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THE SEMI-BOREL CLASSIFICATION OF THE EXTREME
PFATH DERIVATIVES

semi-Borel and Baire classification of the multifunction of
all path derived numbers of a semi-Borel and Baire f{unction
of the «class o . Consequently the classification of the
extreme path derivatives is given. The results hold in the
setting of ordinary, qualitative and opproximate path
differentiation» and the proofs are based on a classifica~-
tion of the collection of paths which is considered as a

multifunction of the semi-Borel class o .

1. INTRODUCTION. In recent years vurious generalizations
of the notion of the derivative have been studied. A devel-
opment of an approach to differentiation which includes
a number of known generalized derivatives was introduced in
the excellent paper [3]1. Namely a collection E = {E(x)h<€R}
is o system of paths if each set E(x) has x as a point of

accumulation. For such a system E the extreme E-derivatives

of f at a point % are:

Y
= 1i Y=f (Y) )/ (x—y)
rE(X) éiﬂx?ﬁ?&(x)(r(“ Y X
y
> = lim i fOO=F(Y))/ Oe-yd o
Fg 00 = himdnte o (0O /0y

A number of familiar derivatives (for example ordinaryy

approximater» preponderant» congruent» qualitativer one-sided
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derivatives) can be expressed as path derivatives along a

system of paths of an appropriate types [3].

The behavior of a path derivative is very closely linked
to the geometry of the system E as can be seen from paper
[31 where many proofs are based on a system of paths satis-
fying some of the intersection conditions that provide infor-
mation related to the “thickness” of the paths. For exampler
for a system of paths E satisfying the external intersection
conditiony any E-derivative is in Baire class 1 [3rCorollary
6.31. But there are cases» such as in the study of extreme
approximate derivativesr where the path system of differ-
entiation is not convenient. Namelyy if F;p is the ap-
proximote upper derivative of a function f» then there is a
system of paths E such that F;p = Fé . But nothing can be
said about intersection conditions for E . A similar situ-
ation arises in the sectting of qualitative extreme deriva-
tives. Oving to these factsy» the idea of path differen-
tiation will be generalized in our paper by Definition 2.1.
This generalization was motivated by a very useful notion
involving the concept of systems of sets (called simple
systems) associated with each point [9?]1sbut the localness of
the systems of sets is not convenient for classifying gen-
eralized derivatives. Definition 2.1 allows considerable
flexibility for the systems of sets as well as the system of
paths.

Another motivation for our concept came from paper [1] by
Alikhani-Koopaei. His method of considering E as a multi-
function seems to be a convenient tool for investigating
various problems connected with path derivatives. The main

result of [1] says that the extreme path derivatives of a
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continuous function relative to a continuous system of paths

are in Baire class 2. One of the major goals of the present

paper is to replace continuity by a generalized notion of

continuity of E (see Theorems 3.9» 3.10 below) as well as
some waaker qssu-ptions on the graph of E (Theorems 3.3»
2.9r 4.4r 4.7y Corollaries 3.4r 3.6r 3.7y 4.5r 4.6).

Another aim is to study measurability of the extreme path
derivatives even further and to investigate the Lebesgue and
Baire measurability as well as the semi-Borel classification
of the multifunction of all path derived numbers. The well-
known results of Professor MiZ{k ([61+L71» see also C21,C41»

£81) concern only the semi-Borel classification of Dini and

approximate unilateral extreme derivatives.

The paper is divided into five sections. In g2 we
introduce a generalized path differentiation of functions
and the classification of derivation systems is given. The
wain lemma of §2 has a purely topological character and its
consequences for ordinaryr qualitative and approximate
differentiation are given in §83r4. In the final section we

deal with the properties of E-primitives.

2. Basic definitions:y gg&atign and preliminary results

e e o e e G e ot e e G P o ot S S S s o = 5

As was wmentioned in §iv the concept of path differen-
tiation is not effective in the setting of some generalized
derivatives. In order to obtain a convenient toll for inves—
tigating the semi-Borel classification of the multifunction
of all path derived‘nuubQPSv we introduce the following gen-—
eralized idea of differentiation which unites the notion of

path system and the concept of system of sets.
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DEFINITION 2.1 (see also [51). Let (RyU),(R"y ¢") be the
real line with the ordinary topology and the extended real
line uitﬁ the topology of the two-point compactification of
R» respectively. Let T be a topology on R. A quadruple & =
(RyTr»E»®) is called a derivation system (briefly DS) where E

R R
is a multifunction from R into 2 » @ # EC2» d ¢ £ .

