{k} \leq i<n_{k+1}\right\}$ such that $E(i) \in \sigma(i)$ for alli, i.e. $\Pi_{k}=X\left\{\sigma(i): n_{k} \leq i<n_{k+1}\right\}$. Fut $A(k)=\left|\Pi_{k}\right|$. For $s \in \Pi_{k}$ let
$\pi_{k}(5)=\Sigma\left\{E(n) \sigma(n+1) v(n+2) \ldots \sigma\left(n_{k+1}-1\right) ; n_{k} \leq n<n_{k+1} 3\right.$. It is not dificult to verify that π_{k} is a one-to-one function from Π_{k} onto $\operatorname{fi}(k)$. Moreover, if $x \in x_{\sigma}$ and $y \in X_{j} i s$ defined by $y(k)=\pi_{k}\left(x+<n_{k}, n_{k+1}\right)$ then $\varphi_{\sigma}(x)=\varphi_{\sigma_{1}}(y)$.
For $s \in T_{k},|s|=k$ let us define $h(s)=$
$=\left\{n \in \rho(k): \pi_{0}^{-1}(s(0)) \cup \ldots \operatorname{rim}_{k-1}^{-1}(s(k-1)) \cup \pi_{k}^{-1}(n) E g\left(B_{k+1}\right)\right\}$.

Then $n^{*}(k) \leq 2 n_{k+1}$ and
$\lim k_{k \rightarrow \infty} n^{*}(k) / \log (\omega(k)) \leq 1 i m_{k \rightarrow \infty} 2 n_{k+1} / \log \left(\sigma\left(n_{k+1}-1\right)\right)=0$ and so $h \in H_{\sigma}$. For every $B \in[A]^{n}$ and $n \in \omega$ if $\varphi_{\sigma}(x) \in V(B)$ then $\therefore \ln \in g(B)$. Therefore we have: $\eta_{k=m} V_{k+1} \cong \eta_{k=m} V\left(B_{k+1}\right) \subseteq$ $\equiv \psi_{\sigma}\left(6 x \in X_{\sigma} ; \forall k>m \quad x+n_{k+1} \in g\left(B_{k+1}\right) 3\right)=$ $\left.=\psi_{G}\left(\varepsilon y \in X_{A} ; \forall k>m y(k) \in h(y+k)\right\}\right)=A_{\rho, h}^{m}$ and $\operatorname{so} A \subseteq A_{A, h}$.

Theorem 6. Let k be a cardinal number such that $k^{\omega}=\kappa$. Then there is a generic extension in which $2^{\omega}=k, b=\omega_{1}$ and non $(s)=\operatorname{cov}(s)=c f(k)$. Moreover, in this generic extension every subset of the real line of cardinality less than $c f(x)$ can be covered by countably many closed strongly symmetrically porous sets and the real line can be covered by of (k.) closed strongly symmetrically porous sets.

In the proof of this theorem we will use the notion of forcing introduced by J. I. Ihoda and S. Shelah [6]. It is called the meager forcing:

For $\tau \leqq\left\langle\omega_{2}\right.$ denote $n(\tau)=\sup \{|s| ; s \in \tau\}$. Let T be the set of all $\tau \leqq<\omega_{2}$ such that:
(i) $n(\tau) \leqslant \omega$,
(ii) if $s \in \tau$ and $k<|s|$ then $s \neq k \in \tau$,
(iii) if $s \in \tau$ and $|s|<n(\tau)$ then $s^{\infty} 0 \in \tau$ or $s^{\sim} \mathcal{I} \in \tau$.

For $\tau \in T$ let $[\tau]=\left\{x \in \omega_{2} ; x \ln (\tau) \in \tau\right\}$ and
$\bar{\tau}=\{s \in \tau ;|s|=n(\tau)\}$. The meager forcing is the set
$M=\{(\tau, H): \tau \in T$ and H is a finite subset of $[\tau]\}$
ordered by $(\tau, H) \leq(\sigma, K)$ iff $\bar{\sigma}=\tau n^{n(\sigma)} 2$ and $K \leq H$.

For each $n \in \omega$ let $D(n)$ be the set of all conditions

```
r,H) EM such that |\overline{r}|<(n(\tau)-n)/n.
```

Lemma 6.1. For each $r_{1} \in \omega$, $D(n)$ is a dense subset of M.

Proof. Let $(v, k) E M$ be arbitrary. There are integers k, m such that $n(\tau) \because m<k$, all xlm for $x \in K$ are different, and $2^{m} \leqslant(k-n) / n$. Choose $\tau \in T$ such that $n(\tau)=k$,
 exactly one extension in $\bar{\tau}$). Then $(\tau, K) \leq(\sigma, K)$ and $(\tau, k) E D(n)$ since $|\bar{\tau}| \leq 2^{m}$.

Lemma 6.2. In the generic extension over the meager forcing, the set of reals of the ground model can be covered by countably many closed strongly symmetrically porous sets.

Proof. To prove the lemma it is enough to show that the set of reals of the ground model is o-small for some fin the generic extension (see the proof of Lemma i.2).

