F.S. Cater, Department of Mathematics, Portland State University Portland, Oregon 97207

FUNCTIONS THAT NEARLY PRESERVE G_δ-SETS

1. Introduction. By a G_{δ} -subset of the real line R we mean the intersection of a countable family of open sets in R. In real analysis it is of interest to note that certain kinds of functions map G_{δ} -sets to G_{δ} -sets. For example, the range of a homeomorphic mapping from a G_{δ} -set X to the real line must be a G_{δ} -set [1, Theorem 63]. More generally, the range of a one-to-one continuous mapping from a Borel set X to the real line must be a Borel set [1, Theorem 87]. We pose the question: what kind of functions mapping the unit interval [0,1] into R map each G_{δ} -set to a G_{δ} -set? This turns out not to be a good question, because most classes of functions we study are likely to contain members that map some G_{δ} -set to a set that is not a G_{δ} -set. So we make a slight modification.

Definition. Let f be a real valued function defined on [0,1]. We say that f is a <u>delta</u> function if for each G_{δ} -set $X \subset [0,1]$, f(X) is the union of a G_{δ} -set with a countable set.

We will study which continuous functions on [0,1] are delta functions and which functions of bounded variation on [0,1] are delta functions. We will find that a necessary and sufficient condition for a continuous function f on [0,1] to be a delta function is that for all but countably many y, $f^{-1}(y)$ is a finite set (Theorem 1). This does not work when "function of bounded variation" replaces "continuous function". But if f is of bounded variation and if $f^{-1}(y)$ is a singleton set for all but countably many $y \in f[0,1]$, then f is a delta function (Theorem 4). We conclude with some examples of delta functions that do not map every G_{δ} -set to a G_{δ} -set.

2. Continuous functions. We begin with some nuts and bolts lemmas on subsets of R and continuous functions on [0,1]. The first is closely related to standard arguments.

Lemma 1. Let X be a perfect subset of R and let I be an open interval that meets X. Then there exists an uncountable closed subset of $I \cap X$ that is a first category set relative to the subspace X.

The proof is long but straight-forward, so we leave it. The next lemma is even easier.

Lemma 2. Let E be an uncountable subset of an interval J. Then there exist disjoint compact subintervals J_1 and J_2 of J such that $E \cap J_1$ and $E \cap J_2$ are uncountable.

Proof. Let U denote the union of all open intervals I with rational endpoints for which $E \cap I$ is countable. Then $E \cap U$ is countable and J\U is uncountable. Now let J_1 and J_2 be disjoint compact subintervals of J, each centered at a point in J\U. Then $E \cap J_1$ and $E \cap J_2$ must be uncountable. \square

We turn now to G_{δ} -sets.

Lemma 3. Let (U_n) be a sequence of mutually disjoint open sets and for each n let E_n be a G_{δ} -set with $E_n \subset U_n$. Then $U_n E_n$ is also a G_{δ} -set.

Proof. For each n, let $(V_{nj})_j$ be a sequence of open sets such that $V_{nj} \subset U_n$ and $N_j V_{nj} = E_n$. Then for each j,

$$U_n V_{n,j} \subseteq U_n E_n$$
 and moreover $U_n[0, V_{n,j}] = U_n E_n$.

Because the set U_n are mutually disjoint, $V_{nj} \cap V_{n'j'} = \emptyset$ for $n \neq n'$, and it follows that

$$U_n E_n = U_n [n_n V_{n,j}] = U_{,j} [n_n V_{n,j}] .$$

Because each $U_n \ V_{n,j}$ is open, $U_n \ E_n$ is a G_{δ} -set. \square

Until further notice we assume that f is a continuous function on [0,1] such that there are uncountably many points y for which $f^{-1}(y)$ is an infinite set.

Lemma 4. Let U be an open subset of [0,1] and let I be a compact interval with I c $[0,1]\setminus U$. Let there be uncountably many $y \in f(I)$ such

that $U \cap f^{-1}(y)$ is an infinite set. Then there exist disjoint compact intervals I_1 and I_2 with $I_1 \cup I_2 \subseteq U$ such that $f(I_1) \cup f(I_2) \subseteq f(I)$, $f(I_1) \cap f(I_2) = \emptyset$, and for each k = 1,2, there are uncountably many $y \in f(I_k)$ for which $(U \setminus (I_1 \cup I_2)) \cap f^{-1}(y)$ is an infinite set, and length $f(I_k) \in \mathcal{H}$ length f(I).

