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0. Introduction. To orient the reader to the major concepts and present

a few open questions let us start with the following three general problems.
. " 2 .
Let X and Y be "nice ) topological spaces, let M be metric and let

f : XXY+M be separately continuous, that is, f is continuous with respect

to each variable while the other is fixed.

I.Existence Problem: Find the set C(f) of points of.continuity of f. If

X and Y are "nice", then C(f) is usually a dense G6 subset of X XY.

There is also interest in a

"Fiber version'. It is the same as above, except now we look for C(f) in

{x} xY, for any fixed x in X.

15 Originally presented as an invited address during IX Summer Symposium
on Real Analysis, June 12-15, 1985, Louisville, KY.
2) For example, Polish cv:i22S (=separable complete metric)
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I1. Characterization Problem: Characterize C(f) as a subset of X xY.

Again for "nice" spaces X and Y, the set C(f) is usually the complement

of an Fo set contained in the product of two sets of first category.

I11. Uniformization Problem: Find a "uniform”, "thick" subset A of X

such that AXY is contained in C(f). Again, if X and Y are "nice" then

A is usually a dense G(S subset of X. The Uniformization Problem is also

known as a Namioka-type problem. (See [Nal.)

1. PREHISTORY. Leaving to historians of mathematics the job of deter-

mining who was the first to construct a separately continuous function
f: ]RZ-HR which is not continuous at some fixed point, let us mention only
that the earliest published example known to the author appeared in 1873,

26 years before Baire's [Ba]. 1Its author, J. Thomae [Th],wrote

.. "Dann mtssto z. ].l. die

Function @(y, z) = sin 4 arctg %, welche wir filr z = 0 dadurch

definiren, dass wir sie lings der ganzen y-Achso (in der y, z-Ebene)
gleich Null annchmen, im Innern des Kreises y*-+z* = 1 fiberall
stetig sein.". .
which shows that he knew of the existence of a function continuous along
every straight line through every point in its .domainl) which is not continuous.

He also states that these phenomena were known earlier to E. Heine (1815-

1897).(See also [Pr] and [Rs].)

The 1884 Calculus textbook [Ge] (!) by A. Genocchi, con aggiunte with

G. Peano, contains the now standard examples [Ru] of functions which are

1) This type of "almost continuity" (known also as '"linear continuity") has
been subsequently studied in [Lb],pp. 199-200, ([Ko], [KV1], [KV2] and [S1].
lLLet us also mention that in the sixties a similar class of functlons

f: m2>m (namely those that are continuous along almoct all lines In every
direction) was studied by W. H. Fleming, J. Serrin and D. Waterman. Finally
C. Coffman [Co] characterized this class of functions in terms of their partial
derivatives.
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separately continuous or are continuous along all lines in every direction
but are not continuous at the origin (0,0).

Due to an unprecedentedly careful way of quotation of new results in [Ge]

we can be sure that these examples appear for the first time.

2. History — from R. Baire through H. Hahn

n
Given a function f:iElXi'*Z, we shall denote that f is separately

n
continuous by f: il X &2 .
i=1'1i

Let us briefly recall the main results of R. Baire [Ba] concerning

our topic:

(*) Given f: [0,1] x [0,1]&R, then there is a residual set of lines parallel

to each axis consisting entirely of continuity points.

(**%) If f: R XR®R, then for every point (xo,yo) eR xR, for every disc K
centered at (xo,yo) and for every € > 0, there is a disc Kl contained in K

such that |f(x,y) - f(xo,yo)|< € for every (x,y) from Kl.l)

(**) There are functions f: RXR XR&R which are discontinuous at every

point of certain lines.

(*¥*) A function f: RXRXRS R may be of the second class of Baire but no

worse.

Somewhat similar topics, although involving for example partial deriva-

tives, have been studied in [VV].