Let $G \equiv M$ be a V-generic filter over M. We are working in $V[G]$. The generic tree $S=U\{\tau ;(\tau, \phi) \varepsilon G ;$ has no endpoints and $(\tau, \phi) E G \quad i f f \quad \tau=\sigma(n(\tau))$ where $\sigma(n)=\{t \in S:|t| \equiv n\}$ for $\quad\{\in \omega$.
 a closed nowhere dense subset of ω_{2} and for every $x \in \omega_{2} \mathrm{r} v$ thereis $y \in C$ such that $x(n)=y(n)$ for all but finitely many ti \quad (

By Lemma 6.1, we can find in V[G] an increasing sequence $n_{k}, k \in w$ of integers such that $n_{0}=0$ and
$n_{k+1}=\operatorname{mini} n \geqslant 2 n_{k} ;(\sigma(n), \varnothing) \in D\left(n_{k}\right) \geqslant$. Let us define $f_{0}(k)=2^{n} k+1^{-n} k$. Of course aEW . For every k let π_{k} be
defined in the proof of Theorem 5 (for $\sigma \equiv 2$).
Let $H^{*}(k)=\left\{n \in \rho(k) ; \exists t \in{ }^{n_{k}} \quad t \cup \pi_{k}^{-1}(n) \in \overline{\sigma\left(n_{k+1}\right)}\right\}$ and
let $h(s)=k^{*}(|s|)$ for $s \in T_{\rho}$. Since $\left(\sigma\left(n_{k+1}\right), \phi\right) \in D\left(n_{k}\right)$ we
have: $\left|n^{*}(k)\right| \leq\left|\overline{\sigma\left(n_{k+1}\right)}\right|<\left(n_{k+1}-n_{k}\right) / n_{k}$ and so
$\lim _{k \rightarrow \infty}\left|h^{*}(k)\right| / \log (\sigma(k))=0$. Therefore $h \in H_{\rho}$.
At last $\langle 0,1\rangle \cap V=\varphi_{2}\left(\omega_{2} \cap V\right) \varepsilon$
$\equiv \varphi_{2}(\varepsilon x \in \omega_{2} ; \exists y \in C \quad \underbrace{}_{n} x(n)=y(n)\}) \varepsilon$
$\equiv \omega_{2}(\{\times \varepsilon \omega_{2} ; \forall \underbrace{}_{k} \exists t \quad t \cup \times r<n_{k}, n_{k+1}) \in \sigma\left(n_{k+1}\right)\})=$
$=\psi_{\omega}\left(\left\{y \in x_{\omega} ; \forall^{\infty} k \quad y(k) \in h(y \mid k)\right\}\right)=A_{\rho, h} \in \operatorname{Sm}_{\rho}$.

Lemma 6.3. The predicate " y codes a closed strongly symmetrically porous set" is Π_{1}^{1}.

Proof. Let $\left\{r_{n} ; n \in \omega\right\}$ be some standard enumeration of the set of all rational numbers. Let $y \in \omega x \omega_{2}$. Then y codes a closed strongly symmetrically porous set C,
$C=R-U\left(r_{i}, r_{j}\right) ; \quad y(i, j)=1 ; \quad i f f$
$(\forall a \in R)\left[(\forall i, j)\left(y(i, j)=1 \rightarrow a E\left(r_{i}, r_{j}\right)\right) \rightarrow\right.$
$\rightarrow(\forall \cap \in \omega)\left(\exists i_{1}, i_{2}, j_{1}, j_{2}, i, j \in \omega\right)$
$\left(y\left(i_{1}, j_{1}\right)=y\left(i_{2}, j_{2}\right)=1\right.$ and $0<r_{i}<r_{j}<1 / n$ and $\left(r_{j}-r_{i}\right) / r_{j} \geqslant(n-1) / n$ and $\left(a-r_{j}, a-r_{i}\right) \leqq\left(r_{i}, r_{j}\right)$ and $\left.\left.\left(a+r_{i}, a+r_{j}\right) \subseteq\left(r_{i_{2}}, r_{j_{2}}\right)\right)\right]$.

Proof of Theorem 6. Let k be an arbitrary cardinal number such that $k^{\omega}=k \geqslant \omega_{1}$. Let M_{α} be a finite support iteration of the meager forcing M of length $\alpha, \alpha \leq \kappa$. Let G be a V-generic filter over M_{k} and let G_{α} be the restriction

[1] T. Bartoszyriski, Additivity of measure implies additivity of category, Trans. Amer. Math. Soc. 281, 1, 1934, 209-213.
[2] E. van Douwen, The integers and topology, The handbook of set-theoretic topology (K. Kunen and J. Vaughan, editors), North-Holland, Amsterdam, 1984.
[3] D. H. Fremlin, Cichon's diagram, Publ. Math. Univ. Pierre Marie Curie 66, Semin. Initiation Anal. 23eme Annee-1983/84 Exp. No5, 13p. (1984).
[4] D. H. Fremlin, Consequences of Martin's axiom, Cambridge Univergity Fress, Cambridge, 1984.
[5] F. Galvin, A. W. Miller, r-sets and other singular sets of real line, Topology Appl. 17, 1984, 145-155.
[b] J. Ihoda, S. Shelah, The Lebesgue measure and the Baire property: Laver's reals, preservation theorem for forcing, completing a chart of Kunen-Miller, preprint.
[7] T. Jech, Set Theory, Academic Press, 1978.
[8] A. W. Miller, Additivity of measure implies dominating real, Froc. Amer. Math. Soc. 91, 1, 1984, 111-117.
[9] A. W. Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266, 1981, 93-114.
[10] I. Reclaw, A note on the σ-ideal of σ-porous sets, Real Analysis Exchange, Vol.12, No.2, 1996-97, 455-457.
[11] L. Zajiček, Forosity and o-porosity, Real Analysis Exchange, Vol.13, No.2, 1987-93, 314-350.
[12] L. Zajiček, Sets of σ-porosity and sets of σ-porosity (q), Casopis Fést. Mat. 101, 1976, 350-359.

Recoivad April 10, 1989