Proof. By Lemma 2, there are disjoint compact subintervals J_1 and J_2 of the interior of f(I) such that for each k = 1,2, there are uncountably many $y \in J_k$ for which $U \cap f^{-1}(y)$ is an infinite set. Because f is uniformly continuous on [0,1] there is a number c > 0 such that for no interval K of length $\langle c$ can an interval twice the length of f(K) meet both J_1 and J_2 , or meet both $J_1 \cup J_2$ and the complement of f(I); hence length $f(K) \langle X | length | f(I) |$ as well.

For each positive integer n, partition U into a countable collection of mutually disjoint intervals $K_{n_1},K_{n_2},K_{n_3},...$, each of length $\langle c/n \rangle$. Let E denote the set of all $y \in J_1$ for which $U \cap f^{-1}(y)$ is an infinite set. For each $y \in E$ there is an index n for which $f^{-1}(y)$ meets 2 intervals K_{n_i} . So there is an index N such that for uncountably many $y \in E$, $f^{-1}(y)$ meets 2 intervals K_{N_i} . Thus there exist indices i and i' such that for uncountably many $y \in E$, $f^{-1}(y)$ meets K_{N_i} and K_{N_i} . By making $I_1 = K_{N_i}$ or K_{N_i} , whichever is appropriate, we have an interval $I_1 \subset U$ of length $\langle c$, such that there are uncountably many $y \in E \cap f(I_1)$ for which $(U \setminus I_1) \cap f^{-1}(y)$ is an infinite set and moreover $f(I_1) \cap J_1 \neq \emptyset$. From the choice of c it follows that $f(I_1) \subseteq f(I)$, and length $f(I_1) \in \mathcal{F}$ length f(I).

Similarly there is an interval $I_2 \subset U$ of length $\langle c, \text{ such that there}$ are uncountably many $y \in E \cap f(I_2)$ for which $(U \setminus I_2) \cap f^{-1}(y)$ is an infinite set and moreover $f(I_2) \cap J_2 \neq \emptyset$. It follows from the choice of c that $f(I_2) \subset f(I)$, $f(I_1) \cap f(I_2) = \emptyset$, and length $f(I_2) < \%$ length f(I). Hence I_1 and I_2 are the desired intervals. \square

We next construct a perfect set in the range of f.

Lemma 5. Let f be a continuous function on [0,1] and let there be uncountably many $y \in f[0,1]$ such that $f^{-1}(y)$ is an infinite set. Then there exists a family of mutually disjoint compact subintervals $\{I_a\}$ of [0,1] on which f is not constant, where each subscript a is a finite sequence of 1s and 2s; moreover $f(I_a) \subseteq f(I_b)$ and length $f(I_a) \subseteq f(I_b)$ if

b is an initial segment of a, and $f(I_a) \cap f(I_b) = \emptyset$ if neither a nor b is an initial segment of the other.

Let E be the set of all $y \in f[0,1]$ such that $f^{-1}(y)$ is an infinite set that contains no interval. Then E is uncountable. positive integer n, partitition [0,1] into a countable collection of mutually disjoint intervals $K_{n_1}, K_{n_2}, K_{n_3}, \dots$, each of length $\langle 1/n \rangle$. For each there is an index n for which $f^{-1}(y)$ meets 2 intervals K_{ni} . So there is $f^{-1}(y)$ an index such that for uncountably many $y \in E$, Thus there exist indices i and i' intervals such that for K_{Ni}. uncountably many $y \in E$, $f^{-1}(y)$ meets K_{Ni} and $K_{Ni'}$. By making $I = K_{Ni}$ or KNi', whichever is appropriate, we have an interval I such that there are uncountably many $y \in E \cap f(I)$ for which $((0,1)\setminus I) \cap f^{-1}(y)$ infinite set.

By Lemma 4, there exist disjoint compact intervals I_1 and I_2 with $I_1 \cup I_2 \subseteq (0,1)\setminus I$ such that $f(I_1) \cup f(I_2) \subseteq f(I)$, $f(I_1) \cap f(I_2) = \emptyset$, and for each k = 1,2, there are uncountably many $y \in f(I_k)$ for which $((0,1)\setminus (I \cup I_1 \cup I_2)) \cap f^{-1}(y)$ is an infinite set, and length $f(I_k) < \frac{\pi}{2}$ length f(I).

