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A General Approach Leading To Typical Results

Introduction. Notations. In this paper, we show that if % is a
closed subfamily of. the bounded Darboux Baire 1 functions, and

if & is closed with respect to the addition of a continuous,

piecewise linear function, then many of the properties known to
be typical in bounded Darboux Baire 1 are also typical in ®.
We shall see, in Lemma A2, that the subfamilies of bounded

Darboux Baire 1 functions satisfying the above conditions
includa the families of.continuous functions, bounded Darboux
upper semi-;ontinuous functions, bounded Darboux lower semi -
continuous functions, bounded derivatives, and the bounded
Zahorski classes. These familias will be denoted by &, bDusc,
bolsc, ba, and bA, (i=l,2,..,5),'respectively. Note that

bR, =bDB, ([10]), we will use either notation for this class.
Various propenties have been shown to be typical in some of
these families, see (3], [4], [S], [®], [7], [8], and [9].

Throughout, we assume that all functions are defined on

the closed unit interval [0,1], which is denoted by I. Each of
the above mentioned families is a Banach space with norm
|1 f]]=sup|f|. For any funmction f, Gr(f) and C(f) denote,

respectively, the graph of f and the continuity points of f.
For any set A, f|A denotes the restriction of f to A.
The closure and interior of A are denoted by clA and IntA,
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respectively . If A is a nonempty subset of the plane then,

domA denotes {x:(x,y)EA}. Finally, R will denote the real
numbers.
A subfamily % of bDB] will be called an L-family, if it is

closed in bDB], and whenever f is in % and p i3 a real-valued,
continuous, piecewise linear function defined on I, then f+p is
in &.

In the following, @ will denote an arbitrary L-family

unless we explicitly state otherwisa.

A. Preliminary Results. In this saction we prove Lemma A2
which was mentionad in the introduction. First, we state Lemma

Al which is needed in its proof.

Lemma Al. If fEbDB, and gE€&, then f+gEbZZ,.

Proof. [2] Theorem 3.2.

Lemma A2. Each of the families &, blusc, bllsc, bA, and bui

(i=1,2,..,5) is an L-family.

Proof. Each of the families above is closed in b23,. (see [2]
and [8].) Let p be a real-valued, continuous, piecewise linear

function defined on I. By Lemma Al, ¢+p C bDB1 for any family
% appearing in the statement of this lemma. Moreover, it is:
clear that ¢+p C & whenever 2 is one of &, bdusc, bDdlsc, or
bA. Thus, Qe only need to show that p+bﬂi C bA,. Let

ie{1,2,...,5} and fEDR, .
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For any real number o and r rational, set
Aa={x: f(x)+p(x)>al, Br={X: f(x)>x-r}, and Cr={X: p(x)>r}.
Since fEb®, and pEF, B _EM, [10], and C. is open. Hence,
B.NC.is inM, . Since Aa=U{BP nc:ris rational}, it

follows that AaEMi’ Hence, f+p€bmi. This complates the proof.

B. Typical Properties in‘L—families: We shall now discuss the
typical behavior of functions in an L-family. In particular,
among other results, we show that a typical function in an L-
family has every extended real number as a derived number at
every point. To carry out this discussion, some notation is
necessary.

Let s and t be real numbers with t>3. Let k be a natural
number greater than 2, and let (xo,yo) be any point in the
plane.

The set K*(xo,yo;s,t) (resp. K—(xo,yo;s,t)) denotes al)
-t<x<x0)

0 0
and (y-yo)/(x-xo)>s, and the set k(xo,yogs,t) denotes

points (x,y) in the plane such that x.<{x<x.+t (resp. g

K*(xo,yo;é,t) u K-(xo,yo;s,t).

If f is a function defined on I, the set X (f;s,t) denotes
all points x in I such that Gr(f) N K (x,f(x);s,t)=@, and
2. (fis,t) denotes z'(f3s,t) 0 [1/k,1-1/k]. The sets 2 (f;s,t),
x(f;s,t), X;(f;s,t) and lk(f;s,t) are defined in the obvious
manner.

If & is a subfamily of bDB‘, A(s,t,k) denotes the class of
functions f in & such that xk(f;s,t) is not empty.
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et - -

Finally, if X is one of the symbols in {K , K , K, X,
X, X} we denote X(®;k,1/k) by X(=;k). If X is one of the
+* l-
. k> Tk
and we denots A(k,1/k,k) by A

symbols in the set {X X, } we denots X(f;k,1/k) by X(f),

K*

To begin with, we prove

Lemma B1. If & is closed in bDB,,.then for all natural

numbars k>2, Ak is closed in 2.

