QUERIES

Pavel Kostyrko, Department of Mathematics, Komensky University, 842 15 Bratislava, Czechoslovakia.

THE SYMMETRIC DERIVATIVE AND THE DARBOUX PROPERTY

In connection with his survey paper [L1] Lee Larson has raised the following problem (Query 172): Find a condition which is both necessary and sufficient to ensure that a finite symmetric derivative is a Darboux-Baire one function. the aim of the present paper is to give another formulation of the above problem for locally bounded symmetric derivatives and to give a sufficient condition for a symmetric derivative to be a Darboux-Baire one function. Note that another sufficient condition is given in [L3].

We shall deal with mappings of the real line \mathbb{R} into itself. The upper symmetric derivative of f at $x \in \mathbb{R}$ is

$$\overline{f}^{s}(x) = \lim \sup_{h \to 0} (f(x + h) - f(x - h))/2h$$

and the lower symmetric derivative $\underline{f}^{S}(\mathbf{x})$ is the corresponding limit inferior. When $\overline{f}^{S}(\mathbf{x}) = \underline{f}^{S}(\mathbf{x})$, the common value is denoted by $f^{S}(\mathbf{x})$ and is called the symmetric derivative of f at \mathbf{x} . It is known that every symmetric derivative belongs to the first Baire class ([L2], Th. 2.1). Recall that a function $f : \mathbb{R} \to \mathbb{R}$ is said to have the Darboux property if whenever $a, b \in \mathbb{R}$, a < b, and \mathbf{y} is any number between f(a) and f(b), there is a number $z \in (a,b)$ such that $f(z) = \mathbf{y}$.

In the paper [E] the class M_{-1} of functions with some pleasant properties is defined.

<u>Definition 1</u>. A function $f : \mathbb{R} \to \mathbb{R}$ is in M_{-1} if it is measurable and for each x, $\liminf_{t \to x} f(t) \neq f(x) \neq \limsup_{t \to x} f(t)$.

<u>Theorem E.</u> ([E], Th. 2, quasi-mean value theorem) Let $f : \mathbb{R} \to \mathbb{R}$ be in M_{-1} . If a < b, then there exist $x_1, x_2 \in [a,b]$ such that $\underline{f}^{g}(x_1) \neq (f(b) - f(a))/(b-a) \neq \overline{f}^{g}(x_2)$.

Further we shall deal with locally bounded symmetric derivatives. Every such symmetric derivative is bounded on every compact interval.

Definition 2. Let $f : \mathbb{R} \to \mathbb{R}$ be symmetrically differentiable. The function f is said to belong to class MVT (of functions fulfilling the mean value theorem) if for any $a, b \in \mathbb{R}$, a < b, there exists $z \in [a,b]$ such that $f(b) - f(a) = f^{\mathbf{S}}(z)(b - a)$, and, whenever for some $x \in \mathbb{R}$ $\lim_{t\to x^+} f_{\mathbf{S}}(t)$ ($\lim_{t\to x^-} f^{\mathbf{S}}(t)$) exists, it equals $f^{\mathbf{S}}(x)$.

<u>Theorem</u>. Let h be a locally bounded symmetric derivative. Then h has the Darboux property if and only if there exists a function, $w \in MVT$ with $\mu^{g} = h$.

Proof. Let $H : \mathbb{R} \to \mathbb{R}$ be such that $H^{\mathbb{S}} = h$. Then H is obviously symmetrically continuous, i.e. $\lim_{k\to 0} (H(x + k) - H(x - k)) = 0$ for each $x \in \mathbb{R}$. According to the paper [B] almost all points of \mathbb{R} belong to the set C(H) of all its points of continuity and hence H is measurable. Let $[u,v] \in$ \mathbb{R} be a compact interval. Suppose that for each $x \in [u,v]$ we have |h(x)| $\langle c \ (c > 0)$. Choose $\alpha \in C(H) \cap (u,v)$. If $\beta \in C(H) \cap (u,v)$, $\alpha < \beta$, then $h(p) \notin (H(\beta) - H(\alpha))/(\beta - \alpha) \notin h(q)$ for some $p,q \in (\alpha,\beta)$ ([L2], Th. 7.1). Since |h(p)| < c and |h(q)| < c, we have $|H(\beta)| \notin |H(\alpha)| + c|\beta - \alpha|$. The same estimate holds for $\beta < \alpha$. Consequently H is bounded on the set $C(H) \cap (u,v)$.

