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 0 . Introduction . To orient the reader to the major concepts and present

 a few open questions let us start with the following three general problems.

 2)
 Let X and Y be "nice11 topological spaces, let M be metric and let

 f : X x Y ■+ M be separately continuous, that is, f is continuous with respect

 to each variable while the other is fixed.

 1, Existence Problem: Find the set C(f) of points of continuity of f. If

 X and Y are "nice", then C(f) is usually a dense subset of XXY.

 There is also interest in a

 "Fiber version" . It is the same as above, except now we look for C(f) in

 (x) XY, for any fixed x in X.

 1) Originally presented as an invited address during IX Summer Symposium
 on Real Analysis, June 12-15, 1985, Louisville, KY.
 2) For example, Poivsm. s v a ces (=separable complete metric;
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 II. Characterization Problem; Characterize C(f) as a subset of XxY.

 Again for "nice" spaces X and Y, the set C(f) is usually the complement

 of an F set contained in the product of two sets of first category.

 III. Uniformization Problem: Find a "uniform", "thick" subset A of X

 such that A x Y is contained in C(f). Again, if X and Y are "nice" then

 A is usually a dense subset of X. The Uniformization Problem is also

 known as a Namioka-type problem. (See [Na].)

 1 . PREHISTORY . Leaving to historians of mathematics the job of deter-

 mining who was the first to construct a separately continuous function

 f : 1R ->3R which is not continuous at some fixed point, let us mention only

 that the earliest published example known to the author appeared in 1873,

 26 years before Baire's [Ba] . Its author, J. Thomae [Th], wrote

 "Dunn intlssto z. ì'. «lie
 • • •

 Function io(yì z) = sin 4 arc tg welche wir fili* z = 0 dadurch
 z 1 1

 dcfìiiiron, dass wir Bio längs der ganzen y-A cliso (in der yi z-Ebcnc)

 gleich Null annehmen, im Innern des Kreises yl-'-zl - I überall
 stetig sein. 11 • • •

 which shows that he knew of the existence of a function continuous along

 every straight line through every point in its domain1^ which is not continuous.

 He also states that these phenomena were known earlier to E. Heine (1815-

 1897). (See also [Pr] and [Rs].)

 The 1884 Calculus textbook [Ge] (!) by A. Genocchi, con aggiunte with

 G. Peano, contains the now standard examples [Ru] of functions which are

 1) This type of "almost continuity" (known also as "linear continuity") has
 been subsequently studied in [Lb], pp. 199-200, [Ko], [KV1], [KV2] and [SI].

 Let us also mention that in the sixties a similar class of functions
 o

 f: IK vOt (namely those that are continuous along alinoci all lines in every
 direction) was studied by W. H. Fleming, J. Serrin and D. Waterman. Finally
 (!. ('offman [Co] characterized this class of functions in terms of their partial
 d or lva tives .
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 separately continuous or are continuous along all lines in every direction

 but are not continuous at the origin (0,0).

 Due to an unprecedentedly careful way of quotation of new results in [Ge]

 we can be sure that these examples appear for the first time.

 2. History - from K. Baire through H. Hahn
 n

 Given a function ^ we denote that f is separately

 n

 continuous by f: ,iIx>Z .
 i=l i

 Let us briefly recall the main results of R. Baire [Ba] concerning

 our topic:

 (*) Given f: [0,1] x [0,1] MR, then there is a residual set of lines parallel

 to each axis consisting entirely of continuity points.

 (**) If f: H X1R^]R, then for every point (x0>yQ) f°r every disc K
 centered at (x ,y ) and for every e> 0, there is a disc K contained in K

 o o 1

 such that |f(x,y) - f(xo,yQ)|< e for every (x,y) from

 (***) There are functions f: H X1R X1RMR which are discontinuous at every

 point of certain lines.

 (£J) A function f: 1RX 1RX IR H may be of the second class of Baire but no

 worse.

 Somewhat similar topics, although involving for example partial deriva-

 tives, have been studied in [W] .