Proof. Fix k>2. Let {fn}:=1 be a sequence of functions in A

that éonverges to a function fE®. We must show that fEAk.
First, since {fn}:=1 C AL xk(fn)za Sor all n. Let the

sequence {xn}:=1 be such that_xnezk(fn) for avery n. Clearly,

the sequence {(xn,fn(xn))}:=] is bounded. Hence, it has a limit

point (x,y). We shall show that y=f(x) and xElk(f).

Suppose that y<f(x). Since fEDB,, there exists a point z
such that x<z<x+t and (z,f(z))EK (x,y;k). Then, since fo~ f
and X, " x, it is clear that therse exists an N21 such that
Ix—xN|<t and the ﬁoint (z,fN(z)) lies above the line of slope k
which contains the point (xN,fN(xN));'i.e., xNEZk(fN), which is
a contradiction. Hence, y>f(x).

Similarly, y<f(x). Hence, y=f(x). It is also clear, from

the above argument, that x€Z (f). Therefore, fE€A .

In the next lemma and for the remainder of this paper, S[x,y;s]
denotes the open square with center (x,y) and side length &,

and whose sides are parallel to the coordinate axes.
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Lemma B2. Let f be in . Let & and £ be positive real

numbers with 8<s/4. Let x in (0,1) be such that

Gr(f) N S{x,f(x)+c/2;8] is empty.

Then there exists a and b in I and a function u in % such

that

(1) a<b<x and {(a,f(a)),(b,f(b))} C s[x,f(x);s],
(2) u¢<f on (a,b) and u>f on (b,x),
(3) {x: f(x)#u(x)} C (3,b) U (b,x),
(4) Gr(u) N S[x,f(x)+e/2;8] %0,
(5) Gr(u) N S[x,f(x)-£/2;8]#@, and
(8) |lu-fl]<e.
Proof. Since fELDEB,, it is clear that we can find points a, b,

x X

12 X 0n domS([x, f(x);8] such that a<x,<b<x,<x and the points
(a,f(a)), (x],f(x])), (b,f(b)), and (xz,f(xz)) are all in

S[x,f(x);8]. Define

e if x€(a,b)u(b,x),
F(x)-f(x,)-¢£/2 P fox ='x1,
p(x) = f(x)-f(x,)+e/2 if x = x,,
2 2
linear on (a,x]), (x],b), (b,xz) and (xz,x).

Let u=f+p. Since ¢ is an L-family, u€®. Clearly, u satisfies
(1), (é), and (3). ﬁoreover, since u(x1)=f(x)—s/2 and
u(x2)=f(x)+e/2, u satisfies (4) and (5). Finally, since
x],XZEdomS[x,f(x);é] and 8<g/4, we have If(x)-f(xi)|<s/4 for
i=1,2. Hence, ||u-f||<s. This completes\the proof.
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Theoraem B1. The class of functions fE® having both = and -«

as derived numbers at each point x in (0,1) is residual in &.
Proof. Let A (resp. A’) consist of all functions fEP for
which there existé x in (6,1) such that = (resp. -=) is not a
derived number from aeither side at x. We need to show that

AU A’ is an Fc of first category in %. For this, it is eanough
to show that A is an Fo of first category. Clearly, A=Uk>2Ak’

Hence, we only need to show that Ak is closed and nowhere dense
for every k.
Fix k. By Lemma B1, A is closed in . Thus, it suffices

to show that Ak is also nowhere dense. To do this, we take fE€9®

and £>0, and we find a function gE® such that ||f-g||<e and
x, (g)=0.

