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 CONCERNING THE BAIRE CLASS OF TRANSFORMATIONS ON PRODUCT SPACES

 In this note we solve a problem stated at the end of [6] and some related

 queries quoted in [5]. In what follows (X,dx)> (Y,dy) and (Z,dz) denote

 three complete, separable, metric spaces. If f : X x Y •* Z, we shall call the

 family of transformations fx : Y •* Z, x € X defined by fx(y) ' = f(x»y) the
 X-sections of f. The Y-sections are defined similarly by f^fx) : = f(x,y).

 Numerous papers were devoted to conditions guaranteeing Borei measurability

 of a transformation expressed in terms of its sectionwise properties. (See a

 chart in [7], p. 169.) In particular [6] contains the following definition and

 theorem:

 DEFINITION 0: ([6], df. 1.) A family F c of transformations

 f : X ■* Z fulfills the property Aa if for each nonvoid closed subset K of

 X there is a point x° € K such that the family of restrictions {f|j£ : f e F}

 is equicontinuous at x°.

 Recall that a family G c Z^ is equicontinuous at x° if for each number

 e > 0 there is a <5 > 0 such that dz(g(x),g(x° )) < e, whenever x e K n

 B(x°,<5) and g e G where B(x°,¿) denotes the open ball in X centered at

 x° with radius 5. Notice however that the above notion depends only on the

 topology of X and the uniformity of Z and thus the original metrics may

 be replaced by uniformly equivalent ones. Note also that in compliance with

 the terminology of B. Ricceri ([11], df. 13) the family F of definition 0 is

 composed of functions equi-belonging to the first Baire class. In case F

 consists of a single function f, the property A2 simply means that f is

 Baire one.

 THEOREM 0. ([6], th. 6 and remark 1 on p. 123.) If g : X x Y Z is a

 transformation for which all X-sections belong to Baire class «, 0 < « < ß,

 and all Y-sections fulfill property A2, then g also belongs to Baire class

 « on X x Y.

 We need some concepts from [1]. A subset E(x) c X is called a path

 leading to x if x e E(x) and x is an accumulation point of E(x). A

 system of paths E : X -> 2^ is said to satisfy the essential radius condition
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 if for each positive function s on X there is a positive function r on X

 such that if dx(a,b) < min{r(a),r(b)}, then Es(a) n Es(b) t <f> where Es(c)
 denotes E(c) n B(c,s(c)). (See [9], Ex. 9.A.3..)

 The following definition is a simultaneous generalization of [4], df. 8 on p.

 19 and [1], df. 5.1 on p. 110:

 DEFINITION 1. Let E : X ■* 2^ be a system of paths. A family F c
 is said to be E-equicontinuous at x° e X if the family of restrictions

 (f|B(x°) : f € F} is equicontinuous at x° in the sense mentioned after
 definition 0. If F is everywhere E-equicontinuous, then we say briefly

 that F is E-equicontinuous.

 Note that in general there is no topology U on X for which

 E-equicontinuous transformations were exactly U-equicontinuous. In certain

 cases this happens, e.g. the density topology leads to the notion of

 approximate equicontinuity defined in [4]. On the other hand there is no

 topology T on X for which preponderantly continuous transformations [10]

 are exactly T-continuous and thus the notion of a preponderantly
 «

 equicontinuous family, as defined in [5], p. 22 cannot be expressed in terms of

 any topology. We are now in a position to state the following:

 PROPOSITION 1. Let E : X 2^ be a system of paths satisfying the
 essential radius condition. Then any E-equicontinuous family F c has

 property Aa.

 Proof: We may assume that the space Z is bounded. Let B(F,Z)

 denote the metric space of all mappings from F into Z endowed with the

 uniform metric D (gi,g2) : = sup{d(g! (f),g2 (f ) ) : f € F}. Let h : X -* B(F,Z)

 be defined by h(x)(f) = f(x) e Z; x e X. Since F is E-equicontinuous,

 hlE(x) is continuous at x for every x e X. It can be readily verified by
 using the methods developed in [1]. Theorem 5.2 on p. 110 and [12], Theorem

 33.1 on p. 74 that this implies that for every nonempty closed set K c X, the

 restriction h | k has a point of continuity. (Although [1] and [12] only state

 this for real-valued functions defined on the real line, and use a different

 intersection condition, the proofs are valid, under suitable changes, for maps

 of X into arbitrary metric spaces.) Now this statement is obviously

 equivalent to the A2 property of the family F and the proof is complete.
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 COROLLARY 1. Let X = IRn and let F be a preponderantly (in

 particular approximately) equicontinuous family of transformations with respect

 to the ordinary differentiation base. Then F has property A2.