 1) This observation is due to G. Volterra [Vo] . The property of separately
 continuous functions just presented was later called quasi- continuity [Kp].
 See also [Mt] , [Nb 1 ] , [Nb2] and [Ptl] for further generalizations.
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 An interesting process of densifying the set D(f) of points of discon-

 tinuity of separately continuous functions is shown by G. C. Young and

 W. H. Young [YY], namely:

 There is a function f : [0,1] x [0,1] -*"1R which is continuous with respect

 to every straight line and which has uncountablu many points of discontinuity

 in every rectangle contained in the unit square. ^

 Sketch of the construction: Place the Cantor ternary set on the line

 - - - - -
 -■N- M»

 . ... -

 3^ as base, instead of 3. Generally, on all

 _ mm

 - - • -

 Let f (x,y) be numerically less than 1, continuous with respect to
 n

 every straight line and discontinuous only at the points of the (perfect and

 nowhere dense) set constructed on the nc^ line.

 Then

 f (x,y) » f^(x,y) + j f2(x,y) + . . .+ fR(x,y) + . . .

 is the required function. | - ļ

 Twenty years after the appearance of [Ba] , H. Hahn [Hhl] improved

 some of Bairefs results, namely:

 (i) Given a function f : ]Rn6^]R, then any (n-l)-dimensional hyperplane

 obtained by fixing one coordinate contains a dense set of continuity

 points of f. (Compare (*).)

 1) In 1949 T. Tolstoff [To] showed that there is a function
 f : IRxlR-HR whose set D(f) of points of discontinuity has a
 positive Lebesgue measure .
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 (ii) A function f : iť^lR is quasi-continuous"^; this is a natural' exten-

 sion of (**).

 And thirdly :

 (iii) A function f :lRn£>lR may be discontinuous at every point of some

 (n-2)-dimensional hyperplane- (Compare (*£*).)

 In fact, let g : lRx]R-^]R be discontinuous at (0,0). Then f : ]R.n&-]R, where

 f (x^ , ,...,x^) E g(x^,x2)»is discontinuous at every point of the (n-2)-

 dimensional hyperplane x^ = 0, = 0.

 The condition (*~) of Baire has been strengthened by H. Lebesgue [Lb] to the

 following result:

 (iv) A function f : Hn£KIR may be of class n-1 of Baire but no worse.

 Some related studies of the distribution of points of continuity in

 hyperplanes are presented also in [Bgl] and [Bg 2 ] .

 The famous text [Hh2] of H. Hann is the first monograph, and the only

 so far, where the separate versus joint continuity problem receives so much

 attention. In fact, §39 (14 pages) is devoted completely to this topic.

 Before we present some of his results let us make the following

 notational convention.

 n

 Given a function- f : Jiï X^-*-Y, we shall say that f is weakly separately
 n

 continuous . denoted by y f : X.^Y, if for all x. EX., 1 < i < n-1 the

 sections f * given by f (x , . . . ,x^_^,x^+^, . . . ,x^) = f (x^jx^) • • • ,x^) are
 * i i

 1) f : X->Z is quasi- continuous if for every x£X, for all open sets
 U and V containing respectively x and f(x), there is a nonempty open

 set u' U^cu, such that f(U^)cV. There are quasi-continuous functions
 of arbitrary class of Baire [Mr] .
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 continuous and for all x^eDcCl D = X the sections f given by
 n

 f (x. ,x0 , . . . ,x ļ) = f (x. ,x_ , . . . ,x ) are continuous; CI stands for the
 X i L n- i i ¿ n
 n

 closure operator.

 The following result of H. Hahn answers our Uniformization Problem.

 *

 Let be metric Cech-complete spaces, X^ be compact metric
 n n-1

 and let H X. . Then there is a residual set A<= ÏÏ X. such that
 i=I i - i=l i

 A x X c C(f).
 n

 Further, [Hh2] offers systematic studies of so-called B-functions. ^

 3. On the Existence Problem.

 The following theorem due to F. Tops^e and J. Hoff man- Jürgens en [Rg]

 is based on an idea due to K. Kuratowski [Kul] •

 Theorem 3.1 Let X be Hausdorff and let Y arid M be metric. If f: XXY^M

 is a function, then C(f) is a residual subset of X * Y such that all its y-

 sections (= xeX : (x,y) eC(f), yeY) are residual in X.