1) This observation is due to G. Volterra [Vo]. The property of separately
continuous functions just presented was later called quasti-continuity [Kp].
See also [Mt], [Nbl], [Nb2] and [Ptl] for further generalizationms.
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An interesting process of demsifying the set D(f) of points of discon-

tinuity of separately continuous functions is shown by G. C. Young and

W. H. Young [YY], namely:

There is a function £ : [0,1] x [0,1] *R which is continuous with respect

to every straight line and which has uncountably many points of discontinuity

in every rectangle contained in the unit square.l)

Sketen of the construction: Place the Cantor ternary set on the line

— — ——— ——— —_— - -

y =% . On each of the lines y = % and

- - . - 3
b e — e — = — y =73 ve place the Cantor ternary set with
- - - oee———- ~ — | 2

3° as base, instead of 3. Generally, on all
| ey -y — - - the lines y = % of our set, where q = Zn,

R el we place Cantor sets with 3" as base.

Let fn(x.y) be numerically less than 1, continuous with respectlto
every straight line and discontinuous only at the points of the (perfect and

nowhere dense) set constructed on the ath 1line.

Then

£(x.y) = % £, (x,y) +% £,(x,y) +ooot z—ln £ (xy) + e

is the required function. O

Twenty years after the appearance of [Ba], H. Hahn [Hhl] improved
some of Baire's results, namely:
(i) Given a function f : R"&R, then any (n-l)-dimensional hyperplane
obtained by fixing one coordinate contains a dense set of continuity

points of f. (Compare (*).)

1) In 1949 T. Tolstoff [To] showed that there is a function
f: RxR~+R whose set D(f) of points of discontinuity has a
positive Lebesgue measure.
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(ii) A function f xmne;m is quasi—continuousl); this is a natural exten-
sion of (¥*).
And thirdly :
(iii) A function £ :R"&R may be discontinuous at every point of some
(n-2)-dimensional hyperplane.(€ompare (**).)
‘In fact, let g: RXR-+R be discontinuous at (0,0). Then f : ]Rn&IR, where

f (x1 s X .,xn) = g(xl,xz),is discontinuous at every point of the (n-2)-

g e

dimensional hyperplane x, = 0, x, = 0.

1 2
The condition (::) of Baire has been strengthened by H. Lebesgue [Lb] to the

following result:

(iv) A function f: R"&R may be of class n-1 of Baire but no worse.

Some related studies of the distribution of points of continuity in
hyperplanes are presented also in [Bgl] and [Bg2].

The famous text [Hh2] of H. Hahn is the first monograph, and the only
so far, where the separate versus joint continuity problem receives so much

attention. In fact, 8§39 (14 pages) is devoted completely to this topic.

Before we present some of his results let us make the following
notational convention.

n
Given a functiomr f: igl Xi-*Y, we shall say that f is weakly separatelu

n

continuous, denoted by f: igl XiﬁtY, if for all xiE:Xi, 1 <i< n-1 the

sections fXi glven by fxi (xl""’xi-l’xi+l""’xn) = f(xl,xz,...,xn) are

1) f: X-+2Z is quasi-continuous if for every xe X, for all open sets
U and V containing respectively x and f(x), there is a nonempty open

set Ul, Ul<=U, such that f(Ul)c V. There are quasi-continuous functions

of arbitrary class of Baire [Mr].
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continuous and for all xneDC Cl1 D = X the sections fx given by

n
fo (xl,xz,...,xn_l) = f(xl,xz,...,xn) are continuous; Cl stands for the
closure operator.

The following result of H. Hahn answers our Uniformization Problem.

Let xl""’xn-l be metric éech—complete spaces, Xn be compact metric

n n-1

and let Il X &R . Then there is a reajdual set A< I X_ such that
i=1l i — i=1 i

AXX_c C(f).
1

Further, [Hh2] offers systematic studies of so-called B-functions.

3. On the Existence Problem.

The following theorem due to F. Topséde and J. Hoffman-Jérgensen [Rg]

is based on an idea due to K. Kuratowski [Kul].

Theorem 3.1 Let X be Hausdorff and let Y and M be metric. If f: XXY®M
is a function, then C(f) is a residual subset of X XY such that all its y-

sections (= xe€X: (x,y) €C(f), yeY) are residual in X.

The theorem given below has been proved independently by J. C. Brecken-

ridge, T. Nishiura [BN] and myself [Pt2].

