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Some Properties of Semi-continuous Functions

Introduction. The purpose of this paper is to answer some
questions posed by Ceder and Pearson [6] in a recent survey
paper. In particular, it is proved that to sach bounded upper
sami-continuous function f, defined on a closed interval I,
there corresponds a bounded Darboux upper semi-continuous
function g, also defined on I, which differs from f on a first
catego}y subset of I having Lebesgue measure zero; moreover, o
will show that g may be chosen so that f < g on If

We will also show that, if f and g are two Darboux upper
semi-continuous functions defined on a closed interval I and
f < gon I, there exists a Darboux upper semi-continuous
function h defined on I such that f < h < g on I.

We conclude this papér by showing that some of the
properties which are known to be "typical” in the family of
Darboux functions in Baire class one are also “"typical” in the
family of Darboux upper semi-continuous functions.

Since a function f is upper semi-continuous if and only if
-f is lower semi-continuous, results concerning upper semi-
continuous functions yield corresponding results for lower
semi-continuous functions. Analogues of the above mentioned
results for the fami]y of bounded Darboux Baire 1 functions may

be found in [4], [5], [8] and [9].
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Notation and Terminology. Given a family of furmctions which
forms a Banach Spacae, a property will be called "typical” in
the family if it holds for all functions except those in some
first category subset of the space.

We denote by usc and B] the set of functions, defined on
[0,1], which are upper semi-continuous and in Baire class 1,
respectively. The families blusc and bDBl denote the

corresponding bounded functions having the Darboux

(i.e.intermediate value) property. These families form Banach
spaces with norm ||f||=sup|f|. Moreover, each of the families
blusc and bDB, is a closed subspace of B,. The sets C(f) and

1

A(f) denote, respectively, the points of continuity and
approximate continuity of the function f.
The interval [0,1] will be denoted by I, and for any

function f defined on I we take Q" (f) (resp. @ (f)) to be the

set of points x in I such that f(x) = 1im_ sup f(z) (resp.
f(x) = lugﬂigp f(z)).
A. A Relationship Between Semi-continuous and

Darboux Semi-continuous Functions
We begin with two lemmas which will be used in the proofs

of some of the results appearing in this and later sections.

Lemma Al. Let f € busc. Then I \ [@'(f) n @ (f)] is a

denumerable set.
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Lemma AZ2. A function f € Dusc if and only if

I Cc o' (f)na (f).

Lemma Al is a consequence of [7] Lemma 4. The proof of
Lemma A2 is a direct consequence of the definition of a Darboux
uppar semi—continuOQS function defined on I. Basic to the

proof of the main result of this section is

Lemma A3. Lat f be a bounded upper semi-continuous function

and let {Pn}:=l be a sequence of non-empty pairwise disjoint,

perfect subsets of I such that each Pn is a nondenumerable

Borel set and

(a) if a_ = sup P_ then f(x) < f(an) for all x € P_,
(b) diam P < 1/n.

Then there exists a bounded upper semi-continuous function g

such that

(1) {x: f(x) # g(x)} C ng:Pn’
(2) f(x) ¢ g(x) for all x in I,

(3) if f(Pn) C [yn,f(an)] for some y_ then
9P ) © [y .8 )]
uifa } U @ (f) c @ (g) and e (f) c 2" (g).

(4)

Proof. Since f is bounded we may assume, without loss of

n

generality, that 0 < f(x) < M for some real number M and all x
in I,

Fix n. Let {Fm};=1 be a sequence of non-empty disjoint
perfect subsets of Pn defined in the following manner: for

m =1, let ™ be such that 0 ¢ a, - < 1, and let F‘ be a
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non-empty parfact subset of (an—r‘,an) n Pn' Aszsuming that

1 7""’Fm have been chosan so that F'i is a non-empty perfect

<

subset of P _and F. N Fj = @ whenever i#j and i,jE{1,2,...,m}

i . i = mi ist ,a_ )} a
then define F_ by setting r_. min{1/m+1,di (Fm an), and

+ 1 1

taking Fm to be a non-empty perfect subset of

+1

- . C N «© . .
(an rm+],an) ne learly, the sequence {Fm}m=1 defined in
this way consists of non-empty pairwise disjoint perfect
subsets of P_ and the set {a _} U UTF  is closed.
n n m=1 m
For each m > 1, let H, be a bilaterally c-dense-in-itself

Fo subset of Fm and let hm € Dusc be such that
- -1
hm(I) = [O,f(an)] and INH = h_ {{o}}[1].