DEFINITION 2.2. Let # = (R/T+Er#) be a DS and let f:R—R
be a function. A point zegR* is called an g-derived number
of f at point xe R ifs» for any G € U* with z¢ 6 and for any
Ue T with xeUrthere exists a set A € £ such that ACUNEOGON
{x} and (f GO-f(y))/(x-y) € G whenever ye¢A. The set of all
fF-derived numbers of f at a point x will be denoted by

*
D(f+E9yx). Define D =R-—>2R by D = D(f+Eryx). If

£rd rre
D(f+#rx) # @» then the extreme &-derivatives of f at the

point x are:

E;(x) = sup D(F+&rx) fthe upper extreme £-derivative):

f;(x) = inf D(fr€rx) (the lower extreme E-derivative).

If D(f+Erx) is a one point setr» then that point is called
the F-derivative of f at x and it is denoted by f;(x). Note
that D(f»&yx) is O -closed.

We introduce a classification of derivation systems
within which wvarious generalized derivatives can be ex-

pressed.

DEFINITION 2.3. A derivation system £ = (RyTHE»¥) will be

said to be
—ordinary DS if T=0 and €= 2°\{#};
-essential DS if ¥ = {AzA is of the T-second categorg}?
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-qualitative DS if =0 oand €= {AzA is of the U-second
categorg}§

-approximate DS if T =9 where 9 is the density topology
and €= ‘.-ZR\{¢}3

-congruent DS if E(x) = E(0) + x for all x € R}

-Baire DS if EGO\{x} is of the T -second category at x and
E(x) has the T -Baire property for all x € R¥

-left (right)-sided DS if E(x) C (- yx] (E(x) C Exy o2 )) for
all x € Ry

—unilateral DS if ¥ is left or right-sided.

We shall also classify the extreme £ -derivatives ond £ -
derivatives according to the definitions above. E.g.r F; is
called the ordinary (qualitativer approximate...) upper
extreme £ -derivative of f if ¥ is an ardinary (qualitativer

approximate...) DS.

- + — -

The approximate extreme derivatives rap' f v £

- + - -
(qualitative extreme derivatives f;v £q’ rq' fq) are just

the approximate (qualitative) extreme £ -derivativesr» where
E(x) = [xre)y E(x) = (-wyrx] respectively. The Dini deriva-
tives D+fv D+fv D fr b f correspond to the ordinary extreme
f-derivatives where E(x)=[xroo)y EGO=(-0rx] respectively.

The following ngtation and some facts about multifunc-

tions will be needed below.

The set of all positive integers is denoted by N. If a =
+00 and if reRy let azr = a. Let f:R— R be a function,

F=R-—->2R be a multifunction» T be a topology on Ry UCRxRy
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TCRy neNs ¢ =€ c 2%, gee.

We set:
fo((xrg)) = (FOI-F(Y)/(x—y)y (xvy) € RxRy x F y.

F (T = {xeR: FOONT # P}.

+

F (M = {xeR: ROGOCT].

6r(F) = { (xry) € RxR: y€FGO]  (graph of F).

FF) = {xe R: x GFKK)} (set of fixed points of F).

1 (ta-1/nsb+1/n)) where arb € Ky alb.

A(Fsfrnrarb) = Gr(F)ﬁf‘;
E’T(T) = {xeR: for all UeT with xcUr there is a set Ve @
such that Y cUNT\{x}}.

R
We define the multifunctions F+' F_v F .» 8¢£F)=R-—>2 as

u
follows:

F,00 = FOONIxreo)r F_G) = FOON (-0 yxTy

F o0 =u = {y eR: (xry) € U}, E’T(F) (x) = E’T(F(x)) for all
x eR.

Note that F (T) = R\F+(R\T) and if a single valued func-

tion f:R— R is givenr then under the natural interpreta-

+ - -
tion of f(x) as a one point set we have f (T)=f (T)=f 1(T).

