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LATTICES, ALGEBRAS AND BAIRE S SYSTEMS

GENERATED BY SOME FAMILIES OF FUNCTIONS

I. Preliminaries. Let us establish some of the terminology to
be used. R denotes the real line. Let ( X,T) be a topological
space. A function f:X —>R is said to be T-quasi-continuous at
a point x € X iff for every € > 0 and for any neighbourhood

UET of the point x_ there exists a T-open set V such that

o
O4AVCU and If(x) - f(xo)‘<i & for every x € V, T=cliquish
at x_ € X iff for every £> 0 and for any neighbourhood U €T
of the point X there exists a T-open set V such that O ¢ VC
U and | f(x)- f(xl)t<f£ for x,x, € V.
A~ function f:X-—>R is T-quasi-continuoue(‘T-cliquish) on X
iff f is T-quasi-cohtinuous (T-cliquish )at every point of X,
Let X = R™.We shall use the following differentiation ba-
sis. For every k € N (N denotes the set of all positive inte-
gers )let P be the family of all m-dimensional intervals of
the form
Cigm1 /2",11/2") % voox (i -1 /2k,im/2k)

Wh‘re il,iz,ooo,im = 0,11,t2,ooo .
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Let P = U Pk .Let A c R™ be a set. For x € R™ we can defi-
k=1

ne the upper outer density of A at a point x by

d(A,x)= 1in [anPl/(Pl ,
P =»>x
Pe®
where |A| denotes m-dimensional Lebesgue outer weasure of A
and the understanding of the symbol P ===>x is thst x € P
and the diameter of P tends to zero.
Denote by Te the Euclidean topology in R™ and by d2 the densi-
ty topology relative to the diffsrentiation basis (P, =2 ) .
The symbols Qr. Cqp stand for the family of all T-quasi-con-
tinuous functions fiR™—>R and the family of all T-cliquisn
functions, respectivsly.Evidently we have Q; C CqT .
If K is a family of functions f:X— R then
(1) A(K) denotes the algebra generated by K, i.e. the least
family for which: K C A(K), f+g € A(K), f.g € A(K) for
any f,g € A(K) ;
(11) B(K) denotes the collection of all pointwise limits of
sequences taken from K ;
(1ii) L(K) denotes the lattice generated by K, i.e. the least
family for which max(f,g) € L(k) and wmin(f,g)€ L(K)for

any f,g € L(K).

be an ennumeration of all rationals with w_ = O,

Let (wn)n o
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II. Results.

Theorem 1.A function fiR™»R is dzcliquish iff f is Lebes-
gue measurable.

Oefinition 1.A measurable function f:R™»R is degenerate at
a point x ¢ R™ iff there exists»a neighbourhood U of f(x,)
such that the set f X U) has the density zero at Xge
A measurable function f is nondegenerate iff it is not degene-
rate at any point.

Theorem 2.A Lebesgue measurable function fiR"— R is dy-qua-
si-continuous iff f is nondegenerate.

Basic lemma.Assume that A € R" is a Gg set of Lebesgus mea-
sure zero, G cR™ 1s an open set and ACG.Then there exists a
sequence of pairwise disjoint (L) measurable sets‘Anc: G - A
(n= 0,1,2....)such that G A =G -A, E(An,x)) 0 for
every x € AUA_ (n = 0,1,2,?:?)and d_((R“'-G)UAO.x )> o for
each x € R" - G. ’

Theorem 3. A(de) - qu2 .

An outline of proof.It is enought to prove that qu2 c A(de).
Let f € qu2 .Let A be a Gy set of measure zero which contains

the set of all d,-discontinuity points of f.Let An (n=0,1,2,...)

be sets satisfy the conclusion of Basic lemma (for GarR"™ ).