 The theorem given below has been proved independently by J. C- Brecken-

 ridge, T. Nishiura [BN] and myself [Pt2],

 Theorem 3.2 Let X be Baire, Y be first countable and Z be metric. If

 f : XxY + Z has all its x-sections f continuous and all its y-sections
 x

 f quasi-continuous, then C(f) is a dense Gg subset of X*{y}, for any veY.

 The above result answers the "Fiber version" of the Existence Problem.

 It also generalizes [Bu] (where Y is metric and f is separately continuous).

 See also J. D. Weston's [We], where Y is first countable, Z is metric,

 f : Xx Y&-Z and C(f) is residual.

 1) A somewhat similar notion known as symmetric quasi- continuity has
 been studied by S. Kempisty. See also [Mt] , [Pt3] and [LeP2] for further
 generalizations .
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 Another result which ensures the existence of "many" points of

 continuity in X x Y can be derived from the following Baire-Lebesgue-

 Kuratowski-Montgomery ^ theorem.

 Theorem 3.3 Let X and Y be metric and let f: X x Y -*]R be continuous in x

 and of class Oí in y . Then f is of class ct+1 .

 In fact, if a = 0, f is of class 1. Thus C(f) is residual. Now, if

 XXY is Baire, then C(f) is a dense subset of XXY.

 The following interesting result of W. Moran [Mo] is in the spirit of

 Theorem 3.3 and may ensure "many" points of continuity of separately contin-

 uous functions defined on the product of compact-like non-metrizable spaces.

 See [CaK] for further generalizations.

 Theorem 3.4 A function f: X x Y^H from a product XXY of compact spaces is

 the pointwise limit of a sequence of continuous functions on X x Y if and only

 if it is Baire measurable.

 4. Cluster Sets and Continuity,

 E. F. Collingwood [Col], [Co2] observed that some of his results on the

 boundary behavior of functions meromorphic in the unit circle do not depend

 on the assumption that the considered objects are analytic functions, and

 these results can be carried over to more abstract spaces.

 1) See [Ba] , [Lb], [Ku2] , [Ku4] , [Mg], Compare [Eg] where a short proof is
 given (using the fact that metric spaces have a-locally finite bases).
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 Shortly thereafter J. D. Weston [We] presented an abstract theory of

 cluster sets. Let us follow his definition of the cluster set. Let T and Z

 be topological spaces. The cluster set of a function f: T~*Z at a point tcT,

 denoted C(f;t),is defined as follows:

 C(f;t) = 9 where is the system of neighborhoods

 of t in T.

 The following Lemma 4.1 is not hard to show.

 Lemma 4 . 1 Let T be a topological space , let Z be compact and let f: T~*Z be

 given. Then f is continuous if and only if for every teT we have C(f;t) = {f(t)K

 With the help of the above Lemma he showed the following result • (See

 Section 3.)

 Theorem 4.2 Let Y be first countable and let Z be compact metric. For

 every f: XXYÉ*Z and for every y eY, the set C(f) is residual in Xx(y}.

 Feiock's result [Fk] , being a careful analysis of Weston's proof,

 gives an answer to our Uniformization Problem.

 Theorem 4.3 [Fk] Let Y be second countable and let Z be compact metric.

 If f: XxYt±Z, then there is a residual subset A of X such that AxYcC(f).

 Minor variations of the proof of Feiock were done by M.M. Mirzojan [Mz]

 where the following result is shown:

 Theorem 4.4 Let Y be metric, locally compact and a-compact and let Z be a

 compact metric space. For every function f: Xxy£*Z there is a residual

 Gr subset A of X such that A xYc C(f).
 ò
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 N. B. Mal 'seva [Ml] gives more examples of cluster sets of functions

 between topological spaces and provides an updated bibliography.

 Before we present the next result let us recall that a space X is
 00

 called a k - svace if X = M, X with X Ts being compact and increasing
 (jl) n=l n n

 and X having their weak topology.

 In fact Mirzo jan1 s result has recently been generalized [LePl] to one

 where Y is assumed to be a metric k -space. ť 0) ť

 We shall nox^ present some applications of the results on multifunctions

 to our general problem of separate versus joint continuity.

 Let us start by formulating the following definition.

 A function f: X"*Y is called nearly U continuous at x_zX if for every open

 set V containing f(x ), the point x is in the interior of the closure of
 O o

 f_1(v).