We state as a lemma the main result of this section which
is the essence of §§ 3,4.
LEMMA 2.4. Let £= (RyTHE+¢) be a DS in which € has the

following property: If {Alv...rAk} is a finite collection of

subsets of R such that kﬁi Ané £+ then Ané P for some n €
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{tr...sk}. If f:R—Ry arbeR'y albs then

- (o3}
D ( = m *
popltordd = 1 P 8’¢(FA<E.rm.a.b)”

PROOF. Let x€R be an arbitrary point. Then ?T({g e EGON

{x}: (FOGI-FPI/Ix—y) € (a-l/n:b+1/n)}) = ET({9= (xry) €
f;I (a-1/nrb+1/n)) N GrE)}) = @qj(f;l((a-llnvb-ﬁl/n)) N

Gr(E)) )» = = - i
r(E )x @T(A(Evanravb)x) ?T(FA(Evanvavb) (x)) It is

clear that if Dh?(x)(‘\ Larbl # @y then for any n €N we have:

X € @T( {g € EOGON{x}: f‘o((xvg)) € (u—l/nvb+1/n)})

ffT(FA(Ev{‘vnvavb) 0.

}). Suppose D (x)N Carbl =
fr¥F

¢. That means for any z € Larb]l there are G(z) € (7*1 Uz(x)e T

o0
e N
Let xe ) P o Evfrnsard)

with z € G(z) and xeuzm). such that the set {g € EGON{x}:
f‘o((xvg)) eG(z)}hUz(x) does not contain any set from & .
Since C[Carbl is U*-compuctv the open covering {G(z)=ze
[a:b]} of Larbl has a finit subcovering {G(zl):...vG(zk)}.

Let U. = U (x) and 6. = G(z.) for i=ls...rk. Put UGO=U M
i zi i i i

v muk. Then S:= i\?l({geE(x)\{xp f‘o(()ug)) GGi}f\U(x))

does not contain any set from ¢ . Since Gl""'Gn covers

Carblsthere is an n € N such that (u-—l/mb+1/n)CGlu ...uBk.

Then S = { 4y eEGO\{x}: f (Goy)dee u...qu}(‘\U(x)‘_'){gé

1
EGON(x}: f_(Goy)) € (a-1/nib+t/mNUGO =2 S . That

seans So does not contain any set from £ . Hence x ¢ E,r(so)
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and we obtain a contradiction to the assumption that x

belongs to
00

A
n=1 P ?T(FA(Evanruvb) ).

In connection with Lemma 2.4 a natural question arises in
this setting: what information aobout Fy» T and ¢ implies that
P(?T(F)) is a set of the Borel class o« (Lebesque measurable)?
For certain special caoses this problem will be solved in the

next two sections.

This section is concluded with two trivial lemmas which

will be needed below.

LEMMA 2.5. Let f:R— R be a function. For ac¢cR let

S ={(rydz FOI-IF(Y)-ay | »

Tu = {Goy: fOd-axif(y)-ay | .
Then
(a) Sa = #Zé'[XS f(x)-ax)r}x{9= f(g)—ag(r} ¥
) T = U {x: fOoo-axir]rfy: £y -awpr}
a reQ

where Q = {r= r is a rational nunber} -

LEMMA 2.6. Let f:R— Ry EXR— 2 . For any arb € Ry albr we
have

(@ £ (lare))MBr(E_) = §_N6r(E )}
o -—

1

(b) £ ((-0osa@))MBr(E_) = T NBr(E_ )}
o -

-1 - -
(c) fo ((avoo))ﬁGr(E+) = TuﬁGP(E+)v

1

(d) fo ((—aava))f\Gr(E+) = Saf\Gr(E+)v

(e) f;i((ovb))ﬁﬁr(ﬁ_) = 8§ AT OGr(E_ )}
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-1
() fo (Carb))NBr(E ) = S NT NGBr(E )
+ b a +
where Sa’ Tu are as in Lemma 2.5.

The trivial proofs are omitted.

In this section we will investigate the semi-Borel
and Baire classification and Borelr Lebesgue and Baire
measurability of the wmultifunction of all ordinary and

qualitative £ -derived numbers.

DEFINITION 3.1. Let @ c20r & # §. @ wultifunction
F:R—2 is lower (upper} semi- @ -measurable (briefly F € af

Featy if Fi(tar oo DEQ (F (C-0sa))€ @ ) for all acR.