First, we prove that there exists a finite set
F={y],...,yn} such that, if xElk(f),there exists a y,EF and
positive numbers s(yi) and S(yi) such that S(yi)<s(yi)/4-and
S[yi,f(yi)*;(yi)/z;s(yi)] c K'(z,f(z);k) for all points z in
(x-50y;)»x28(y;)) N 2,(F). | |

To do this, let xElk(f). As remarked in [6],>Zk(f) is
closed and fllk(f) is continuous. Since fEDB], there exists a
point y>x and positive numbers t(y) and &(y) such that
§{y)<e(y)/4 and S[y,f(y)+e(y)72;8(y)] C K*(z,f(z);k) for all z
in (x-8(y),x+8(y)) n Zk(f). Let U(x)¥(x-6(y),x*5(y)). Then,
the collaction_{U(?): xElk(F)} is an ;pen.cover.of tha compact
set lk(f). Hence, there exist U(x]),...,u(xn) which cover

Zk(f). Clearly, the set F={y],y2,..,yn} is the desired sat.
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Let 6]=(1/2)min{|s-t|:s¢t and s, t€{y,,...,y_}},

52=(l/2)min{8(y]),...,S(yn)}, and 5=(1/2)min{1/k,8],6 Then,

2}.
domS[yi,f(yi);s] n domS[yJ,f(yJ);8]=@ if iEj.
For each i€{1,2,...,n}, let u, be a function in @

satisfying (1) through (6) of Lemma B2 with X2y, s s=s(yi), and

& as defined above. Define
ui(x) if oy, -8<x<y, +8,
g(x) =
f{x) otherwise.

Clearly, g€® and ||f-g||<e. It remains to show that z (g)=0@.

Let xE[1/k,1-1/k]. By (4) and (S5) of Lemma B2,
xE[l/k,]-l/k]\lk(g) for all xEZk(f) U {x: f(x)zg(x)}. Thus, we
may assume that g(x)=f(x) and xexk(f).

By the definition of z, (f), xezk(f) implies that there
exists a point z in (0,1) such that (z,f(z))EK(x,f(x);k).v If
g(z)=f(z), then xE[l/k,l-l/k]\Zk(g) and we are done. Hence, uwe
may assume that g(z)#f(z). Then there exists an i21 such that
g(z)=ui(z). By Lemma B2, there exist points a and b such that
a<b<x, and either a<z<b and ui(z)<f(z) or b<z<x and ui(z)>F(25,
Moreover, either (z,f(z))eK” (x,f(x);k) or (z,f(z))eK (x, f(x);k).

Assume that (z,f(z))eKk (x,f(x);k). Then, if b<z<x,
g(z)=u;(z)>f(z). Hence, (z,g(z))EK (x,f(x);k) and we are
done. Thus, we may assume’that a<z<b. By (4) of Lemma B2,
there exists z’ in the interval (b,x) such that ui(z’)>f(z).
Then, (z’,g(z’))eEK" (x,f(x);k) and x€[ 17k, 1-1/k]\Z, (g)-

Simitlarly, (z,f(2))eK (x,f(x);k) implies that
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xE[l/k,1-l/k]\lk(g). Therefore, Zk(g)=0. This completes the

proof.

Theorem B2. The class E of functions f in % having both =
and -« as derived numbers at every point x in I is residual in
P,

Proof.:. Let E1 be the class of Theorem Bl which is residual in

®. The class E2 of functions fE% having both = and -= as
derived numbers at 0 and 1 are residual in %, so it follows
that E= E] n Ez is residual in 2, completing the proof.

To prove Theorems B3 and B4 we need

Lemma B3. Let & be an L-family. Let f be in ®. Let &>0, and

(x,y)E(O,1)XR be such .that |y-f(x)|>2s.

If y-f(x)>28, then there exists a point a, with a<x and

(a,f(a))es[x,f(x);8], and a function uE® such that

(1) Lig_inf f{t)-inf{f(t): a<tix}| < &/2,
(2) u2f on (a,x) and u=f on I\(a,x),

(3) Gr(Q) N s[x,y;8]#@, and

(4) [lu-fll<]y-f(x)]|+8.

If f(x)-y>28, then there exists a point a in

domS[x,f(x);8], with a<x and a function vE® satisfying (1)

through (4) with u replacing v, "sup” replacing "inf" in (1),

and "2»" replacing "<"in (2).
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The proof of this lemma is similar to that of Lemma B2 and
will be omitted. In the next lemma, we use the following
notation.