Setting h =

eV e

hm’ then it is clear that h is Darboux and

m=1

s _ H f ® =
upper semi-continuous on I\lan} and h(mngm) (O,f(an)].

Let 9, = max{f,h}. Clearly, 9, is a bounded function
satisfying propertias (1) through (3). Moreover, since f E
usc, it follows, by (1) through (3) above, that {x: gn(x) > t}
is closed for all real numbers t 2 f(an). Furthermore, by the
definition of the sequences {hm}m=1 and {Fm}m=l’ {x: gn(x) > t}
is also closed when 0 < t < f(an). Therefore, 9, € usc.

We now show that {an} Uua (f)c Q-(gn). Let x be any

point of this set and consider the following three cases.

case 1. a_ = x. Then gn(x) = f(x). By the definition of
{hm}m=1’ we can choose a sequence {xm}m=l increasing to a_ with
x € H_ for each m, and h (x ) = f(a_); moreover,

m m m\ " m

Mo

n
1im gn(xm) > Aig hm(xm) = Aig f(x) = f(x) = gn(x).

Therefore, a_ € @ (gn). 231



case 2. a_ # x and gh(x) = f(x). Since x € @ {f), there

. @® . .
exists a sequence {xm}m_ increasing to x such that

1
1im_ sup f(xm) = f(x). Thus, if x € Q (gn) then

g, (x) > vim sup g (x )} 2 1im sup f(x ) = f(x) = g _(x),

a contradiction. Hence, x € Q-(gn) when f(x) = gn(x).

case 3. a_ # x and gn(x) h{x). Since h is a Darboux upper

semi-continuous function on I\{an} it follows that x € @ (h).

Hence, there exists a sequence {xm}m-l

increasing to x such
that 1im_ sup h(xm) = h(x). Then, if x € Q (gn) we get
g, (x) > 1im sup g (x_) 2 1lim sup h(x_ ) = h(x) = g (x),
a contradiction, giving x € Q-(gn).
Consequently, Q@ (f) C G-(gn). Similarly, Q@ (f) C G*(gn).

For each n, let gn be the function obtained as above and

define

gn(x) if x€P.,
g(x) =
f(x) otheruise.

Clearly, g is a bounded function satisfying properties (1)
through (3) above. Let us show that g € usc.
If g € usc, then there exists an x and a sequence {xk}:=]
converging to x such that lip_ sup g(xk) > g(x). If
g(xk) = f(xk) for all but finitely many k then
g(x) 2 f(x) 2 lip_sup f(x, ) = Tip sup g(x ) > g(x),
a contradiction, giving g € usc. Thus, we may assume, without

loss of generality, that g(xk) rd f(xk) and x, € P for all k.
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By (1) and (3) above, f(a ) = gk(a ) 2 g, () = g(xk) for

[

X X
4
8

all k. Since X, X and diam P, - 0 as it follows that

k.
a, "X Hencea,
9(x) 2 £(x) 2 1ip_gup f(a,) > Tipggue a(x,) > a(x).,

a contradiction. Therefore, g is upper semi-continuous.

Finally, it remains to show that g satisfies property
(4). Clearly, a € Q@ (g) for every n. Hence, it is enough to
show that G (f) C @ (g) and @"(f) c @"(g). Since the proofs
are similar we will only prove that G (f) C @ (g).

To do this, let x € G (f) be such that x # a_ for all n.
Either g(x) = f(x) or g{(x) = gn(x) for some n.

If g(g) = f(x) then, since x € @ (f), there exists a

sequence {x increasing to x such that

k}k=1
1ip sup f(xk) = f(x). Thus, if x € @ (g) we get

g(x) > vip sup g(x, ) 2 lip_sup f(x ) = f(x) = g(x),
a contradiction leading to @ (f) C @ (g). A similar argument

holds if g(x) = gn(x). Hence, in either case G (f) C @ (g).

This completes the proof of this lemma.

Theorem Al. If f is a bounded upper semi-continuous function,

then there exists a bounded Darboux upper semi-continuous

function g such that {x: f(x) # g(x)} is a first category null

subset of I, and f(x) < g(x) for all x in I.

Proof. Let {an}:=] be an enumeration of I\G (f)(Lemma A1).
Since f €E usc, there exists a sequence {In}:=1 of open
subintervals of I such that a_ = supIn, diamln < 1/n and
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f{x) < f(an) for all x € I . Clearly, we can choose, for each
n, sats P_ C I _ such that the segusnce {P }w_ consists of non-
n n nn=1
empty, disjoint, nowhare dense and null perfect subsets of 1
satisfying (a) and (b) of Lemma A2. Hence, there exists a
function h € busc satisfying (1) through (4) of Lemma A3. By
property (2) we have f(x) < h(x) for all x € I and property (4)
implies that I C G (h).