By Lemma 4, for each j = 1,2, there exist disjoint compact intervals I_{j1} and I_{j2} with $I_{j1} \cup I_{j2} \subseteq (0,1) \setminus (I \cup I_1 \cup I_2)$ such that $f(I_{j1} \cup I_{j2}) \subseteq f(I_j)$, $f(I_{j1}) \cap f(I_{j2}) = \emptyset$, and for each k = 1,2, there are uncountably may $y \in E \cap f(I_{jk})$ for which $((0,1) \setminus (I \cup I_1 \cup I_2 \cup I_{11} \cup I_{12} \cup I_{21} \cup I_{22})) \cap f^{-1}(y)$ is an infinite set, and length $f(I_{jk}) \in \mathcal{F}$ length $f(I_{j})$.

By Lemma 4, for each j=1,2 and k=1,2, there exist disjoint compact intervals I_{jk1} and I_{jk2} with $I_{jk1} \cup I_{jk2} \subset (0,1) \setminus (I \cup I_1 \cup I_2 \cup I_{11} \cup I_{12} \cup I_{12} \cup I_{11} \cup I_{12} \cup I_{12} \cup I_{13} \cup$

We continue to use Lemma 4 in this way, so for each finite sequence a, we select disjoint compact intervals I_{a_1} and I_{a_2} disjoint from all the intervals previously selected such that $f(I_{a_1} \cup I_{a_2}) \subseteq f(I_a)$, $f(I_{a_1}) \cap f(I_{a_2}) = \emptyset$, and for each i = 1,2, length $f(I_{a_1}) < \%$ length $f(I_a)$ and there are uncountably many $y \in E \cap f(I_{a_1})$ for which infinitely many points of $f^{-1}(y)$ lie outside all the previously selected intervals and outside $I_{a_1} \cup I_{a_2}$.

Lemma 6. Let f be a continuous function on [0,1] and let there be uncountably many $y \in f[0,1]$ such that $f^{-1}(y)$ is an infinite set. Then there is a G_{δ} -set $X \subset [0,1]$ such that f(X) is not the union of a G_{δ} -set with a countable set.

Proof. Let the intervals I_a be as in Lemma 5, and let $I_a = [r_a, s_a]$. Let Y consist of all points y that lie in $f(I_a)$ for infinitely many indices a. For fixed n, Y $\subset U_a$ $f(I_a)$ where a runs over those sequences of length n. It follows that Y is the intersection of a contracting sequence of nonvoid compact sets, and Y is likewise nonvoid and compact. Length $f(I_a)$ tends to 0 as the length of the sequence a tends to ∞ . It follows from the construction that Y has no isolated points, and Y is a perfect set.

For each sequence a, use Lemma 1 to construct a nonvoid closed uncountable subset Y_a of $Y \cap f(I_a)$ that is a first category subset of Y. Then $[r_a,s_a] \cap f^{-1}(Y_a)$ is a closed set and $(r_a,s_a) \cap f^{-1}(Y_a)$ is a G_{δ} -set. Put $X = U_a$ $(r_a,s_a) \cap f^{-1}(Y_a)$. By Lemma 3, X is a G_{δ} -set. Moreover f(X) is a first category set relative to the subspace Y, and every point of Y is a condensation point of f(X). Consequently for any countable set C, $f(X)\setminus C$ is a dense first category set relative to Y. Thus $f(X)\setminus C$ cannot be a G_{δ} -set relative to Y; but Y is a subspace of R, so $f(X)\setminus C$ is not a G_{δ} -set relative to R. Finally, X is a G_{δ} -set, but f(X) is not the union of a G_{δ} -set with a countable set in R. \square

Lemma 6 proves half of our first result. The converse will be easy.

Theorem 1. Let f be a continuous function on [0,1]. Then f is a delta function if and only if for all but at most countably many points y, $f^{-1}(y)$ is a finite set.

Proof. If there exist uncountably many y for which $f^{-1}(y)$ is an infinite set, then by Lemma 6, f is not a delta function.

Now assume there are only countably many y for which $f^{-1}(y)$ is an infinite set. Let $U \subset [0,1]$ be an open set. Then f maps each component interval of U to a connected set; i.e., to the union of an open set and a finite set. It follows that f(U) is the union of an open set and a countable set.