Let n be a fixed positive integer and let (xo,yo) be any

point in the plane, we define

n{XgsYg!) = X,Y¥): X=X = T, =},
R-<X ) = {(X )’ 0 € x_.-x £ —1- and -l- < y—-__ﬁ)_ < 0 }
n‘*0°Yo Y/ 0 n’ n x = xg ’
K (xqs¥q) = {{xsy): 0 < |x=-xg] < 1, and Z—;—zg < L }.
n‘\"0’70 2 : A 0 n’ x - xO Y

A real-valued function f is said to have property <n> at a

point (xo,yo) i f x Edomf and Gr(f) n Kn(xo,yo)#ﬁ. We say f has

property <n> on a set E if it has property <n> at every point

of E.
Lemma B4. Assume fE®, £>0, and k and n are positive integers

with k>2. Then there exists a funciion’gEQ and a number &>0
such that

(1) ||f-gl|<e, and g has property <n> on Gr(g|[1/k,1-1/k]),

(2) if hE® and ||g-h||<8, then h has property <n>
on Gr(h|[1/k,1-1/K]).

In particular, the class of functions fE® having property <n)>

on Gr(f|[1/k,1-1/k]) is residual in &.

Proof. Let A=cif|[1/k,T-1/k]. Since fEDB,, for each zEA we
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can find Z’=(x’,y’) in (0,1)XR N [R;(z) U‘R;(z)] such that
(a) |y’ -f(x’)|<er2.

Then, it is clear that, we can find §(z), with 0<8(z)<1/n and
(b) we€s[z;8(z)] implies S[z’;8(2)] C R;(w) u R;(u),
(c) wes[z’;8(z)] implies S[z;&(z)] C Kn(w).

The collection {S[z;&8(z)/2]: z€A} is an open cover of the
compact set A, so theére is a finite subcollection
3[21;6(21)/2],3[22;6(22)/2],...,S[zm;S(zm)/Z] which covers A.
Then, clearly, we can redefine z;,z’,...,z; to afl have
distinct first coordinates and stifl satisfy (a) through (c)
above.

Let s]=(1/4)min{s,Iy;—f(x;)l,l/n,s(zi)(lgigm)},

52=(1/4)min{|s—t|:s#t, s, t€{x ,x ...,xm,x;,x’,...,x;}}, and

2)
5=min{6].52}. Clearly, domS[z;§8] n domS[z};5]=0 if oi£j.
Let M]={i: 1<igm, y;(f(x;)} and M2={i: 1<igm, y;)f(x;)}.

For each i€M, (resp. iEMZ) let u, (resp. Vi) be the function of

Lemma B3 with X3IX1 s y=y;, and & as defined above, and define

i u; (x) Pf oxI-8<x<x1+8, iEM,,
g(x) = vi(x) P f xI-8<x<xi+8, TEM,,
| f(x) otherwise.

Clearly, g&€®, and 6y’(3) of Lemma B3, ||f-g|]<s/2+28<s.

We now prove (1) and (2) of this Lemma. For this, we show
that if hE® satisfies ||g-h||<8, then h has property <n> on
Gr{h|[1/k,1-1/K]).

First, since Gr(g) N S[z;;é]#@ when 1<{i<m, and since
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28<6(zi), we have Gr(h) N S[z;;é(zi)]xe when 1<i<m. Hence, by
(b) and (c) above, h has property <n> on the set
T=Gr(h) n .yT {S[z,58(z;)] U s[z}:6(z;)]}-

Let (x,h{x))EGr(h|[1/k,1-1/k])\T. Then, there exists an i
such that g(x)=ui(x) or g(x)=vi(x). If not, then g(x)=f(x),
and since ||g-h||<s, |f(x)-h(x)|<8, forcing (x,h(x)) to be in
some S[zi;é(zi)] contradicting the choice of (x,h(x)).

First, assume that g(x)=ui(x), and let
(y,h(y))ES[z;;é(zi)]. By (3) of Lemma B3, since
(x,h(x))ES[z;;S(zi)], it follows that h(y)>h(x). Using Lemma
B3 and the fact that x€T, we can find a point a in
domS[z‘,s(zi)] such that a<x<x, and exactly‘one of the
following is true:

(a) h(x) > max{h(a),h(xi)};
(B8) h(x) < min{h(a),h(xi)}

If («) is true, then, since h(y)>h(x) and h is Darboux, h
crosses the horizontal line y=h(x) in at least two distinct
points, one between a and y and the other.between y and X -
Hence, Gr(h) N Kn(x,h(x))#a, and h has property <n> at
(x,h(x)). If (B) is true, we use (1) of Lemma B3 and the fact
that.h is Darboux to conclude that Gr(h) N Kn(x,h(x))#ﬂ.

A similar argument holds if g(x)=vi(x). Therefore h has

property <n> on Gr(h|[1/k,1-1/k]). This completes the proof.