Let @z denote the family of all sets of the Borel additive

*
R . .
class o - A multifunction F:R—2 is a lower (upper) semi-

Borel multifunction of class o« if FECL: (F € a: Y. F is
o Baire multifunction of class o ¢ if F € a; M a; - F is
Borel (Lebesguer Baire) measurable if F (G)€ Br (F (GYE &£ »
FT @ e B ) for all GEC where B » £ v @ is the family of
all Borel:» Lebesguer Baire sets respectively. By c@ (SA) we
denote the smallest c-additive ¢ c-multiplicative) family
generated by @ . Let ¢Q = {AacCR: R\AEQT .

In order to achieve our goals we must investigate the

structure of the set of fixed points of eijFA(Eppr!dvb)))
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(see Lemma 2.4) for T=(¢ . The following lemma shows that

this is possible when A(Eyfrnrarb) is of suitable type.

Lemma 3.2. Let @ ¢ ‘ZR be a o-additive and multiplicative

fomilyr ?Cc Q@ » SCRxRy Se¢ G’(&xQR). Let ¢ ¢8’C2Rr g+
00
have the following propertys if nk___Jl Ane £ » then there is an

n such that A ¢ £ . Then F( wau-'s))e Y/ A

FROOF. Let An = {(x;g)=x+1/n)g)x—1/n}. Then x ¢ F( ?u(FS))

if and only if for all nelN there is A(n)e ¥ such that

A(n)csxn<x-1/n,x+1/n)\{x} = Fg0o M (x=1/nyx+1/m\{x} =
FSnAn(x)\{x} .
If T C RxR» define ?(FT) = {xeR: there is A¢ € » AC
?%
FT(x)\{x}}. That means F( ff(p(FS)) = n=1 Q(FSmAn). We shall
show that ?(FSFNA e A . It is easy to verify that for any
n

00 . _

sequence {Tn} n=1' TnCRny the equality EF@ T )y o=

n=1 n
(%)
n\-'-jl 8(!-‘.‘. ) holds. Since UC A and A is a G-additive and
n

multiplicative family, the set S(\An can be expressed as the

union of a sequence of sets R;x8: where R;ea/ ' S':C_QR. That

o0
means £ (F y = U (F . ). Since B(F . ) = {xekr:
SNA i=1 i i i i
n R xS R xS
n n n n
there is Ae £ » ACF . _GONDG = 8)\[x}}r €CF . =R' if
1 1 n 1 1 n
R xS RxS
n n n n
x€R and there is Ac £ such that ACS\[x} and EF =

i i

RnxSn
th i « H -

¢ otherwise ence ?(FSmAn)éa,
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THEOREM 3.3. Let (L be a 0-additive and multiplicative

e e cans eome e mmt wee Gume G e Gume wswe

fomilyr 0cQ v f:R—R. Let £= (RyVUsEr¥) be a DS in which

R
Br(E) € F(A %2 ) and € has the property of Lemma 3.2.

-— +
(@) If f€a (fed ) and ¥ is left-sideds then D, € osa
. 4

- re + ’ -
(D, €0dQ ) and fy €céa <f_geo<m ).

- + -
(b) If fea (fea ) and ¥ is right-sidedrthen Df‘ ?e osa
14

( €véd ) and g;eosaf , €obd -

va?

+ - —
) If £€d NE rthen D (LarbD€ 60 for any arb e R ra<b.

+ - -y + -
€ -
Hence Dh? ofa N o and fp codd » 2? € cSa

PROOF. (a) Since £ is left-sidedr Gr (E)=Gr (E_) € o’(a,x‘ZR).

- + J
Let f €@ (f ¢ @ ). By Lewwa 2.5+ §__,  MNGr(E) e r(a x2™

(T NGr(E ) € tr(CszR)). By Lemma 2.6(a) (Lemma 2.6(b))»
atl/n -

A(Erfrnraroco) = f-l((u—llmoo))f\er(E ) =8 (\Gr(E_) €
o - a—-1/n

G'(a,x2R) (A(Esfrnr—oorva) = f‘;i((—oo’u-*l/n))('\ﬁr(E_) =

T NGr(E ) e a(d «2¥)) for any a €R. By Lemmas 3.2 and
a+l/n -

2.4,y n"’ (Care 1) € §Q (D

foF ¥
- . -p—1 = - 07 € d‘a,
(D‘.’g ccfa ) . Since f‘&, (Care@ 1) D‘,'?([u;

r—1 - -y 5 +
« (C-xyal) = D. ([-c0rald€dQ ) for all a¢Ry f €¢ a
4 fr¥ :