In [L2] it is shown that for a given symmetric derivative h there is a Baire one function $\mu : \mathbb{R} \to \mathbb{R}$, $\mu = \mu_{\text{H}}$, which is a primitive for h (i.e., $\mu^{\text{g}} = \text{h}$). Since H is bounded on C(H) \cap (u,v), the function μ is determined for $\mathbf{x} \in (u,v)$ by

$$\mu(\mathbf{x}) = \lim \sup_{\mathbf{t} \to \mathbf{X}} H(\mathbf{t})$$
$$\mathbf{t} \in C(\mathbf{H})$$

and $\mu^{\mathbf{g}}(\mathbf{x}) = \mathbf{H}^{\mathbf{g}}(\mathbf{x}) = \mathbf{h}(\mathbf{x})$ holds for each $\mathbf{x} \in (\mathbf{u}, \mathbf{v})$. Obviously lim $\inf_{t \to \mathbf{x}} \mu(t) \leq \mu(\mathbf{x}) \leq \lim_{t \to \mathbf{x}} \sup_{t \to \mathbf{x}} \mu(t)$ is fulfilled for every $\mathbf{x} \in (\mathbf{u}, \mathbf{v})$. Since $\mathbf{R} = \bigcup_{n=1}^{\infty} [-n, n]$, we can suppose that $\mu \in \mathbf{M}_{-1}$ and $\mu^{\mathbf{g}}(\mathbf{x}) = \mathbf{h}(\mathbf{x})$ holds for each $\mathbf{x} \in \mathbf{R}$. The function μ fulfills the assumptions of Theorem E, according to which for each $\mathbf{a}, \mathbf{b} \in \mathbf{R}$, $\mathbf{a} < \mathbf{b}$, there are $\mathbf{x}_1, \mathbf{x}_2 \in [\mathbf{a}, \mathbf{b}]$ such that (*) $h(x_1) \neq (\mu(b) - \mu(a))/(b - a) \neq h(x_2).$

Suppose that h has the Darboux property. It follows immediately from (*) that $\mu(b) - \mu(a) = h(z)(b - a) = \mu^{S}(z)(b - a)$ for some $z \in [a,b]$. If for some $x \in \mathbb{R}$, $\lim_{t\to x+} h(t)$ (or $\lim_{t\to x-} h(t)$) exists, then it equals h(x). This follows from Young's characterization of Darboux Baire class 1 functions. (See [Br], p. 9.) Hence $\mu \in MVT$.

Now suppose that there is a function $\mu \in MVT$ with $\mu^{g} = h$ and that h is not a function with the Darboux property. Then there are $a, b \in \mathbb{R}$, a < b, and a number y between h(a) and h(b), such that $h(x) \neq y$ holds for each $x \in (a,b)$. We shall treat the following two possibilities: a) there are $x_{1},x_{2} \in (a,b)$ such that $h(x_{1}) < y < h(x_{2})$; b) h(x) > y (or h(x) < y) holds for each $x \in (a,b)$.

a) Let [u,v] be a compact interval, u < a < b < v and let |h(x)| < c(c > 0) hold for every $x \in (u,v)$. Since $\mu \in MVT$, $|\mu(x) - \mu(x_0)| < c|x - x_0|$ for every $x,x_0 \in (u,v)$. Hence μ is a continuous function on (u,v). Put $\Psi_k(x) = (\mu(x + k) - \mu(x - k))/2k$ for k > 0 and $x \in [a,b]$. We can suppose, without loss of generality, that $x_1 < x_2$. For sufficiently small k > 0 we have $a < x_1 - k < x_2 + k < b$ and $\Psi_k(x_1) < y < \Psi_k(x_2)$. Since Ψ_k is a continuous function, there exists a suitable r, $0 < r \le k$, such that $\Psi_k(x_1 + r) < y < \Psi_k(x_2 - r)$. Since Ψ_k has the Darboux property, for some $w \in (x_1 + r, x_2 - r)$ we have $\Psi_k(w) = y$, i.e. $\mu(w + k) - \mu(w - k) = 2ky$. It follows from $\mu \in MVT$ that there exists a point $z \in [w - k, w + k]$ such that $\mu(w + k) - \mu(w - k) = 2k \ \mu^{g}(z)$. Consequently y = h(z) and $z \in (x_1 - (k - r), x_2 + (k - r)) < (a,b)$ contrary to assumption.