Theorem B3. The class ¥ of functions f€® having zero as a

derived number at each point x in I is residual in &.
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Proof. For integers n21 and k>2, let E(n,k) be the class of
functions fE® having property <n> on Gr(f|[1/k,1-1/k]). By the
previous‘lemma, sach E(n,k) is res{dual in @.

Clearly, tha class E of functions fE® having zero as a
derived number at the points 0O and 1 is residual in 2. Since

?=EﬂnngQ;E(n,k), it follows that T is also residual in &,
As a corollary to Theorem B3 we have

Theorem B4. The class of functions f in @ having every

extended real number as a derived number at every point x in I

is residual in &.
Proof. Let ¥ be the class of Theorem B3. For each real

number r, let L. be the function defined by Lr(x)=ri for all
points x in I. Put EP={f+Lr: fEL}. Each E. is residual in 2.
This follows from the easily proven fact that N+LP={f+LP: fEN}
is nowhere dense in ¢, if N is nowhere dense in ¢. Clearly,
the family of functions N {Er: r is rational} is the desired

family.

Definition BI1. A real-valued function f defined on I is said

to be nowhere monotonic on I if it is not monotonically

increasing or decreasing on any subinterval J of I.

Theorem BS. The class of functions f in & such that f(x)+rx

is nowhere monotonic for every real number r is residual in 2.
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Proof. This class is a superset of the class, ¥, in Theorem
B4. Let fE¥. Then f+LP has all real numbers as derived
numbers at every point x in I.

Suppose that f+Lr is monotonic on some interval J. Say it
is increasing on J. Then f has no negative derived numbers on

J, a contradiction, proving Theorem BS.

We close this section with a discussion of the bilateral
behavior of derived numbers of a function f in some residual
subset of an L-family ®&. For ¢ C bDB‘, we denote by ¢ the
class of functions fE® having = and -« as derived numbers at

each point x€EI. MWe begin with

Lemma BS. For any positive integer k greater than 2, the

[y)
[e]
1)}
[}
Q

class F, of functions fE€®_ such that 2T (fF;k) noc(f) is

and nowhere dense in C(f) is residual in e .
Proof. Let E(f;k)=2"(f;k) N C(f). First, we show that E(f;k)
is closed in C(f) whenever fea_.

Let xEC(FI\E(f;k). Then K (x,f(x);k) contains a point
(t,f(t)). Clear1y,.there exists a 8>0 such that |
(u,v)ES[x,f(x);8] implies (t,f(t))eEK (u,vik). Since f is
Qontinuogs at x, we can find an open interval J containing x
such that f(J) C S[x,f(x);8]. Since J n C(f) C C(FI\E(F;Kk), it
follows that E(f;k) is closed in C({f).

Now, for an interval I with rational endpoints, define
A(I;k)={fee_: I n C(f) C E(f;k)}. Since each E(f;k) is closed
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in C(f), it follows that Fk=9°\UIA(I;k), where the union is
taken over all intehvals I with rational endpoints. To
complate the proof, it suffices to shéw that each A(I;Q) is
closed and nowhare dense in ¢n
Let us show that A(I;k) is closed in ¢ . To this and, let
{ﬁn}::] be a sequence of functions in A(I;k) converging to a
function fE2 . MWe must show that fEA(I;k).
Suppose that FEQQ\A(I;k). Then, there exists a point
xE[I N C(f)]\E(F;k) such that Gr(f) N K (x,f(x);k)#8. Let
(t,f(t))ek (x,f(x);k). Then there exists a number §>0 such
that (x-8,x+8) C I, and if (u,v)ES[x,f(x);8] then
Sft,f(t)gs] C K" (u,vik). Since f,~ fasn -~ a, there axists
an N>1 such that (t,fN(t))ES[t,f(t);s]. Moreover, since
ng:c(fn) is residual in I, thare exists yeng:c(fn) such that
(y,fN(y))ES[x,f(x);S]. But this implies that fNEA(I;k), which
is a contradiction. Therefore A(I;k) is closed in e
Now we show that if fEQn and £>0, then there exists a
function uE® \A(I;k) such that ||u-f[|<e. That is, A{I;k) is
nowhere dense in & . Obviously, we may assume that
fE@_\A(I;k). |
Let tEI N C(f). Then there exists a number n, with
0<n<1/k and (t,t*n) C I, and a point z in (t,t+n) such that
(z,f(z)+e/2)eK  (t,F(t);k).
Choose 8>0 such that (z-8,z+8) C (t,t+n) and &<t/4. Since
2 is an L-family, there exists a function uE® satisfying the
conclusions of Lemma B3, with x=z and y=f(z)+s/2. Moreover,
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since f(t)=u(t) and u and f have the same continuity points, we
have that ée[r N C(u)]\E(f;k). Hence uE@n\A(I;k) and ‘-by (3) of

Lemma B3, ||u-f||Es. This completes the proof.