(fz, XIVAE
| R
(b) Since ¥ is right-sided» Gr(E) = Gr (E+) € (A x2 ). Let

R
- +
. ED)>ET(Ax2)
fea (fe ad)-. BylLemma 2.5y S°+1/n(\6r( +
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R
(Ta_l/n('\f:‘r (E*) E(A K2 )). By Lemma 2.6(d) (Lemma 2.6(c))»

-1
A(Esfonr—0ra) = ((—0c0sa+i/n)) N (
o ) Gr E+) = Su+1/n ﬂGr(E+)e

R N -
(A x2 ) (A(Evsfrnrarco) = § 1((u-l/moo))r‘\l:ir(E Y =T N
o + a-1/n

R
Gr(E_'_) EG(Ax2 )) for all a€R. By Lemmas 3.2 and 2.4y

D - o1 - ’ :
o plf-oralded (nﬁ?(cmoo:)ed'a) hence D, » f € céa

-y +
€ .
(Df‘v?’ f‘g vfa )

- +

() Let N ={Ooy: xdyfsr N = {teryd: xty} . Since
- 4 R - R
NN € C(Ax2)y Br(E ) = Gr(EYNN € (A X2 ) GP(E+) =

+ R - +
€ T(ax2H. .
6r(EYNN (Ax2). f€A NQ - Hence S vT S i/’

R
€ ¢ 2. L ]
Tosisn (A x2) for all arbe Ry n¢ N by Lemma 2.5
There are four cases. (1) arb € Ry a¢b. (2) a = - » bER.
(3) acRr b =00 . (4) a = ~wy b = .

Case (1) .By Lemma 2.6 (e)» (f) A(Erfrnrarb) = (f;l((u—llnv

-1 _
b+1/n))hBl‘(E_))U(fo ((o.—l/nvb-!'l/n))f\ﬁr(E_})) = (Sc\-l/n

N Br(E )) U (8 NT NGr(E ) € r(asz). By

Tb+1/n b+i/n a-1/n

Lemmas 3.2 and 2.4r n; ?([uvb])e fa .
4

Case (2). By Lemma 2.6 (b)» (d)» A(Esfrnrs—oosb) =
“.;1((_00 rb+1/n)) N Gr (E+)) v (f;1((-°° vb+1/n)) MGOBr(E )Y =

R
(s NGr(E D) U (T NBr(E )) € (%2 . By Lemmas 3.2

b+i/n b+1i/n

and 2.4» D, _([-wsbDedA .
fryr
Case (3). By Lemma 2.6 (c) r(a): A(Erfrnrarco) =

-1 -1 =
(F (ta-1/n1 @ NN BrENI U ((a-1/n»09)) MBr(E_I=(T__ N
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+ —a=1/n' 9" e 1)) € FCAx2™ . By Lemmas 3.2 and

2.4y (Carol)ed .

va?
Case (4). A(Esfrnr—0y0) = Gr(E) € G'(CLxZR) and by Lemmas

3.2 and 2.4 D. ([-w0y001)edQ .
fofF

Now we obtain the following consequence of Theorem 3.3

for the semi-Borel classification of Df v
4

COROLLARY 3.4. Let £ be an ordinary or qualitative DS in

which Gr (E) € 0¥ a&xQR) .

(a) If f is a lower (upper) semi-Borel function of class
« and £ is left-sidedr then the upper (lower) extreme £-de-
rivative of f is an upper (lower) semi-Borel function of
class o +1 and D is an upper (lower) semi-Borel multi-

¥
function of class o +1.

(b) If £ is a lower (upper) semi-Borel function of class
+ and ¥ is right-sidedsthen the lower (upper) extreme ¥£-de-
rivative of f is a lower (upper) semi-Borel function of
class o +1 and Df;? is a lower (upper) semi-Borel mul ti-

function of class o +1.