Using a similar argument applied to the function h and

ING" (h), we get the function g of this theorem.

B. Insertion of Darboux Semi-continuous Functions

Theorem 1 of [5] states that if two Darboux Baire 1
functions f and g, defined on I, are such that f < g on I then
there exists a Darboux Baire 1 function h defined on I such
that f < h < g on I. 1In Theorem B2 below we shall show that
the analogous result holds for two Darboux upper semi-continuous
functions.

It is a simple matter to show that the average of two
Darboux upper semi-continuous functions need not even be

Darboux. This is given in the following.

Example B1. Let f(x) = sin(1/x) if x # 0 and f(x) =1 if x =

0. Let g(x) = -sin{(1/x) if x # 0 and g{(x) = 1 if x = 0. Both
f and g are Darboux and upper semi-continuous, but h = %(f+g)
is zero when x # 0 and 1 when x = 0. Thus, h is not Darboux.
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To prove the main theorem of this section we nead

Lemma B1. Let f be a bounded upper semi-continuous function

and 1et g be a bounded Darboux Baire 1 function. Suppose that

f(x) < g(x) for all x in I. Then there exists a bounded

Darboux upper semi-continuous function h such that

f(x) < h(x) < g(x) for all x in I.

Proof. First, we show that there exists h] € usc such that
(1) f(x) < h](x) < g{x) for all x in I,
(2) @7 (h,) = I and Q" (f) ¢ a*(h]).
To do this, let {an}:=] be an enumeration of I\N@ (f). Let
{In}:=1 be a sequence of open subintervals of I such that

a_ = sup I _, diaml_ < 1/n and f(x) < f(a_) for all x in I_. We
n n n n n

shall construct a sequence {Pn}n_1

of pairwise disjoint perfect
sots satisfying the following two properties

(c) a = sup P_ and f(x) < f(an) < g(x) for all x E P

(d) diam P, < 1/n.
The sequence {Pn}:=1 may be chosen as follows. First, let

n = 1. Since f(a]) < g(a]), there is an r, > 0 such that.

f(a]) +ry < g(a]). Since g € DB, there exists a nonempty

perfect set P, C I, such that a, = sup P, f(a]) vy < g(x) if

x € P] and aj € P1 if j > 1. Assuming that pairwise disjoint

sets PI’PZ""’Pn have been chosen so that Pi is perfect and

note that

a., €P, if j >i, 1 <1 <n., To define P s
J 1 n+1

f(a ) < g(an*]), so there exists an r_ . > 0 such that

n+1 +1]

f(an*]) + r < g(a ). Since g € DB, there is a perfect set

235

n+1 n+1 1



ne1 & Thay Y0P such that a .y T sup Pn+l and

f(a ) + r < g(x) for all x E P..;- Clearly, the seguence

n+1 n+1 + 1

{Pn}:zl chosen in this way satisfies properties (a) and (b) of
Lemma A3. Hence, there exists a bounded upper sami-continuous

function h, satisfying (1) through (4) of Lemma A3. The

relation h, < gonIuwuas built into the construction. This

together with (2) of Lemma A3 implies that h  satisfiss (1)

1

above. Moreover, (4) of Lemma A3 implies that h, also satisfies

(2) above.

Applying a similar argument to h, and I\G*(hl) we get the

function h of this lemma, completing the proof.

Theorem B1. Let f be a bounded upper semi-continuous function

and let g, and 9, be two bounded Darboux Baire 1 functions such

that g, < f < g, on I. Then there exists a bounded Darboux

upper semi-continuous function g such that g, <g<g,onlI.

Proof. By Lemma B1, there exists g € blusc such that

f < g« g, on I. Clearly, g is the desired function.

Theorem B2. Let 9, and 9, be two bounded Darbdux upper semi-

continuous functions such that g9, € g, on I. Then there exists

a_bounded Darboux upper semi-continuous function g such that

g, <g¢cx g, on I.
Proof. Since g,,g, € usc, the function f = %(g,+g,) € usc and
9, < f < g, on I. By Theorem Bl, there exists g € blusc such

that f < g < g, on I. Clearly, g is the desired function.