Theorem B6. There exists a residual subset ¥ of 2 such that

for every fE¥ there exists a residual subset E(f) of I such

that every extended real number is a bilateral! derived number of

f at each XEE(f).

Proof. For each fE€2_, let E+(f) (resp. E_(f)) danote the sat
of points xEC(f) such that -« is a derived number from the
right (resp. left) at x, but that = is not a derived number
from the right (resp. left) at x. We will show that

E,(f) UE_(f) is of first category for every function in some
Fesidual‘subset of Qn.

For each k>2, let F, be the residual subset of Qn obtained

K Clearly, F is residual in @ -
f)=kg;E(f;k) which is of first

we x

from Lemma BS. Let F=kQ

F
Moreover, if fEF, then E*(
category in C(f), and hence in I.

Similarly, there exists a residual subset F’ of ®_ such
that for every fEF’ the set E_(f) is of first catagory in I.
If we put ¥=F N F’, then it follows that ¥ is residual in ?_.
By Theorem B1, QO is residual in . It follows that ¥ is

residual in ¢. Clearly, ¥ is the desired set and the proof is

complete.
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Two questions arise in connection with Theorem B6.

Question B, Given an L-family ¢, does there exist a residual
subset ¥ of % such that if f€%, then every real number is a

bilateral derived number of f at eavery point x in I ?

Question B2. Given an L-family &, does there exist a residual
subset ¥ of @ and a residual subset E of I such that if feEP,
then every real number is a bilateral derived number of f at

avery point of E ?
The first question has a negative answer for &, bDusc,
b?1sc, ba, and bA, (i=1,2,...,5). This is a consequence of a

theorem of M. Chlebik, [S] Lemma S, which implies the following

Theorem B7[Chlebik [5]]. Each of the families &, bDusc,

b21sc, bA, and bwi(i=1,2,.'.,5) contains a residual subset ¥

such that if f € ¥, then f attains a relative maximum (and

minimum) at exactly one point in each open subinterval of I

with rational endpoints.

If ¥ is as in Theorem B7 and fE¥, then number 1 is not a
derived number at the points where f achieves a maximum, The
answer to the second question is still open for many L-
families. However, it has a negative answer in the case of

5031, as the following theorem shows.
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Theorem BS. For every residual subset ¥ of bDB] and every

residual subset E of I there exists a function fE¥ and a point

xEE such that 1 is not a bilateral derived number of f at x.

Proof. Let ¥ be a residual subset of bDB1 and let E be a
residual subset of I. Let F be a bilaterally c-dense-in-itself
Fo subset of E. Then, there exists a function FEbDB] such that
0KF(x)<1 for x€F, ||f]]|=1, and f(x)=0 if x€I\F [1].

By Theorem B7, there exists a function gE€¥ which attains a
relative maximum at exactly one point in each open subinterval
of I with rational endpoints, and such that ||f-g|]|<1/4.
Clearly, g attains its maximum at a point xEE. Therefore the
number 1 is not a derived number at x. This complaetes the

proof.

C. Intersections with Lines: In this section we consider the
size and structure of the set consisting of the intersection of
a line, with a given slope, with the graph of a function f.

We begin with two definitions, the first of which is dus to

Bruckner and Garg [3].

Definition C1,. A nowhere monotone function is said to be of

the second species if f(x)+rx remains nowhere monotone for

every real number r.

Definition C2. A subset B of R is called a boundary set if

Int B8=@. »
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Theorem C1([Bruckner-Garg [3]]. If a function f in bdB, is of

the sacond species, thenm for every countable set E of R there

exists a residual set H in R such that {x: f(x)=rx+s} is a

danse-in-itsel f boundary set whenever r is in E and s is in H.

Theorem C2. There exists a residual set ¥ in % such that for.