Now let X be a G_{δ} -subset of [0,1]. Let $U_1 \supseteq U_2 \supseteq U_3 \supseteq \cdots$ be a contracting sequence of open sets such that $X = \cap_n U_n$. Let $f(U_n) = V_n \cup C_n$ where V_n is open and C_n is a countable set. Then

$$f(n_n U_n) \subset n_n f(U_n)$$

and any point y in the difference of these sets must have infinitely many points in $f^{-1}(y)$. Thus

$$f(n_n U_n) \cup (countable set) = n_n f(U_n)$$
.

But $n_n f(U_n) = n_n(V_n \cup C_n) = [n_n V_n] \cup (countable set)$. It follows that

$$f(X) = f(n_n U_n) = \{[n_n V_n] \setminus (countable set)\} \cup (countable set)$$

But $n_n V_n \setminus \text{(countable set)}$ is a G_{δ} -set because each V_n is open. So f is a delta function. \square

By a <u>nowhere monotonic</u> function on [0,1] we mean a function on [0,1] that is not monotonic on any subinterval of [0,1]. Routine arguments (we will leave) show that if f is continuous, nowhere monotonic, the points y for which $f^{-1}(y)$ is an infinite set, is a second category set in R. Thus f cannot be a delta function. Indeed if f is nowhere monotonic on any subinterval of [0,1], f cannot be a delta function.

So if f is a continuous delta function on [0,1] then any subinterval of [0,1] meets an interval on which f is monotonic; thus f is differentiable on a dense subset of [0,1]. Before we give another application of delta functions we need a lemma on intervals in R.

Lemma 7. Let c > 0. Then there exists a sequence $(I_n)_{n=0}^{\infty}$ of mutually disjoint closed subintervals of [0,1] such that the left endpoint of I_0 is 0, the right endpoint of I_1 is 1, Σ_n (length I_n) < c, the set $[0,1]\setminus U_n$ I_n is dense in itself, the set U_n I_n is dense in [0,1], and for each $n \ge 2$, the midpoint of I_n is also the midpoint of the interval joining the midpoints of the two intervals among $I_0,I_1,...,I_{n-1}$ that I_n lies between.

The proof is a straight-forward inductive construction, so we leave it.

Theorem 2. Let c > 0. Then there is a continuous delta function f on [0,1] such that the measure of the set of all points where f is differentiable is $\langle c \rangle$.

Proof. Let $(I_n)_{n=0}^{\infty}$ be the intervals in Lemma 7. We define functions g_n for each $n \ge 2$ as follows. If $n \ge 2$ and $I_n = [a,b]$, make $g_n(\%(a+b)) =$ the distance between the midpoints of the two intervals among $I_0, I_1, \ldots, I_{n-1}$ that I_n lies between. Make $g_n[0,a] = 0 = g_n[b,1]$, and make g_n linear on [a,%(a+b)] and [%(a+b),b]. Thus each g_n is a

continuous function on [0,1] and $f = \sum_{n=2}^{\infty} g_n$ is also continuous on [0,1]. Moreover $f^{-1}(y)$ is a finite set for $y \neq 0$. By Theorem 1, f is a delta function.

It remains only to prove that f is not differentiable at any $x \in (0,1) \setminus \bigcup_{n=0}^{\infty} I_n$. There are infinitely many indices n such that no interval among $I_0, I_1, \ldots, I_{n-1}$ lies between x and I_n . We obtain from construction, |f(x) - f(p)| > |x - p| where p is the midpoint of I_n . On the other hand, if $q \in (0,1) \setminus \bigcup_{n=0}^{\infty} I_n$, then f(x) - f(q) = 0. Because x is an accumulation point of $(0,1) \setminus \bigcup_{n=0}^{\infty} I_n$, f is not differentiable at x.

3. Bounded variation. In this section f will be a function of bounded variation on the interval [0,1]. Such a function can be discontinuous at only countably many points, but these points may make a considerable difference. For example, Theorem 1 is not in general true when "continuous function" is replaced by "function of bounded variation." Indeed there exist functions of bounded variation f that are not delta functions, such that $f^{-1}(y)$ has more than two points for no y.

Theorem 3 There exists a function f on bounded variation on [0,1] such that f is not a delta function and for each point y, $f^{-1}(y)$ is at most a doubleton set. Moreover, there is an open subset U of [0,1] such that f(U) is not the union of a G_{δ} -set with a countable set.