 Lemma 4.5^ [Ke2] Let Y be second countable. Then any function f: X + Y

 is nearly continuous at every point of a residual subset of X.

 Theorem 4.6 [Ke2] Let Y be second countable and let Z be regular and

 second countable. If f: XxY£tZ, then there is a residual set A in X

 such that AXYcC(f).

 Sketch of ťhe zroof: Let be a countable base for Y, let

 be a countable base for Z and let A be the countable system of sets

 A.. = { h £ C (Y , Z ) : h (U.)cV.} i,j = 1, 2, 3,... where C(Y,Z) is the
 ij 1 J

 set of all continuous functions from Y to Z.

 1) This result has been shown originally by H. Blumberg in 1922; see
 also [Pt4] and [Wi] for further generalizations.
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 Now let g: X-*C(Y,Z) assign the function f eC(Y,Z) to each x EX.
 X° °

 By Lemma 4.5 there is a residual set A on which g is nearly continuous.

 We shall show that the set A has the properties mentioned in the

 conclusion of Theorem 4.6.

 In fact, take (x ,y ) e A XY and an open neighborhood V. of f (x ,y ).
 0 o j o o

 Since f (xQ, * ) e C(Y,Z) , there exists an open set U.cY such that vq e and

 f(x0.Ui)cV Hence g(xQ) £ A,^ . Since g is nearly continuous at xq1 th*

 set g = txeX : g(x) e A^ ^ } is dense in some neighborhood W of xq.
 This means that f(x,U.)cV. for all x in some dense subset of W.

 1 J

 This remark and the assumption that f(*,d) : is continuous for

 deD (where D is dense in Y) imply that f(x,d) e CIV^ for each fixed
 deU.OD and all xeW.

 i

 Now, since Z is regular, we are through by the continuity of f(x,*)

 and the density of D in U^. q

 5. Characterizations

 The first characterization of points of continuity was shown by

 R. Kershner [Kr]ļ see also [Gr].

 Theorem 5.1 [Ke] Let Sc]Rn. Then S is the set of points of discontinuity

 of some f : IRnfe-]R if and only if S is an F^ contained in the product
 n

 i-l^i sets first category in R, respectively.

 Obviously C(f) = ]Rn'D(f).

 The following Lemma 5.2 was proved by J. C. Breckenridge and T.

 Nishiura [BN] .

 Lemma 5 . 2 Let A and B be closed, nowhere dense subsets of metric spaces

 X and Y respectively. If H is a closed subset of XXY with HcAxB, then

 there is a function f: X * Y &+ [0,1] such that f(x,y) = 1 for (x,y)£(A*Y)U

 (X x B) . Furthermore, D(f) = H = {(x,y) eX*Y : osc(f(x,y)) = l) .
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 Sketch of the proof: We first constructa set E contained in X x Y

 such that: EO [(A x Y)u (X x B) ] =0 and Cl Ert[(A * Y)u (X * B)] = H. Now

 we defino f by the following formula:

 ļ 1, if p e (A x Y)U (X x B)
 j

 (

 The following Theorem easily follows from [BN].

 Theorem 5.3 Let X and Y be compact metric. Further, let M be metric and

 let ScXxY. Then S is the set of points of discontinuity of some f : XXY^M

 if and only if S is an F^ contained in the product A x B of sets A, B of first

 category in X and Y respectively.

 The following problem of mine has been recorded, around 1978, in the

 Wroclaw New Scottish Book as Problem 944.

 Problem 5.4 Let X and Y be compact (Hausdorff) spaces. Characterize C(f)

 for any f: XXY**]R .

 6. Namioka and co-Namioka spaces

 Let us consider the following general statement which is a special case

 of our Vniformization Problem formulated in Introduction.

 (*) Given any function f: XxYfc*Z, then there is a dense Gr subset A of X
 o

 such that A x Y c C (f ) .

 In 1974 I. Namioka showed

 Theorem 6.1 Let X be regular, strongly countably complete, Y be locally

 compact and a-compact and let Z be pseudo-metric» Then (*) holds. ^

 His excellent article [Na] brings many interesting applications (some

 1) This result is one of the first results of this type where both
 X and Y do not have to be metrizable nor satisfy any countability
 axioms .
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 Explanation of Diagram 1

 Given a function f: X*Y+Z, we shall say that f is q-weakly sevarately

 continuous (resp. a. e. -weakly separately continuous) if:

 (1) For each x£X, fx is continuous

 (2) For each y£D, f^ is quasi-continuous (resp., a.e. continuous
 (in the sense of category)) for some De CID = Y.