b) Let h(a) < y < h(b). Suppose that h(x) > y holds for each $x \in (a,b)$. We may also suppose y = 0. (This can be seen by inspecting the function $\nu(x) = \mu(x) - yx$.) According to Theorem 6.2 of [L2] the function μ is continuous and nondecreasing on (a,b). Hence $\lim_{t\to a+} h(t) \ge y > h(a)$ exists contrary to assumption. The case h(x) < y for each $x \in (a,b)$ can be treated analogously.

In [M] the following analogy of Lagrange's mean value theorem is proved. $(D^{+}f(x), D^{-}f(x), D_{+}f(x), D_{-}f(x))$ denote the upper right, upper left, lower right and lower left derivates of f at x.) <u>Theorem M.</u> Let f be continuous in [a,b] and symmetrically differentiable in (a,b). Let

$$E = \{x \in [a,b] : f(x) - (f(b) - f(a))x/(b - a) > (bf(a) - af(b))/(b - a)\}$$

$$F = \{x \in [a,b] : f(x) - (f(b) - f(a))x/(b - a) < (bf(a) - af(b))/(b - a)\}.$$

Suppose that $D^+f(x) \ge D_-f(x)$ for $x \in E$ and $D_+f(x) \le D^-f(x)$ for $x \in F$. Then there exists at least one point ξ in (a,b) such that $f(b) - f(a) = (b - a)f^{S}(\xi)$.

<u>Corollary</u>. Let $h : \mathbb{R} \to \mathbb{R}$ be a locally bounded symmetric derivative such that whenever $\lim_{t\to x^+} h(t)$ $(\lim_{t\to x^-} h(t))$ exists, it equals h(x). Let μ be a continuous primitive of h (i.e. $\mu^{S} = h$). If for any $a, b \in \mathbb{R}$, a < b, we have $D^+\mu(x) \ge D_-\mu(x)$ for $x \in E$ and $D_+\mu(x) \le D^-\mu(x)$ for $x \in F$, where

$$E = \{x \in [a,b] : \mu(x) - (\mu(b) - \mu(a))x/(b - a) > (b\mu(a) - a\mu(b))/(b - a)\},\$$

$$F = \{x \in [a,b] : \mu(x) - (\mu(b) - \mu(a))x/(b - a) < (b\mu(a) - a\mu(b))/(b - a)\}$$

then h has the Darboux property.

<u>**Proof.</u>** It follows from (*) of the first part of the proof of the Theorem that for any locally bounded symmetric derivative h there exists a continuous primitive μ . The statement of the Corollary is an immediate consequence of the Theorem and Theorem M.</u>

References

- [B] C.L. Belna, Symmetric continuity of real functions, Proc. Amer. Math. Soc. 87(1983), 99-102.
- [Br] A.M. Bruckner, Differentiation of Real Functions, Springer-Verlag, Berlin Heidelberg New York, 1978.
- [E] M.J. Evans, A symmetric condition for monotonicity, Bull. Inst. Math. Acad. Sinica 6(1978), 85-91.
- [L1] Lee Larson, Symmetric real analysis: a survey, Real Anal. Exchange Vol. 9 (1983-84), 154-178.
- [L2] Lee Larson, The symmetric derivative, Trans. Amer. Math. Soc. 277(1983), 589-599.
- [L3] Lee Larson, The generalized Zahorski class structure of symmetric derivative, Trans. Amer. Math. Soc. 282(1984), 45-58.
- [M] S.N. Mukhopadhyay, On Schwarz differentiability I, Proc. Nat. Acad. Sci. India 36(1966), 525-533.

Received July 20, 1987