 This follows from the fact that the corresponding systems of paths satisfy

 the essential radius condition providing a positive answer to the problem on

 p. 125 in [6] and, at the same time, to question 11 b), c) from [5].

 Combining Theorem 0 and Proposition 1 we obtain a positive solution to

 question 11 d), e) from [5]:

 COROLLARY 2. Let X = IRn and f : X x Y Z be a transformation for

 which all Y-sections create a ordinarily preponderantly (resp. approximately)

 equicontinuous family and all X-sections belong to Baire class a, 0 < « < fl.

 Then f belongs to Baire class a.

 However, in the Corollary 2 the space X may be essentially generalized

 as in [4], p. 7-8.

 REMARK 0. In the one dimensional case a system of paths of

 ({",A)-density type with R,X} > 2-1 satisfies our intersection condition (cf.

 [1], th. 3.5). Thus transformations that are preponderantly equicontinuous

 even on just one side must have the Aa property.

 REMARK 1. The first sentence of the proof of Proposition 1 shows that

 the assumption concerning uniform boundedness in theorem 7 from [6] is

 superfluous, solving in that manner the remaining question 11 a) from [5].

 REMARK 2. Let X = IRn and let E : X -» 2^ be a system of paths such
 that X is an ordinary I-density point of E(x) in the sense of [14], where

 I denotes the ideal of meager sets. Then E satisfies the essential radius

 condition as follows from [15], Theorem 3, and from the fact that in the case

 of X = IRn the star-porosity topology defined in [15] coincides with the

 I-density topology. In view of Remark 2, all Y-sections of an f in

 Corollaries 1, 2 may be even I-approximately equicontinuous.

 DEFINITION 2. (See [9].) A transformation f : X •* Z is said to be

 nonalternating if, whenever C is connected in Z, f~l(C) is connected in
 X. Sometimes such transformations are called inverse connected.
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 In case X = Z = R Definition 2 reduces to f being weakly increasing or

 decreasing. In the sequel we shall assume additionally that the space Z is a

 Banach space endowed with d : = min{l,dz), where āļ is the distance
 function induced by the norm.

 PROPOSITION 2. Let f:R*Y-»Z be a transformation whose Y-sections

 are nonalternating and all X-sections create a separable subspace of the

 space Bi(Y,Z) of Baire 1 transformations. Then f is also of the first Baire

 class.

 Proof: Let us put h(x) : = fx c B^YjZ). We prove that h is a Baire 1

 transformation. Since h (IR) is separable, each open set in this target space

 is a countable union of open balls. On the other hand each open ball B(g,r)

 is a countable union of the closed balls B(g,r - 2-n), n e N. Therefore it

 suffices to prove that h-1(B(g,r - 2~n)) are F<j- subsets of IR. Indeed,

 we have h-1(B(g,s)) = {x e X : d(h(x),g) * s} = {x € X : d(f(x,y),g(y)) ¿ s

 for each y € Y} = fi (fy)-1({z € Z : d(z,g(y)) * s}). All the balls
 ye Y

 B(s(y)>s) c Z are connected due to the assumed linearity of Z. Bearing in

 mind that the sections fy, y e Y are nonalternating, we conclude that

 (fy)-1 (B(g(y),s)) is connected and thus also convex. Hence h-1(B(g,s)) is

 convex being the intersection of the indexed family of convex sets. Since

 each convex set on IR is ambiguous, h-1(U) e F<r(R) for each open subset

 U c h (IR) provided U is a countable union of closed balls. Consequently

 h : X •* B i ( Y,Z) is of the first class of Baire and has separable range.

 Observe that f (x,y) = h(x)(y) so that, by Baire's Theorem, the Y-sections of

 f satisfy property A2. Invoking Theorem 0 with <* = 1 we obtain the

 claimed assertion.

 REMARK 3. Note that the space IR may be generalized to be, for example,

 a curve in Euclidean space, in particular a circle, i.e. a topological space

 having no order compatible with the topology.

 COROLLARY 3. Assume additionally that Y is a compact metric space.

 Let f : IR x Y -» Z be a transformation with nonalternating Y-sections and

 continuous X-sections. Then f is in the first Baire class.
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 PROOF: The space C(Y,Z) endowed With the metric D(gi ,g2 ) : -

 : - 8upld(g1(y),g2(y )) : y € Y} is separable due to the compactness of Y

 and the separability of Z. Thus we may apply Proposition 2.