2ach f in ¥ there exists a residual set H(f) in R such that

{x: f(x)=rx+s} is a dense-in-itself boundary set whenever r is

rational and s is in H(f).

»
Proof. By Theorem BS, the set ¥ of functions fE® of the
second species is residual in ®. Now apply the previous

theorem with E the rational numbers.

Theorem C3. Let h be an arbitrary real-valued, continuous

function daefined on I. Suppose that %#+h=%. Then there exists

a_residual subset ¥(h) in & such that for every f in ¥(h) there

exists a residual set H(f) in R such that {x: f(x)=h(x)+s} is a

dense-in-itself boundary set whenever's is in H(f).
Proof. It is clear, from the hypothesis, that the mapping
¢: ® - ® defined by e(f)=f-h is'a homeomorphism of & onto s.
By Theorem C2, there exists a residual set ¥ C 2=9(®) such
that for every gE-I"ll there exists a‘residual‘seg H'(g) C R such
that {x: g(x)=s} is a dense-in-itself boundary set whenaver
sEH-(g).

Since, Q(h)=¢-‘(§') is residual in @8, it follows that for
each fE¥(h) there i§ a residual set H(f)=H'(f-h) C R such that
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{x: (f-n)(x)=s}={x: f(x)=h(x)+s} is a dense-in-itself boundary

sat whenever s€H(f). This proves the theorem.
Corollary CI1. Let ¥ be a countable family of real-valued,
continuous functions defined on I. Suppose that $+h=% for

every h in ¥, then there exists a residual set ¥(¥) in % such

that for every f in ¥(¥) there exists a residual set H(f) in R

such that {x: f(x)=h(x)+s} is a dense-in-itself boundary set

whenever hEX¥ and sEH(f).

Proof. For each hEX¥ there exists, by Theorem C3, a residual
set ¥(h) C ® such that if fE¥(h), there exists a residual set
H(f,h) C R satisfying the conclusion of Theoram C23. Lat

Q(H)=hEHW(h), which is residual .in ¢. Finally, if fE¥(¥) we

only need to take H(f)=hEHH(f,h).
Corollary C2. Each of the families &, blDusc, bllsc, bA, and

b, (i=1,2,..5) satisfies the hypothesis of Theorem C2 and its

corollary.

In Theorem 3.2 of [2], Bruckner shows that there exists a
residual class N of continuous functions such that for each
function f in N there exists a countable dense set Sf C R such
that the set E_, defined by, Eq={x: f(x)=a}, is a perfect set
when c:ER\SF and is a nonempty perfect set union an isolated
point when aESf.

We will show that for certain subfamilies & of bZ)B1 there
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exists a residual set N of & such that for each f in N there
exists a countable dense set Sf C R such that Ea is a dense-in-
itsel f boundary GS sat when aER\Sf and is a nonempty dense-in-
itsel f boundary GS set union an isolated point when mESf.

This is an analogue to Bruckner’s result since a dense-in-
itself boundary G5 set is homeomorphic to the bilateral limit
ﬁoints of the Cantor set.

Many of the theorems and lemmas appearing below have

proofs similar to those found in [3]. We begin with the

following

Definition C3, A function f in bDB‘ will be called of

oscillatory type if every extended real number is a derived

number of f at every point x in I.

Remark C1. As a consequence of Theorem B4, the functions of

oscillatory type form a residual subset of any L-family &.

Lemma C1. Let & be an L-family and let A consist of those

functions f in & for which no set of the form {x: f(x)=a}

contains more than one point at which the function achieaves a

relative extremum. Then A is a residual 65 in 2.

Proof, For two disjoint intervals I and J with rational
endpoints, let A(I,J) denote the set of functions fE® for which
nei ther the supremum nor the infimum of f on I is equal to

ei ther the supremum or the infimum of f on J. We wish to show
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that A=NA(I,J) is a dense subset of & of type Gg. For this
purpose, it suffices to show that A(I,J) is dense and open in %
for avery pair (I,J).