(¢} If £ is a Borel function of class oy then the upper
(lower) extreme £ -derivative of f is an upper (lower) semi-
Borel function of class o+1 and Df ¢ is a Baire wmulti-

?

function of class d+1.
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REMARK 3.5. The results of Theoream 3.3. and Corollary 3.4
can be remeambered very easily. If the sing + (-) corresponds
to a right (left)-sided DSy then the assertions of Theorem
3.3 and Corollary 3.4 can be read out of the following tables
by the rules concerning the amultiplication of negative and

positive numbers.

f F th? f ¥ Df!?
a* + o6’ a; + a:+1
a” - osa’t a; - a:+1
et | - | csa a, | - »
a + cda a, + a£+1

For exampler ifbfe'af and ¥ is left-sidedr then Dr’g€06d7
(“+ times - = =" see line 3).

For the classification of the extreme g-derivatives we
have another rule. If the sign + (-) corresponds to the up-
per (lower) extreme fF-derivativer then we can read out of
the following tables: If fcQ and £ is right-sidedr then

the lower extreme g-derivative is lower semi-c§Q —measurable

(* - times + = - “ see line 4).
N 2 A M A
a* + sat ai + :+1
a | - | «sd a | - a,,
at ] - céa” ar | - e,
a + sa Ay + Q;+1
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Our next consequence of Theorem 3.3 deals with

measurabil i r) '
ility of D“’? vf‘? of

COROLLARY 3.6. Let ¥ be an ordinary or qualitative DS in

. R
which Gr(E) e c(Br x 2 )y o (&Lx 2R)p 0(B x 2R) respectively.

If £ is Borel» Lebesguer Baire measurable respectivelyr then

-
f} y f; vy D are Borelr» Lebesguer Baire measurable re-

frf
spectively.

PROOF. By Theorem 3.3(c)» D
----- fofF

* -
spectivelyr for all arbeR » alb. Since D (3 A) =
fvF n=1

(Carb)ecBr » £ » B » re-

n

o0 - * -—
- €B 8 -
vt nf'?(an) for all Anch ’ Dr'?(G) r o€ » r respect

ivelyr for all GE O .

The following corollary improves Professor Hi§ik's re-
sults L[61. :

COROLLARY 3.7.
(a) If £ is a lower semi-Borel function of class o ¢ then
DFf oy F; (D+f ] £:) are upper (lower) semi-Borel functions

of class o +1l.

(b) If £ is an upper semi-Borel function of class o rthen
Df» ' (D+f ) ?;) are lower (upper) semi-Borel functions
- -q
of class o +1.

+ -

(¢) If £ is a Baire function of class o ¢+ then D f» D fr

?+r f (D Ffr Dy f+v f ) are upper (lower) semi-Borel func-
q + - -q -9

tions of class o +1.

In the remainder of this section we will recall some re-

sults concerning the ordinary DS which can be found in [S51.
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As we will see the continuity of E assumed in [1]1 can be re-

placed by semi continuity.

DEFINITION 3.8. A multifunction E=R-—*2R is lower (upper)

semi continuous if F (B)€ O (F'(GYE U ) for all Ge U .

The proof of the following théoreos can be found in [51.

THEOREM 3.9 (see Theorem 4.11 in [5]). Let £ be an ordi-

nary derivation system and let f be a Baire function of

class one. If Gr(E) is an F set and E(x) has x as a point

o

- i cea_nat, § ca’ ea_.
of U -accumulationr then Df'? > > y f? > ) f? >

Consequentlyy if E is a closed valued upper semi continu-
ous multifunction (that means Gr(E) is closed)» then Theorem

3.9 holds.

THEOREM 3.10 (see Theorem 4.14 in [5]1). Let & be an ordi-

nary DS and let f be a continuous function. If E is a lower

semi continuous wultifunction and E(x) has x as a point of

eqhqv freat , ¢’ ea.

U -accumulation» then D ¥ A fe 1

frF

COROLLARY 3.11 (see also Corollary 10 of [11). Let £ be a

congruent and ordinary DS. If f is a continuous function»

eat e ca na’ .
then &, 1 ! fg Ga& and Df.f \ )

4.The classificg&ion of D and the extrenme ?—deriggtiveg

frf

This section is devoted to the semi-Borel classification

and Lebesgue measurability of the multifunction of all ap-

— + -
proximate §g-derived numbers and f » £ » £ » £ . First
ap -ap ap -—ap
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of all we waust solve the structure of the set of fixed
points of certain multifunctions for the density topology 9.

This is solved by the following three lemmas.