Proof. Let C denote the Cantor set. Each point of C is uniquely expressed as the sum $\Sigma_{n=1}^{\infty}$ $(2a_n)3^{-n}$, where (a_n) is a sequence of 0s and 1s. Let I be a complementary interval of C of the form $(x, x + 3^{-2k-1})$ where $x = \Sigma_{n=1}^{2k}$ $(2a_n)3^{-n} + 3^{-2k-1}$ ϵ C. Let U be the union of all such intervals. Then U is an open dense subset of [0,1] disjoint from C.

Let I be as in the preceding paragraph and let $u \in I$. Let $u - x = \sum_{n=1}^{\infty} b_n 2^{-n}$ where each $b_n = 0$ or 1 and $b_n = 1$ for infinitely many n. Define $g(u) = x + \sum_{n=1}^{\infty} (2b_n) 3^{-4k-2n} \in I$ and $f(u) = g(u) + 3^{-2k-1} \in C$. For $t \in [0,1] \setminus U$ define g(t) = f(t) = t. Then g is increasing on [0,1] and has total variation 1. Moreover, the total variation of f is $\ell + 2 \sum_{i=1}^{\infty} 3^{-2k-1} = 1 + 2$ (measure of U) ≤ 3 , and f has bounded variation on [0,1]. If $u_1, u_2 \in U$ and $f(u_1) = f(u_2)$, note that the component interval of U containing u_i is determined by the last nonzero term of the

expansion of $f(u_i)$ in which the power of 3 is odd, and the terms that precede it; thus u_1 and u_2 lie in the same component interval and it follows that $g(u_1) = g(u_2)$, $u_1 - x = u_2 - x$ and $u_1 = u_2$. Consequently $f^{-1}(y)$ is at most a doubleton set for each point y. Clearly $f(x, x + 3^{-2k-1})$ is an uncountable nowhere dense subset of C, and f(U) is a first category set relative to C such that each point of C is a condensation point of f(U).

If D is any countable set, $f(U)\setminus D$ is a dense first category set of C and is not a G_{δ} -set relative to C, or to R. Thus f(U) is not the union of a countable set with a G_{δ} -set relative to R, and f is not a delta function. \square

Before we give a sufficient condition for a function of bounded variation to be a delta function, we need more notation. Let f be a function on the interval [0,1]. We say that f is an L-function if f(x+) exists for each $x \in [0,1)$ and if f(x-) exists for each $x \in [0,1]$. (We admit infinite limits.)

We note that if f is an L-function, then f has at most countably many points of discontinuity. For take any $\epsilon > 0$, and set $g = \arctan f$. It is easy to see that the set $\{x \in (0,1) : |g(x+) - g(x)| + |g(x) - g(x-)| > \epsilon\}$ is finite. It follows that the set of all points of discontinuity of g and hence of f is countable.

Lemma 8. Let f be an L-function and let X be a subinterval of [0,1]. Then $\overline{f(X)}\setminus f(X)$ is countable.

Proof. Let $a = \inf X$, $b = \sup X$. Let D be the set of all points of discontinuity of f in (a,b); let $T_+ = \{f(x+) : x \in D\}$, $T_- = \{f(x-) : x \in D\}$, $V = \{f(a+), f(b-)\}$. Let $y \in \overline{f(X)} \setminus f(X)$. There are $x_n \in X$ such that $f(x_n) \to y$. Let (t_n) be a monotone subsequence of (x_n) and let $t_n \to t$. Because $\lim f(t_n) = y \notin f(X)$, we have $t_n \neq t$ for each n. If $t \in (a,b)$, then $t \in D$ and $y \in T_+ \cup T_-$; if $t \in \{a,b\}$, then $y \in V$. Hence $\overline{f(X)} \setminus f(x) \subseteq T_+ \cup T_- \cup V$ which is countable. \square

We offer more notation.

- (1) For any sets P and Q, let P ~ Q mean that $(P\Q) \cup (Q\P)$ is countable.
- (2) Let α denote the system of all subsets of α that can be expressed as the union of a α -set and a countable set.

Lemma 9. (1) If $P \sim Q$ and $Q \in G$, then $P \in G$.

(2) If $P_1,P_2,P_3,$... ϵ a, then \cap P_n ϵ a. We leave the proof.