 REMARK 4. The space Y in Corollary 3 may be generalized to be a

 "chunk-complex" (See [2], p. 118.), i.e. a topological space having a family

 {Ka : a € A} of closed subsets, such that:

 (i) {Ka : a € A} is a covering of Y,
 (ii) either Ka n Kb = $ or Ka n Kb = Kc for some c € A,

 (iii) {a e A : Ka c Kb) is finite for each b € A,

 (iv) each Ka is compactly metrizable by some metric da,

 (v) U is open in Y iff Ka n U is open in (Ka,da) for all a e A.

 In fact, f||RxK is Baire 1 by virtue of Proposition 2. The space Y being
 SI

 paracompact and perfectly normal (cf. [2]), we may apply Baire's theorem (cf.

 [8]) and the property (v) to conclude that f is Baire 1 on the entire space

 R * Y. Note that in particular R is chunk-complex and thus in case Z = R

 Corollary 3 gives a negative answer to question 3 a), g) from [5].

 In connection with Corollary 3 let us recall that by an old result of H.D.

 Ursell cited in [4], a function f : R2 •* R with isotonic Y-sections and L

 measurable X-sections is L measurable on the plane. Obviously this result

 may be improved in the style of Proposition 2. On the other hand, a function

 f : R2 ■* R with all X-sections and all Y-sections nondecreasing may fail to

 be Borei measurable. In fact, let us decompose R into two disjoint

 nonmeasurable subsets A and B and then put:

 0 if y < -X

 3 if y > -X
 f(x,y) : =

 2 if X = -y c A

 1 if X = -y c B

 It is easily seen that f is as required. Next it is well known that a

 separately continuous, real function whose Y-sections are in addition isotonic

 is jointly continuous. (See for example [3].) It would be interesting to known

 whether or not Corollary 3 remains true with the condition on the Y-sections
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 weakened to bounded variation and without the compactness assumption

 imposed on Y.

 Our last proposition gives a positive answer to questions 3 b), d) from

 [5] and shows the sharpness of the known result, that a function f : IR2 •* IR

 with right or left continuous X-sections and Baire 1 Y-sections belongs to
 Baire class 2:

 PROPOSITION 3. Let I : = [0,1]. There exists a function f : I2 -» IR not

 belonging to the first Baire class for which all X-sections are left continuous

 and increasing while all Y-sections are decreasing.

 Proof: Let C be the Cantor ternary set in I and {(an,bn) : n e N}

 its contiguous intervals. Let us consider the triangles T0 : =

 : = conv{(0,0),(l,0),(l,l)} and Tn : = conv{(an,an),(bn,an),(bn,bn)} c I2,

 n e N. Then put:

 y - a

 r
 d - a n
 n n

 00

 f(x,y) : = 0 if (x,y) € T ' U T
 n=l n

 +1 if (x,y) e I2 ' To

 Observe that lim f(x,t) = f(x,y) and that u * v implies f(x,v) ^ f(x,u)
 t-»y_

 and f(u,y) < f(v,y) whenever (x,y) € I2. Define a perfect set P : = {(t,t) €

 I2 : t € C} and observe that the fibers (f|p)- 1({1}) = {(bn,bn) : n c N} and

 (f|p)-1({0}) = {(an.an) : n e N} are both dense in P. Thus the restriction
 f I p is totally discontinuous so that by Baire's Theorem, f cannot be in the
 first class.

 The following question 3 c), e) from [5] remains unresolved: Let all

 X-sections of f : IR2 •* IR be derivatives (resp. bounded derivatives,

 approximately continuous, etc.) and all Y-sections be increasing. Must then

 f belong to the first Baire class?

 In connection with this problem let us mention that there is a function

 with continuous X-sections and Darboux Baire 1 Y-sections which is not in

 the first class [5]. On the other hand the continuity of X-sections and
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 approximate continuity of Y-sections implies that f is of the first class.

 (See (iii) in [7].) However this is a solution of question 2 a) from [5]. If all

 X-sections are bounded derivatives and all Y-sections are in the first class,

 then f must be in the second class, but there exists a function with

 continuous Y-sections all of whose X-sections are derivatives and yet not

 belonging to the first class of Baire [7]. This solves in the affirmative

 question 2 d), f) from [5].

 The author wishes to express his gratitude to both referees for very

 helpful criticism.
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