Let us put
f(x) for x€A
fl(X) = wn fOl‘ XEAzn H n.0,1,2,..o
f(x)- w,  for x € Asne 1
and
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0] for x € A
fz(x) = f(x) - wo for x € Ao, i n=0,1,2,¢0.

wo for x € A2n+1

The functions f1.f2 are dquuasi-continuous and f = f1+f2 .
Theorem 4. L{Q = Cq
(‘dz) d2
An outline of proof. For fEqu and i=0,1,2,3 let us
2
put

Co
wo forerA
n=0

o«
f(x) for x & UO Agnei
n=

4n+ 1
fi(x) =

The functions fi (i = 0,1.2.3) are dz-quaei-continuous and
f = min(max(fo,fi),max(fz,f3))
Theorem 5. 8(Q = Cq
(94,) = Cag,
An outline of proof.It is enought to prove that Cqqy C
r4
B(Qd ) -If f € Cqy then there exists a Baire 2 function
2 2 '
g:R"—>R a.e. equal to f. Let h=f-g and let (Gn)n be a dec-
oo
reasing sequence of open sets such that () G, = A D
' n=1
{x eR™ h(x) £ O ‘J et |Al= O.For n=1,2,... let (A ), be a
sequence of measurable sets whicﬁEatiefiee the conclusion
of Basic lemma(for GaGn). Define

O
w, for xe€ U a
n=1

h (x) ={ h(x) for x eA

nk

0] for x G(Rm-Gn) ) Ano

The functions h_ (n=1,2,...) are dy-quasi-continuous and h=

lim h .Since g is Baire 2, there exists a sequence (g )
nyoo N < n
of d2-continuous functions with g = lim g .The sum
n—>o N
hn + 9, (n = 1.2,...) is dz-quasi-continuoue and f =-. g + h =

= }‘l—ﬂ;oo(gn + hn)o
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Theorem 6. B(QTQ) > CqTe and B(B‘QTJ) is the family
of all functions with Baire property.

Remark 1.The results which are presented in the theorems
1-5 hold, if instead the basis (, =) we will use the ba-
sis of disc or squares, or all intervals.

Theorem 7. A(QTe) = CqTe .

An outline of proof.Let f € Cq; .We have f = g + h ,
where g,h € Cq; and for every xee R™ there exists a finite
limit number<&§x$ of g/C(g) and a finite limit numbertxh(x)
of h/C(h). (Ctg) denotes the set of all continuity points
of g). Define

g(x) if g is continuous at x

mitxla
dg(x\if g is not continuous at x

h{x) if h is continuous at x
mz(x)-.-
dh(x)if h is not continuous at x

ng=g-=m and n, = h - my .

1
Since m, and m, are Te-quasi-continuous. it is enought to

prove that n, = {, + VY ,and n, = £, + Y, , where
fl,.Pz,\Pl,q/Z are T _-quasi-continuous.
Remark 2.The theorems 1-7 generalize more early results

for real functions of one variable.

Let R™ = R, If f:R— R is a function, then denote by Q(f)
oints
the set of all Te-quasi-continuity of f. Let qu be the set
{f € CqT ;f:R— KR and R-Q(f) is nowhere dense}.
e

Theorem 8.1f R" = R, we have L(Q; ) = Ca, .
e
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Denote by d the density topology in R.

Theorem 9. Every d=continuous function fi:R—>R is a sum
of two functions g,h which are d-continuous and Te-quasi-con-
tinuous.

Theorem 10. Every derivative f:R—>R is a sum of two

T,-quasi-continuous derivatives.

II1. Probltems. e have

(1) 1f each x_section of a function f:Rz—e-R, fx(t)= f(x,t)
and each y section fy(tj= f(t,y) are Tg-quasi-continuous,
then f is Te-quasi-continuous(Kempisty’.

(2) There exists (under Martin Axiom) a function f:RZ—>R
that all f and £Y are d-quasicontinuous, f is not(dxd)-cli-
quish and f is not Lebesgue measurable.

(3) There exists a Lebesgue measurable function f 15> K
which is not (dxd)-cliquish,

(4) 1f all f, are d;continuous and if all fY are d-quasi-
-continuous, then f is (dxd)-cliquish,

(5) There exists a function fi1R2—»R such that all sections
f, and fY are d-continuous and f is not (dxd)-quasi-continuous.

Problem 1.Is any(pxd)-quasi-continuous function f:Rz——?R

Lebesgue measurable ?

0’Malley defines the following topology in RZ

dxy-{At:RZ:A is measurable(L)and all sections Ax,Ay € ci}.

A function f:Rz—e»R is d A ~cliquish iff it is measurable(L).

Y

Problem 2.What is a characterization of family Q| ?
. . xy
Problem 3.Denote by r the O Malley s topology r in R.

What is a characterization of family Q. ?
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