Theorem 3.2 Let X be Baire, Y be first countable and Z be metric. If
f: XxY+Z has all its x-sections fx continuous and all its y-sections

fy quasi-continuous, then C(f) is a dense GG subset of Xx {y}, for any veY.

The above result answers the "Fiber version' of the Existence Problem.
It also generalizes [Bu] (where Y is metric and f is separately continuous).
See also J. D. Weston's [We], where Y is first countable, Z is metric,

f: XxY&Z and C(f) is residual.

1) A somewhat similar notion known as symmetric guasi-continuity has
been studied by S. Kempisty. See also [Mt], [Pt3] and [LeP2] for further
generalizations.
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Another result which ensures the existence of "many" points of

continuity in X XY can be derived from the following Baire-Lebesgue-

1)

Kuratowski-Montgomery theorem.

Theorem 3.3 Let X and Y be metric and let f: XXY~R be continuous in x
and of class 0 in y. Then f is of class a+1 .
In fact, if a = 0, f is of class 1. Thus C(f) is residual. Now, if

X XY is Baire, then C(f) s a dense G(5 subset of X XY.

The following interesting result of W. Moran [Mo] is in the spirit of
Theorem 3.3 and may ensure "many'" points of continuity of separately contin-
uous functions defined on the product of compact-like non-metrizable spaces.

See [CaK] for further generalizationms.

Theorem 3.4 A function f: XXY&R from a product XXY of compact spaces is
the pointwise limit of a sequence of continuous functions on XXY if and only

if it is Baire measurable.

4. Cluster Sets and Continuity.

E. F. Collingwood [Col], [Co2] observed that some of his results on the
boundary behavicr of functions meromorphic in the unit circle do not depend
on the assumption that the considered objects are analytic functions, and

these results can be carried over to more abstract spaces.

1) See [Ba], [Lb], [Ku2], [Ku4], [Mz]. Compare [Eg] where a short proof is
given (using the fact that metric spaces have o-locally finite bases).
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Shortly thereafter J. D. Weston [We] presented an abstract theory of
cluster sets. Let us follow his definition of the cluster set. Let T and Z

be topological spaces. The clusier set of a function f: T>Z at a point teT,

denoted C(f;t),is defined as follows:

C(f;t) = é;h(ﬂ.f(U) , where Ut is the system of neighborhoods
t

of £t in T.
The'following Lemma 4.1 is not hard to show.

Lemma 4.1 Let T be a topological space , let Z be compact and let f: T>Z be
given. Then f is continuous if and only if for every teT we have C(f;t) = {f(t)}.
With the help of the above Lemma he showed the following result. (See

Section 3.)

Theorem 4.2 Let Y be first countable and let Z be compact metric. For

every f: XXY&Z and for every yeY, the set C(f) is residual in Xx{y}.

Feiock's result [Fk], being a careful analysis of Weston's proof,
gives an answer to our Uniformization Problem.
Theorem 4.3 [Fk] Let Y be second countable and let Z be compact metric.

If f: XXY® Z, then there is a residual subset A of X such that AXYc C(f).

Minor variations of the proof of Feiock were done by M.M. Mirzojan [Mz]
where the following result is shown:
Theorem 4.4 Let Y be metric, locally compact and O-compact and let Z be a
compact metric space. For every function f: XXY& Z there is a residual

G, subset A of X such that AXY< C(f).

S
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N. B. Mal'seva [M1] gives more examples of cluster sets of functions

between topological spaces and provides an updated bibliography.

Before we present the next result let us recall that a space X is

o]
called a kw—srace if X = é;& Xn with Xn's being compact and increasing

and X having their weak topology.
In fact Mirzojan's result has recentiy been generalized [LePl] to one

where Y is assumed to be a metric kw—space.

We shall now present some applications of the results on multifunctions
to our general problem of separate versus joint continuity.

Let us start by formulating the following definition.

A function f: XY is called nearly continuous at x_ €X if for every open

set V containing f(xo), the point X is in the interior of the closure of
-1

£ (V).