 Further, unless some weaker assumptions on a function f : XxY+Z are

 imposed, recall that

 (*) stands for: "For any function f: XXY^Z there is a dense

 subset A of X such that AxYCC(f)M.

 (**) stands for: nFor any function f : XXY**Z there is a residual set

 A in X such that A*YcC(f)".

 (**) rei B stands for: "For any function f : XXY^Z there is a residual

 set A in X such that A XB cC(f), where BcY".

 A

 A
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 of them will be mentioned in Section 7) and no doubt initiated the renaiss-

 ance of the topic of separate and joint continuity. Soon after, a group of

 analysts/ topologists "joined the race" , including mainly specialists from the

 famous French School of Mathematics, The question is: "How 'far1 can one go

 in answering (*)?" That is, what kinds of spaces may be assumed as X or Y?

 It soon became clear that "the candidates" for X are various topologi-

 cally complete spaces, while "candidates" for Y are various compact-like

 spaces. »

 In fact I. Namioka, anticipating this observation, asked if Theorem 6.1

 is true for any Baire space X"^.

 J.P.R. Christensen [Cri] calls a space X Namioka if (*) holds for any

 2)
 compact space Y and any metric space Z.

 Quite recently J. Saint Raymond [SR2] showed the following results.

 Theorem 6.2 (1) Separable Baire spaces are Namioka.

 (2) Tychonoff Namioka spaces are Baire.

 (3) In the class of metric spaces:

 X is Namioka if and only if it is Baire.

 In order to proceed further with the presentation of the results, we

 need the definitions of some spaces in terms of games.

 Let X be a space and let a and 0 be two players with S the first to

 move. Consider the following games.

 (i) Each player chooses a nonempty open set V in X, lying in the opponent's

 previously chosen open set. a wins if he can choose his V. sets so that
 oo

 A v. * 0 •
 1=1 1

 1) An answer, due to M. Talagrand [Ta2] , came very recently; see Example 6.6.

 2) It was shown in [Cri] that a metric space Z in this definition can be
 replaced by the unit interval.
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 (ii) same as (i) except a point is chosen by ß in sets chosen by ß and

 open set chosen by a must contain the pointed wins if he can choose his
 on

 sets so that H. V. =f 1 0 . i=l i 1

 (iii) ß starts by choosing an open nonempty subset X. Then a chooses

 an open subset V^c and a point x^eV^. ß then chooses an open nonempty

 subset U 2e- Vļ (he may choose as he wishes but is expected to escape from

 x^). Next a chooses an open subset V2C^2 anc* 3 P°*nt x2GV2' anc * SO °n*

 a wins if any subsequence {x } of the sequence {x } accumulates to at least
 p r oo r 00

 one point of the set H. V. = H u.. i=l i i=l i

 (iv) same as in (ii), except for the fact that a chooses open subsets 0

 and comvact subsets K.CV. (rather than points x.eV.), where i = 1,2,... .
 ii i i

 a wins if the set Cl .n K. n V. ł 0-
 1=1 i J=1 J

 (v) same as in (iv), except for the sets K^, chosen by a, are now

 K-anaíytic (instead of compact).

 Now, a space X is called a-favorable (resp. : strongly a-favorable;

 q-well q-favorable; K-a- favorable; A-q-favorable) if a has a winning

 strategy in the game (i) (in the game (ii), (iii) (iv) and (v) , respectively).

 Further, a space X is called ß-defavorable (resp.: CJ-ß-defavorable;

 K-ß-defavorable j A-ß-defavorable) , if ß does not have any winning strategy

 in the game (i) (resp. in the game (iii); in the game (iv); in the game (v)) '

 Theorem 6.3 [Cri] a-well a-favorable spaces are Naraioka.

 Two years later, in 1983, J. Saint Raymond improved Theorem 6.3

 showing

 Theorem 6.4 [Sr2] a-ß-defavorable spaces are Namioka.