R .
LEMMA 4.1. Let @ C2 be a 0 -additive and multiplicative

J
famil REA, 8 = Y : *
yr P v N2, A xB Aiea ’ Bie%e . If:R—R is

defined as f(x) = l(FS(x)) ( 1 is Lebesgue wmeasure)» then

£ 1((arc0o NEA for all acR.

{Bl’...’B }
PROOF. Let I = 2 J

» I ={1e1z X B:Ji Bk)g}.

We shall show that {xz fO0<a} = 1\6-{ F;( B\eJi B ). If x¢€
a k

J
-1 = 10U = 1(USB =
f (C-c0 val) then)(FS(x)) = l((i=1AixBi)x)— }( k{Bk-xGAk})éa,

. 8 e - +
Hence 10 = {Bk- X eAk} eI‘1 and X eFS( B\Jkeio Bk).

U O 5 :
If %€ i€Ia FS( Bkei Bk)v then there is an 10 € Io. such

) . (F_(x)) = £(x) <a.
that FS(X)C;BkeiO Bk Hence A g

The following two equalities finish the proof:

oo\ = - -/
Fgl B B, R\F o (R\ Bei B’

F(R\ ~ B)» = U : / 1.
S B €i k " {A- B.hm\ B ¢i B g ¢}

00 .
LEMMA 4.2 Let 8 = &~/ A xB.» A€ yB.EY (A is as in
i=1 i 1 i i

Lemma 4.1). If f(x) = A(Fs(x))v then f-l((uvool)ea for all

a€eR.
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PROOF. Let § (x) = M(F_ (x))r x€Rvrj = 112r... where § =
J

3 ! %)
U . - (=2
i1 ﬁixBi. Evidentlyr FS (x)C.FS (x) and FS(x) = SZQFS (x)
J J+1 ~ J
for all xeR. Hence f(x)= A(F_O))=lim MF_ OO)¥=lim £ (x)
S J> o0 S Joeo 3

for all x€R. Since {f‘J} °;=1 is o nondecreasing sequencer

-1 o0 )
£ ard) = Jkg)l{x: rJ<x>>u}ea.

o0
LEMMA 4.3. Let 8§ = J A xB.» AL€EQ » B €& »UCA (Q is
————————— i=1l i1 i i

as in Lemma 4.1). If ¢ = 2R\{¢}, then P( € (F.)) eqba .

(A x¥). Since x €P( i‘,’E(FS)) if and only if

lim sup n/2(A(F_0GO N (x=1/nrx+1/n))) =
Nn— oo S

%ﬁ:up n/2()(FSnCn(x))) > 0y

P(E’a)(F )y = 9—1((Dv13) where g:R— [0s11 is defined as

im sup n/2((F

(x))). By Lemma 4.2y for any n &N
—> 00 S Cn

gi(x) =

3= O

and a ¢ R we have {x= n/2()(FSan(x))) >a}€0,. The equality

-1 v o Lo
o teonim = Y O U [ w2a6Fg

D 2 c G0N 1/r} finishes

n
the proof.

A motivation for this section came from paper L71 where
Professor Mi¥ik showed that the upper (lower) wunilateral
(i.e. EOO=[xr 00 )y E(x)=(-00yxl respectively) approximate
derivative of a function of Baire class o is a lower (upper)
semi-Borel function of class «+2. The following moin theorem
of this section and its consequences show that E can have

more generol form.
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THEOREM 4.4. Let 0 be a C-additive and wmultiplicative

fomilyy O CQC¥Ly f:R—R and let ¥ be an approximate DS in

which Gr(E) € r(A x&).

- +
(a) If £f€@ (fFeQ@ ) and f is left-sideds then

1 4

Do, g € cbor6d (Df'?écxé'c'&az- ) and ?!,' ¢ Sobd (f_;eo&rd‘a’f )

- +
() If fe@ (€@ » and ¥ is right-sidedr then

D, € ofocba (B € 8§r6@ ) and g;eoé'o-é‘aT (?gec/&rcfaf )

124 133

el *
() If fe& Na 'y then D, _(LasbD € §r@ for all arb €Ry

oy
a{by and hence Df‘ ?GOSVSa—f\ U&r&dj and i‘;ér/&r{df y
4
¢’ coleSa -
4
- 4
f F Df & f? z?
a + o§eSd oEorsad
| - | osesd | osesd
al - | Jsesa oSS
ol + | Sesa oS8

Considering Lemma 4.3 the proof is similar to that of
Theorem 3.3.