Lemma 4.51) [Ke2] Let Y be second countable. Then any function f: XY

is nearly continuous at every point of a residual subset of X.

Theorem 4.6 [Ke2] Let Y be second countable and let Z be regular and
second countable. If f: XXY&Z, then there is a residual set A in X

such that AXYcC(f).

Sketeh of the rroof: Let {Ui} be a countable base for Y, let {Vj}
be a countable base for Z and let A be the countable system of sets
A, ={nec(,2) : h(Ui)ch} i,j =1, 2, 3,... where C(Y,Z) is the
1]

set of all continuous functions from Y to Z.

1) This result has been shown originally by H. Blumberg in 1922; see
also [Pt4] and [Wi] for further generalizations.
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Now let g: X+C(Y,Z) assign the function fxeC(Y,Z) to each X, £X.
o

By Lemma 4.5 there is a residual set A on which g is nearly continuous.

We shall show that the set A has the properties mentioned in the
conclusion of Theorem 4.6.

In fact, take (xo.yo) €A XY and an open neighborhood VJ. of f(xo,yo).
Since f(xo,') € C(Y,Z),there exists an open set UicY such that yO‘EUi and
f(xo,Ui)c V_j. Hgnce g(xo) sAij. Since g is nearly continuous at X, the
set g-l(Aij) ={xeXx : gx) EAij} is dense in some neighborhood W of X .
This means that f(x,Ui) CVj for all x in some dense subset of W.

This remark and the assumption that f(',d) : X*Z is continuous for
deD (where D is dense in Y) imply that f(x,d) eCle for each fixed
deUinD and all xeW.

Now, since Z is regular, we are through by the continuity of £(x,")

and the density of D in Ui. O

5. Characterizations

The first characterization of points of continuity was shown by

R. Kershner [Kr]sy see also [Gr].

Theorem 5.1 [Ke] Let SeR". Then S is the set of points of discontinuity

of some f : R°&R if and only if S is an ﬁg contained in the product

n
iﬁlAi of sets Ai of first category in R, respectively.

Obviously C(f) = R" \D(f).

The following Lemma 5.2 was proved by J. C. Breckenridge and T.

Nishiura [BN].

Lemma 5.2 Let A and B be closed, nowhere dense subsets of metric spaces
X and Y respectively. If H is a closed subset of X XY with HC AXB, then
there is a function f: XxY & [0,1] such that f(x,y) = 1 for (x,y)E(AxY)U

(XXB). Furthermore, D(f) = H = {(x,y) €X XY : osc(f(x,y)) = 1} .
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Sketeit o' the preej:  We first constructa set E contained in X XY
such that: EN[(AXY)u (XXB)] = ¢ and Cl En([(AXY)U (X XB)] = H. Now
we define f by the following formula:

1, if pe (AxY)U (X*B)

d(p,E) , otherwise
d(p,E) + d(p, (AXY)U (X XB)) O

£(p) = (

The following Theorem easily follows from [BN].

Theorem 5.3 Let X and Y be compact metric. Further, let M be metric and
let S€XXY. Then S is the set of points of discontinuity of some f : X XYM
if and only if S is an FO contained in the product AXB of sets A, B of first
category in X and Y respectively.

The following problem of mine has been recorded, around 1978, in the

Wroclaw New Scottish Book as Problem 944.

Problem 5.4 Let X and Y be compact (Hausdorff) spaces. Characterize C(f)

for any f: XXY®R .

6. Namioka and co-Namioka spaces

Let us consider the following general statement which is a special case

of our Uniformization Problem formulated in Introduction.

(*) Given any function f: XXY&Z, then there is a dense G5 subset A of X

such that AXYcC(f).

In 1974 I. Namioka showed
Theorem 6.1 Let X be regular, strongly countably complete, Y be locally
1)

compact and o-compact and let Z be pseudo-metric. Then (*) holds.

His excellent article [Na] brings many interesting applications (some

1) This result is one of the first results of this type where both
X and Y do not have to be metrizable nor satisfy any countability
axioms.