Theorem 4. Let f be an L-function and let the set

$$S = \{y \in R : f^{-1}(y) \text{ has at least two elements}\}$$

be countable. Then f is a delta function. Moreover, if f is strictly monotonic on [0,1], then f maps G_{δ} -sets in [0,1] to G_{δ} -sets in R.

Proof. Let A be an open set in [0,1] and let $B = [0,1] \setminus A$. There are intervals J_1, J_2, J_3 , ... such that $A = U J_n$. Set $F = \overline{f[0,1]}$, $K_n = [0,1] \setminus J_n$, $F_n = \overline{f(K_n)}$. According to Lemma 8 we have $f[0,1] \sim F$ and $f(K_n) \sim F_n$ (n = 1,2,3,...). It follows that $\bigcap f(K_n) \sim \bigcap F_n$. Since S is countable, we have $F(A) \sim f[0,1] \setminus f(B)$ and $f(B) = f(\bigcap K_n) \sim \bigcap f(I_n)$. Hence $f(A) \sim F \setminus \bigcap F_n$ which is a G_{δ} -set. Thus $f(A) \in G$.

Now let $A = \bigcap A_n$, where A_1,A_2,A_3 , ... are open in [0,1]. Since S is countable, we have $f(A) \sim \bigcap f(A_n)$. Applying what has just been proved and Lemma 9 we get $f(A) \in G$ which completes the proof that f is a delta function.

Finally, let f be strictly monotonic on [0,1]. For any interval J, f(J) and $\overline{f(J)}$ differ by a countable set by Lemma 8, so f(J) is a G_{δ} -set. In the notation of the preceding two paragraphs, $f(A) = U f(J_n)$ is a G_{δ} -set by Lemma 3, and $f(A) = \Omega f(A_n)$ is a G_{δ} -set because f is one-to-one.

Unfortunately the condition in Theorem 4 is not necessary for f to be a delta function. Witness the delta function $f(x) = |x - \frac{\pi}{2}|$.

Does there exist a one-to-one function of bounded variation on [0,1] that does not map every G_{δ} -set to a G_{δ} -set? This is a natural question in view of Theorem 4. The following example shows that the answer is yes.

Let C denote the Cantor set and let U denote the open set $(0,1)\C$. Let U_1,U_2,U_3 , ... denote the components of U, let the left endpoint of U_n be a_n and the midpoint of U_n be d_n . For each n, define $f(a_n) = d_n$ and $f(d_n) = a_n$. For all other points t, define f(t) = t. Then f is a one-to-one function on I = [0,1]. It is easy to show (and we leave it) that the total variation of f is 4 + 4 (measure of U) = 5, so f is of bounded variation on I. Now $C \cap f(U) = \{a_n\}$ is a countable dense subset of C and is not a G_{δ} -set relative to C or to R. So f(U) is not a G_{δ} -set.

Does there exist a continuous function on I that is one-to-one and does not map every G_{δ} -set to a G_{δ} -set? No, because a one-to-one continuous function on I must be strictly monotonic. It is not difficult to show that if f is continuous on I and if for each point y, $f^{-1}(y)$ contains at most two points, then f is piecewise strictly monotonic. However we do have the following example. Let \emptyset be an infinitely many times differentiable function on R such that $\emptyset = 0$ on $(-\infty,0] \cup [1,\infty)$, $\emptyset > 0$ on $(0,1/3) \cup (2/3,1)$, $\emptyset < 0$ on (1/3,2/3), $\int_0^{1/3} \emptyset < \int_{2/3}^1 \emptyset$ and $\int_0^{2/3} \emptyset = 0$. Let C be the Cantor set and let $U_n = (a_n,b_n)$ be disjoint intervals such that $U_n = I \setminus C$ and let $\mathcal{E}_n = b_n - a_n$ $(n=1,2,3,\ldots)$. Set $\psi(x) = \sum_{n=1}^{\infty} n^{-2} \mathcal{E}_n^n \emptyset((x-a_n)/\mathcal{E}_n)$ and $f(x) = \int_0^X \psi(x \in I)$. It can be shown that f is infinitely many times differentiable, $f^{-1}(y)$ contains at most three points for each y and f is a delta function by Theorem 1. As in the preceding paragraph, $f(I \setminus C)$ is not a G_{δ} -set in R.

REFERENCES

1. Waclaw Sierpinski, Introduction to General Topology, The University of Toronto Press, Toronto, 1934.

Received January 9, 1987