Suppose that I and J are disjoint closed intervals. Let

E] denote the class of functions f€® such that

(=) sup{ f(x): x€l}zsup{f(x): xE€J}.
Choose fEE,. Write x=sup{f(x): x€I} and B=sup{f(x):xE€J}, and
set £=|a-8|. It is clear that if g€® and ||f-g||<e/2 then

gekE Hence, E. is open. To see that E] is also dense, let 7

1 1

be an open subsat of @, then ¢ contains an open set

?,=1g: | |g-h||<e} for some hEP and some £>0. We must show that

E, N 9.,#0. To do this, assume that sup{h(x): x€EIL}>

sup{h(x): x€J}. By Lemma B3, there exists a function g€® such
that ||h-g||<e, {x: g(x)#h(x)} € I, and sup{g(x): x€EI}>

sup{h(x): x€EI}. Hence, g€E,, and since | |g-h|]|<e, we see

g69h C ¢. Thus, E] N 2#£@0 and E] is dense in . ®.

Now, replacing “"sup” by "inf" in one or both sides of the

-

inequality in (®) above, we arrive at the sets E2, E and E4

3’
which are also dense and open in &. It is clear that A(I,J)=

4 . . .
.0,E. and that A(I,J) is therefore dense in and open in 2.

Definition C4. A subfamily P of b081 is called an L.-familx
if it is an L-family and there exists a residual set ¥ of ¢
such that each f in.@ attains a relative maximum (and minimum)
at exactly one point in each open subfnterval of I.

200



Lemma C2. The families &, blusc, bllsc, bA, and b#A.
——— 1

»
(i=1,2,...,5) are all L -families.

The proof of Lemma C2 is a direct consaquence of Theorem B7.
In the next theorem we will use the following notation.

]
Let ¢ be an L -family and let fE®. We set Mf=sup{F(x): x€1}

and mf=inf{f(x): xEI}.

»
Theorem C4. Let & be an L -family and let N be the class of

functions f in ® to each of which corresponds a dense

denumerable subset S. of the interval (mf,Mf) such that

Ea={x: f(x)=a} is

(1) a _dense-in-itself boundary G_ set when aéSf\{mF,Mf},

S
rM

(2) a single point when a=m. or M,

(3) of the form C, U {xa} where Ca is a nonempty

dense-in-itself boundary G_. set and X o is an

)

isolated point of Eu’

Then N is residual in @.

Proof. Let B be a residual set in % such that each f in B

attains a relative maximum (and minimum) at exactly one point

in each open subinterval of I. Let ¥ be the intersection of B
with the residual subset in Remark Cl1. Then ¥ is residual in &
agd each set Ea of a function f in ¥ is a boundary GS saet. MWe
will show that ¥ C N from which.it will follow that N is
residual iﬁ ®,
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Since f is of oscillatory type, a point will be isolated
in some Ea if and only if f achieves a strict extremum at x.

[t follows, from Lemmé Cl, that each point of extremum is a
strict point of extremum. Since a function fEF attains a point
of extremum in each open subinterval of I, it follows that the
set, O, of points of extremum of a function fE€¥ is dense in I.
Moreover, since each point of extremum is a sfrict point of
extramum, O is denumerable.

We now show that f(D) is a denumerable set dense in
(mf,Mf). Clearly , f(D) is denumerable. If f(0) is not dense,
then there exists an interval (c,d) C (mf,Mf) for which
f(D) N (c,d)=@. Pick 8>0 so that &<(d-c)/2 and let
E=clf-](c*5,d-6). Clearly{ E is a nonempty perfect set.

Choose x to be a point in E at which f|E is continuous.
This is poséible since fEDB]. Let {xn}:=1 be a sequence in
F-](c*s,d-S) approaching x. Since & is an L.-famin, the
function f achieves a maximum and a minimum on each interval of
the form (xn,xn*1). Since f(B) N (c,d)=@, it follows that the

image of the extrema points on (%n,x. ]) lie outside (c,d), and

n+
since X, xasn = = and f is Darboux, it follows that the
interval [c,d] is contained in a cluster set of f at x. It
follows that (e,d) is contained in the cluster set of f|E at
x. This contradicts the continuity of f|E at x.

Now, let Sf=f(D)\{mf,Mf}. Then, for any real number o, if

%€ S. U {mf,Mf} then, since f is of oscillatory type, £y

contains no isolated points. Hence, E is a dense-in-itself
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boundary G6 set. If asm. or M., then Ea is a single point

since the maximum and minimum of f over the interval I are

unique. Finally, if aESf the Ea contains exactly one point of

axtrema, X The point X o is isolated, and since mf<“<Mf and

since f is Darboux there are other points of Ex‘ Since none of
)

these points are isolated, it follows that Eq\{xa} is dense-in-

itself. This completes the proof.
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