303



Explanation of Diagram 1

Given a function f: X XY~ Z, we shall say that f is g-weakly sevarately

continuous (resp. a.e.-weakly separately continuous) if:

(1) For each xE€X, fx is continuous
(2) For each yE€ED, fy is quasi-continuous (resp., a.e. continuous

(in the sense of category)) for some Dc¢C1lD = Y.

Further, unless some weaker assumptions on a function f : XXY*Z are
imposed, recall that

(*) stands for: "For any function f: XXY&Z there is a dense G<5
subset A of X such that AXYcC(f)".

(**) stands for: "For any function f : XXY&2Z there is a residual set
A in X such that A XYc C(f)".

(*#*) rel B stands for: "For any function f : XXY&Z there is a residual

set A in X such that AXBc(C(f), where B<Y".

A ——E denotes "B generalizes A"

A B denotes "B is related to A"
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of them will be mentioned in Section 7) and no doubt initiated the renaiss-
ance of the topic of separate and joint contihuity. Soon after, a group of
analysts/topologists "joined the race", including mainly specialigts from the
famous French School of Mathematics. The question is: "How 'far' can one go

in answering (*)?" That is, what kinds of spaces may be assumed as X or Y?

It soon became clear that '"the candidates'" for X are various‘topologi-
cally complete spaces, while '"candidates" for Y are various compact-like
spaces. ' ' '

In fact I.Namioka, anticipating this observation, asked if Theorem 6.1

is true for any Baire space Xl).

J.P.R. Christensen [Crl] calls a space X Namioka if (*) holds for any
2)

compact space Y and any metric space Z.

Quite recently J. Saint Raymond [SR2] showed the following results.

Theorem 6.2 (1) Separable Baire spaces are Namioka.
(2) Tychonoff Namioka spaces are Baire.
(3) In the class of metric spaces:

"X is Namioka if and only if it is Baire.

In order to proceed further with the presentation of the results, we

need the definitions of some spaces in terms of games.
Let X be a space and let a and 8 b'e two players with 8 the first to
move. Consider the following games.
(1) Each player chooses a nonempty open set V in X, lying in the oppoment's
previously chosen open set. a wins if he can choose his Vi sets so that

(o]
NV +¢.
1=1 1

1) An answer, due to M. Talagrand [Ta2], came very recently; see Example 6.6.

2) It was shown in [Crl] that a metric space Z in this definition can be
replaced by the unit interval.
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(ii) same as (i) except a point is chosen by B in sets chosen by B and
open set chosen by o must contain the point.a wins if he can choose his Vi

o
: N
sets so that I Vi 0.

(iii) B starts by choosing an open nonempty subset UIC X. Then a chooses

an open subset VlC Ul and a point xle Vl. B then chooses an open nonempty

subset U2C Vl (he may choose as he wishes but is expected to escape [rom

)Zl). Next o chooses an open subset Vchz and a point xzevz, and so on.
a wins if any subsequence {xn } of the sequence {xn} accumulates to at least
p

o]

one point of the set () V, =
. i=l i

s

1 Ui'

(iv) same as in (ii), except for the fact that o chooses open subsets Vic:.Ui

and compact subsets KiC Vi (rather than points xieVi), where i = 1,2,... .

QQ @
o wins if the set C1 N K.n .0 V. $ @.
i=1 i =1 3]

(v) same as in (iv), except for the sets Ki’ chosen by o, are now

K-analytic (instead of compact).

Now, a space X is called a-favorable (resp.: strongly a-favorable;

o-well o-favorable; K-a-favorable; A-o-favorable) if o has a winning

strategy in the game (i) (in the game (ii), (iii) (iv) and (v), respectively).

Further, a space X is called B-defavorable (resp.: g-f-defavorable;

K-B-defavorables A-8-defavorable), if B does not have any winning strategy

1
in the game (i) (resp. in the game (iii); in the game (iv); in the game (v)) ).

Theorem 6.3 [Crl] o-well a-favorable spaces are Namioka.
Two years later, in 1983, J. Saint Raymond improved Theorem 6.3

showing

Theorem 6.4 [Sr2] o-B-defavorable spaces are Namioka.