 1) Since there are spaces in which, for example, (i) is not determined,
 there are ß-defavorable spaces which are not a-favorable and so on.
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 Shortly after M. Talagrand [Ta2] showed that all K-ß-defavorable

 spaces are Namioka. It was shown [Dv] that the class of K-ß-defavor-

 able spaces captures important classes of spaces such as Baire metrizable

 or Baire spaces having dense subspaces.

 Subsequently, G. Debs [Db 2] showed that the class of Namioka

 spaces contains all Baire spaces having dense iC-analytic subspaces.

 Finally in [Db 2 ] all the mentioned results starting from Theorem 6.3

 were taken by

 Theorem 6.5 [Db2] A-ß-defavorable spaces are Namioka.

 And when everything looked like the next class of Namioka spaces are

 a-favorable ones, M. Talagrand showed

 Example 6.6 [Ta2] There exists an a-favorable1^ space X which is not

 Namioka.

 Proof: Let S be an uncountable set and let 2 3 (0,l).

 Define X = {xe 2^ : |{seS:x(s) = l}| <_ } . For each
 x £ X and a countable subset ACS define

 W(x,A) » (yeX :VseA, y(s) = x(s)}.
 Then

 {W(x,A) : xeX and A is a countable subset of s)

 is a base for a topology on X. It can be shown that X is a-favorable.

 So, if Y = ßS, then f : XXY^ [0,1] given by f(x,y) = x(y) is a

 function for which the conclusion of (*) does not hold, q

 Quite recently R. A. McCoy [Mc] remarked that the space X in Example
 2)

 6.6 is also pseudo-complete .

 1) Hence a Baire space.
 2) Ke also showed that X is O-dimensional Hausdorff (hence Tychonoff);
 however, it is neither Lindelöf nor satisfies CCC. An interesting
 question x^hich he raised [Mc] is whether X is normal.
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 There is yet another result on Namioka spaces; namely D. Helmer f[Hr2] ,

 p. 16) announced that a closed-hereditarily Baire space having a dense sub-

 space of countable tightness is Namioka1^. Also, another "structural result''

 of D. Helmer (see also [Hr2],p.l6) is of real interest; namely every Baire

 which contains a sequence of subspaces being Namioka, and satisfying the

 countable chain condition whose union is dense is also Namioka.

 For a mapping approach to Namioka spaces see [HJT] .

 Let us recall that Sovgenfvey line is a-favorable but not o-well

 a-favorable [Cri]. It was stated in [Cr 3] that it is Namioka. This fact,

 however, can also be deduced from the just mentioned Helmer's result('[Hr2] ,

 p. 16). In fact, Sorgenfrey line is closed-hereditarily Baire and as

 hereditarily separable it has countable tightness.

 Observe that the function f defined in Example 6.6 still has "many"

 points of continuity. This fact prompted M. Talagrand to ask the follow-

 ing

 Problem 6.7 [Ta2] Let X be Baire, Y be compact (Hausdorff) and let

 f : Xxye-IR. Is C(f) + 0 ?

 In an attempt to find a suitable class of spaces Y such that for any

 Namioka space X and any metric space M the statement (*) is true, the

 following class of spaces has been defined in [LePl] .

 Let S be a Mnice" subclass of Namioka spaces (e.g. compact spaces). A

 2)
 space Y is called co-ÌJcmioka (resp. co-flamioka vel S ) if for any Namioka

 1) Prof. R.W. Hansell has kindly informed me that he has obtained this
 result independently.
 2) Recently G. Debs LDb2J used the term co-ï>IarrioKa spaces tor trie class
 of spaces Y, such that (*) holds for any Baire space X and any metric
 space Z.
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 space X (resp. any space X from S), for any metric space M and any function

 f: X X Y^M there is a dense set A such that A xYc C(f).

 In the process of showing his main result of [Na] , I. Namioka proved

 Theorem 6.8 Every locally compact C7-compact space is co-Namioka.

 In 1979, M. Talagrand [Tal] showed

 Theorem 6 . 9 Special K-analytic spaces ^ are co-Namioka rei C, where C stands

 for the class of compact spaces.

 Last year, J. P. Lee and myself [LePl] have shown

 Theorem 6.10 k spaces are co-Namioka rei LC , where LC stands for the class

 of locally compact spaces.

 Further, the following result may be deduced from [CT].