COROLLARY 4.5. Let ¥ be an approximate DS in which Gr(E)€

. -9 4
a'(ad'xh‘.’). The semi-Borel classification of Dh? ’ft ' f? can

be read out of the following table
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P *
gl 1 4
f g an'? f? £
+ + +
Q. * a&+3 QE+3
- + +
a, - Qs a&+3
+ - -
a, - 2,3 @z
- N - -
@, @3 @vs
COROLLARY 4.6.
- —_ + + -
€ -
(@) If f€Q » then f‘ap a,a"+3 . gupe @ ,q
+ - - - +
(b) If fE€@ + then f—qua&ﬂ . rape @, -

(c) (see Theorem 3 of C[71) If recg,:haz y then

- - + - -
oLroeat. ., ¢ v ea . .
ap ap d+3 -ap -ap o+3

approximate DS in which Gr(E) is Lebesgue measurable. If f

is a Lebesgue measurable functionr then D v £

P PR f' are

Lebesgue measurable.

»*
2.5y A(Evanyavb)r\ﬁn is Lebesgue measurable for all arbéeR

o{b. Consider the functions

%
= n/2
Farn 0 = 07202 (Fann A(Esfrmrarb) U2
and g = lim sup f .

where A* is Lebesgue outer measure (mrn=1+2»3r...). Evident-
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1 . . : =
y g, is Lebesgue measurable. Since P( €$(FA(E'r'.'a'b)))
1

g. ((0'1])'"(gS(FA(Evaupuvb))) is Lebesgue measurable and
by Lemma 2.4, D;'?(tavbl)e.i for all arb eR'ry alb. Hence
D, (€L forall 6 € (.

foppe

The results of the previous sections show that the prop-
erties of the extreme g¢-derivatives depend on the structure
of Gr(E). On the other hands as we shall see in this section,
the properties of the f£-primitives depend on the values of E.

The following facts can be found in L[51.

DEFINITION S5.1. A function f:(RyT)— R is T—quasicontinu-

ous at a point xeR if forany V€@, UET, fx)€Vr xeU
there is a set HeT » ¢+HCU such that HCf‘_i(V). A
function f is T -quasicontinuous if it is T —-quasicontinuous
at every x € R. A function f has the T -Baire property if

9-1(6) has the T -Baire property for any Ge U .

THEOREM 5.2 (see Theorem 2.7 in LS51).Let £ = (RyTrEr®) be

a DSy € = {A(:Rt A is of the T-second category and A has the
T ~-Baire propertg} .

(a) If there is a T-dense set S such that for all x €8S
f has at least one finite EF-derived number at xr then f has

the T-Baire property.

(b) If for any xe R f has at least one finite £-derived

number at xr then f is T-quasicontinuous.
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THEOREM 5.3 (see Theorem 3.13 in [S51). Let (R»T) be a

Baire space having no isolated pointsy UcCc T . Let £ be a

Baire essential and unilateral DS. If fg GO<oo (£ (0= o0 )

except for a set of the T-first categoryr then f has the T-

Baire property.

COROLLARY 5.4. Let £= (R.S.E.zR\w}) be a unilateral and

approximate DS in which E(x)e & for all x eR. If ﬁ;(x)(0°
14

F
f is Lebesgue measurable.

(f _(x))-e) except for a set of Lebesgue measure zeror then

14

£ 00 y-0}). Let

E,= RyDEE)y E={a : X (a0} » E, 00 = EGO if x€ Ay

El(x) = [x+©) if x¢ A and & is right-sideds Ei(x) = (=00 yx]

if x¢A and £ is left-sided. Since 2’1 is a Baire unilateral

PROOF. Let A ={x: f, 0o} (A ={x: ¢

and essential DS and D (x) =D (x) for all xcAy f is
fr¥ fr 3’1

Lebesgue measurable by Theorem 5.3.

THEOREM 5.5 (see Theorem 3.14 in [51). Let (RyT) be a
Baire space having no isolated pointsy UCT . Let £ be a
unilateral and ordinary DS in which E(x) has the T -Baire
property and E(x) is of the T -second category at x for all
xeR.If ;;(x)(u> (f;(x))—°°) except for a set of the T-second

categoryr then f has the T-Baire property.
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