1) Since there are spaces in which, for example, (i) is not determined,
there are B-defavorable spaces which are not o-favorable and so on.
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Shortly after M. Talagrand [Ta2] showed that all K-B-defavorable
spaces are Namioka. It was shown [Dv] that the class of K-R-defavor-
"able spaces capturés important classes of spaces such as Baire metrizable

or Baire spaces having dense K0 subspaces.

Subsequently, G. Debs [Db2] showed that the class of Namioka

spaces contains all Baire spaces having dense K-analytic subspaces.

Finally in [Db2] all the mentioned results starting from Theorem 6.3

were taken by

Theorem 6.5 [Db2] A-B-defavorable spaces are Namioka.

And when everything looked like the next class of Namioka spaces are

o-favorable ones, M. Talagrand showed

1 . .
Example 6.6 [Ta2] There exists an a-favorable ) space X which is not
Namioka.
Proof: Let S be an uncountable set and let 2 = {0,1}.
Define X = {xe 2’ : [{ses:x(s) =1} <No}. For each
x € X and a countable subset A<S define

W(x,A) = {yeX :¥se4a, y(s) = x(s)}.
Then

{W(x,A) : xe€X and A is a countable subset of S}

is a base for a topology on X. It can be shown that X is a-favorable.

So, if Y = BS, then £: XXY& [0,1] given by f(x,y) = x(y) is a

function for which the conclusion of (*) does nct hold. 0

Quite recently R. A. McCoy [Mc] remarked that the space X in Example
2)

6.6 is also pseudo-complete .

1) Hence a Baire space.

2) He also showed that X is O-dimensional Hausdorff (hence Tychonoff);
however, it is neither Lindelof nor satisfies CCC. An interesting
question which he raised [Mc] is whether X is normal.
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There is yet another result on Namioka spaces; namely D. Helmer {[Hr2],
p. 16)announced that a closed-hereditarily Baire space having a dense sub-
space of countable tightness is Namiokal). Also, another "structural resuit”
of D. Helmer (see also [Hr2]p.16) is of real interest; namely every Baire
which contains a sequence of subspaces being Namioka, and satisfying the
countable chain condition whose union is dense is also.Namioka.

For a mapping approach to Namioka spaces see [HJT].

Let us recall that Sorgenfrey line is a-favorable but not O-well
a-favorable [Crl]. It was stated in [Cr3] that it is Namioka. This fact,
however, can also be deduced from the just mentioned Helmer's result([Hr2],
p. 16). In fact, Sorgenfrey line is closed-hereditarily Baire and as
hereditarily separable it has countable tightness.

Observe that the function f defined in Example 6.6 still has "many"

points of continuity. This fact prompted M. Talagrand to ask the follow-

ing

Problem 6.7 [Ta2] Let X be Baire, Y be compact (Hausdorff) and let

f: XxY®R. Is C(f) + 97

In an attempt to find a suitable class of spaces Y such that for any
Namioka space X and any metric space M the statement (*) is true, the

following class of spaces has been defined in [LePl].

Let S be a '"nice" subclass of Namioka spaces (e.g. compact spaces). A

. .y . 2 o - . K3
space Y is called co-iamioka ) (resp. co-Namioka rel S) if for any Namioka

1) Pro€. R.W. Hansell bas kindly informed me thar he has obtained this

result indepeundently. )
2) Recently G. Debs [Db2] used the term co-damioka spaces for the class

of spaces Y, such that (*) holds for any Baire space X and any metric
space Z.
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space X (resp. any space X from S), for any metric space M and any function
f: XxXY&M there is a dense GG set A such that A xYe C(f).

In the process of showing his main result of [Na], I. Namioka proved

Theorem 6.8 Every locally compact O-compact space is co-Namioka.

In 1979, M. Talagrand [Tal] showed

1 e
Theorem 6.9 Special K-analytic spaces ) are co-Namioka rel C, where C stands
for the class of compact spaces.

Last year, J. P. Lee and myself [LePl] have shown

Theorem 6.10 kw spaces are co-Namioka rel LC, where LC stands for the class
of locally compact spaces.

Further, the following result may be deduced from [CT].
Theorem 6.11 Every second countable space is co-Namioka.