 Theorem 6.11 Every second countable space is co-Namioka.

 This means, in particular, that if X = [0,1], Y is the set Q of ra-

 tional numbers and M is metric, then the conclusion of (*) is true!

 However, one cannot have the rationals Q as the first factor of the

 product XXY. In fact, we have

 Example 6.12 [Cr3] Let X = Q, Y = [-1,1] arid let Z = Cp(Q2, [-1,1]), the

 space of continuous functions from Q"" into [-1,1] with the topology of the

 pointwise convergence; which is a compact metric space (•)• Then there is

 a function f: XxY&rZ for which the conclusion of (*) does not hold.

 So, are all Lindelöf spaces co-Namioka?

 Example 6.13 [Tal] Let X and Z be the unit interval I and let Y be the

 space C (1,1) of continuous functions from I into I, equipped with the topology
 P

 of the pointwise convergence. Then f(x,y) = y(x) is a separately continuous

 1) See [Tal] for the definition of special /(-analytic spaces %
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 function which does not satisfy the conclusion of (*). So maybe all locally

 compact spaces that are paracompact, or all k-spaces, are co-Namioka? In

 particular, does (*) hold for both X and Y being complete metric spaces and

 Z being metric*^?

 The following example, due to J. B. Brown, answers these questions in

 the negative.

 Example 6.14 ( [Bw2] ; see also [LePl].)

 TL/f

 LetX- [0,1], Y - * I0'1!

 ( N U denotes the free union of Y 's ) » N a

 Let f: XXY^1 be defined to be separately

 continuous on every squareXxY^ and to have
 a point of discontinuity along the line x = a.

 Let us close this section with the following two problems.

 Problem 6.15 [Ta2] What compact spaces Y are such that for every Baire

 space X and every f: XXY^IR the conclusion of (*) holds?

 Problem 6.16 [LePl] Characterize co-Namioka spaces.

 7 . Applications .

 2)
 For the reader's convenience we shall separately list some applications

 of Namioka-type theorems to topological groups and semigroups and applications

 to the theory of Banach spaces.
 3)

 a) Topological groups and semigroups.

 1) This question has been asked explicitly in [Cri], and implicitly in [AO].
 2) Usually these results depend essentially upon particular theorems on sep-
 arate versus joint continuity; that is, the latter are being applied on a
 piecemeal basis.
 3) Professor N. Brand has informed me that the proofs of a few results
 regarding topological groups and related to separate and joint continuity
 are incorrect, namely [Hul], §9, Cor. 3, [Hu2] , Chapter II, §17, Cor. 3,
 p. 38 and [Wu], p. 453*, see [Bdl], p. 54 for more information.
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 - Ellis1 theorem on separately continuous actions of locally compact

 groups on locally compact spaces;see [Na] , [Tr2] and [HT].

 - compact semi topological semigroups (with identities) acting on compact

 spaces ; see [Lwl] , [Lw2] , [Hr3] and [WT] .

 - Ryll-Nardzewski1 s theorem on minimal ideals of compact semitopological

 semigroups having dense subgroups of units; see [Tr2] , [Rp] .

 - Corson-Glicksberg theorem on compact subsets of the space of all contin-

 uous homomorphisms of a topologically complete group into a topological

 group; see [Na] , [Cri].

 Now, let us list some applications of the results on separate versus

 joint continuity into Banach spaces,

 b) The theory of Banach spaces.

 - Troyanski's theorem: weak-compact convex subset of a Banach space is

 the closed convex hull of its "denting points"^ [Na] -

 - existence of "thick" sets where each continuous convex function from a

 Banach space is Gateaux dif f erentiable; [Stl] , [Db 1] , [LW] .

 - Johnson's theorem on the norm separability of the range of certain

 functions ; [Cr2] .

 - first class selectors for weakly upper semi-continuous multivalued maps

 in Banach spaces j [HJT] .

 - Radon-Nikodym Property; [ChK] , [Tal] .

 - compact spaces that are homeomorphic with weakly compact sets in

 Banach spaces (= Eberlein-compacts) *, [Hr2] , [Dv] and [Ta2] .

 The author would like to thank the referee for his comments which

 essentially improved the exposition of the results.

 I also would like to thank Mrs. K. DeMatteo, the typisr, for her patience

 and understanding.
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