This means, in particular, that if X = [0,1], Y is the set Q of ra-

tional numbers and M is metric, then the conclusion of (*) is true!

However, one cannot have the rationals Q as the first factor of the

product X XY, In fact, we have

Example 6.12 [Cr3] Let X = Q, Y = [-1,1] and let Z = Cp(QZ, (-1,11), the
2

space of continuous functions from Q” into [-1,1] with the topology of the

Then there is

. . . '
pointwise convergence; which is a compact metric space ().

a function f: XXY& Z for which the conclusion of (*) does not hold.

So, are all Lindelof spaces co-Namioka?

Example 6.13 [Tal] Let X and Z be the unit interval I and let Y be the

space C_(I,I) of continuous functions from I into I, equipped with the topologzy

of the pointwise convergence. Then f(x,y) = y(x) is a separately continucus

1) See [Tal] for the definition of special K-analytic spaces.
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Let X be compact.
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function which does not satisfy the conclusion of (*). So mavbe all locally

compact spaces that are paracompact, or all k-spaces, are co-Namioka? In

particular, does (*) hold for both X and Y being complete metric spaces and

Z being metricl)?

The following example, due to J. B. Brown, answers these questions in

the negative.

Example 6.14 ([Bw2]; see also [LePl])

™ Let X = [0,1], Y= Y v .,v = [0,1]
/r et ael0,1] 70’ Yo »11

( Udenotes the free union of Ya's ).

//// let f: XXY®R be defined to be separately
continuous on every squareX><Ya and to have

a point of discontinuity along the line x = «.

Let us close this section with the following two problems.

Problem 6.15 [Ta2] What compact spaces Y are such that for every Baire

space X and every f: X XY®R the conclusion of (*) holds?

Problem 6.16 [LePl] Characterize co-Namioka spaces.

7. Applications .

"
For the reader's convenience we shall separately list some applications”

of Namioka-type theorems to topological groups and semigroups and applications

to the theorv of Banach spaces.
3)

a) Topological groups and semigroups.

1) This question has been asked explicitly in [Crl], and implicitly in [AO].
2) Usually these results depend essentially upon particular theorems on sep-
arate versus joint continuity; that is, the latter are being applied on a
piecemeal basis.

3) Professor N. Brand has informed me that the proofs of a few results
regarding topological groups and related to sevarate and joint continuity
are incorrect, namely [Hull, §9, Cor. 3, [Hu2],Chapter II, §17, Cor. 3,

p. 38 and [Wul, p. 453; see [Bdl], p. 54 for more information.
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— Ellis' theorem on separately continuous actions of locally compact
groups on locally compact spaces;see [Na], [Tr2] and [HT].

— compact éemitopological semigroups (with identities) acting on compact
spaces; see [Lwl], [Lw2], [Hr3] and [WT]. |

— Ryll-Nardzewski's theorem on minimal ideals of compact semitopological
semigroﬁps having dense subgroups of units; see [Tr2], [Rp].

- quson—Glicksberg theorem on compact subsets of the space of all contin-
uous homomorphisms of a topologically complete group into a topological

group; see [Na], [cCcrl].

Now, let us list some applications of the results on separate versus
joint continuity into Banach spaces.

b) The theorv of Banach spaces.

— Troyanski's theorem: weak-compact convex subset of a Banach space is
the closed convex hull of its "denting points'y [Nal-

— existence of "thick' sets where each continuous convex function from a
Banach space is Gateauxldifferentiable; [st1], [pbl], [LW].

— Johnson's theorem on the norm separability of the range of certain

functions;[Cr2] .

— first class selectors for weakly upper semi-continuous multivalued maps
in Banach spaces; [HJT].

— Radon-Nikodym Property; [ChK], [Tall.

— compact spaces that are homeomorphic with weakly compact sets in

Banach spaces (= Eberlein-compacts)s [Hr2], ([Dv] and [Ta2].

The author would like to thank the referee for his comments which

essentially improved the exposition of the results.

I also would like to thank Mrs. K. DeMatteo, the typist, for her patience

and understanding.
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