236



Remark B1. Let f be a real valued function defined on I and

let P be a nonempty perfect subsaet of I. We write f € D(P) if
whenever x is a right (resp. left) limit point of P, f(x) is a
right (resp. left) limit point of f(P). We write f E B](P) if
f_](G) NP is an F, for each open set G. These definitions are
due to Bruckner and Ceder [3]. Note that if P is an interval,
o(P) n B](P) coincides with the Darboux functions on P [2].

We will say that f is upper semi-continuous on P, writtan

f € usc(P), if f|P, the restriction of f to P, is upper semi-
continuous on P.

It is clear that, with proper modifications, all the
lemmas and theorems we have established.are extandable to

 functions f E usc(P). 1In particular we have

Theorem B3. Let P be a nonempty perfect subset of I, or an

interval, and let f € busc(P) (resp. f € blsc(P)). Then there

exists a function g € blusc(P) (resp. g € b21sc(P)) such that

{x: f(x) # g(x)} is of first category in P and of Lebesgue

measure z8ro.

Theorem B4. Let P be a nonempty perfect subset of I, or an

interval, and let h,,h, € bOusc(P) (resp. h,,h, € bD1sc(P)) be

such that h] < h2 on P. Then there exists a function

g € bOusc(P) (resp. g € bDisc(P)) such that h

< g < h n P.

1 2 —
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C. Additional Properties of Darboux Semi-continuous Functions

In Theorems C2 through CB below we considar the nature of
the dense sets in blusc. We will show that some of the
propertias, kncwn to be typical in bDPB , are also typical in

1

the family bPusc. First we prove

Lamma C1. Let f be a bounded upper semi-continuous function

and let ¢ » O. Then there exists a bounded upper semi-

continuous function g having finite range such that

|1 - gll <.

Proof. Since f is bounded there exists a real number M such

that -M < f(x) < M for all x in I.

Let a,,a,,...,a be a sequence of points in [-M,M] such
that -M = a_ < a - ... € a,¢ a, = Mand a,-a, < ¢ for all
n n-1 2 1 i i+1

i € {1,2,...,n-1}.

For each i > 1 set G, = {x: f(x) 2 ai} and if 1 < i < n-1
set A, = G; ,\ G,. Now, define g(x) = a, if x € A,.

Clearly, I = ?Q:Ai and the range of g is contained in

{a],az,...,an_]}. Hence, g is a bounded function having finite

range. Moreover, for any real number t, if T = {i: t > ai},
then {x: g(x) > t} = Hr {x: f(x) > ai} which is obviously
closed. Therefore, g is also upper semi-continuous, and by the

choice of 3,158,550 053 5 ||f - gll < g. This completes the

proof.,
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Lemma C2. Let f be a bounded upper semi-continuous function

and let ¢ > O, Suppose that there exists 3 bounded Darboux

Baire 1 function h such that ||f - h|| < &. Then there exists

3 _bounded Darboux upper semi-continuous function g such that

(1) {x: f(x) # g(x)} is a null subset of I,

(2) Ilf - gll < 185,

Proof. To begin with, assume that f has finite range. Let
{an}:zl be an enumeration of I\Q@ (f). Since h € DB, for each
n > 1 there exists a perfect set Pn such that a = suan and
h(Pn) C (h(an)-s,h(an)+s). Moreover, since f € usc and
||f - n|] < &, it follows that f(Pn) C (f(an)-3s,f(an)].

Clearly, the sets {Pn}:=1 may be chosen so that each P_ is
null,.diamPn < 1/n, and P_ N Pm =@ ifn#m That is, the
sequence {Pn}:=1 satisfies properties (a) and (b) of Lemma A3.
Hence, there exists a function k € busc satisfying (1) through
(4) of Lemma A3. Since f(Pn) C (f(an)-3s,f(an)] we have
|1f - k]| < 3¢ and ||h - k|| ¢ 4 . Now, if g is the function
obtained by applying the above argument to k and I\Q+(k), then
g satisfies (1) above and ||k - g|| < 12e. It follows that
[1f - gl] < |]1f- k|| + ||« - g|] < 15e. Finally, if f does

not have finite range, we can choose f. of finite range such

1
that ||f - f1|| < €, in which case the resulting function g

satisfies (2) above.
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Theorem C1. The class of functions f € blusc such that

f(A(f)) (resp. f(C(f))) is finite is dense in blusc.

Proof. Let f € bDusc and ¢ > 0. Using Lemms C1, we can obtain
a function h € busc having finite range such that ||f - n|| <
£/16. Now, apply Lemma C2 to get a function g € blusc such
that ||f - g|| < ¢ and g = h a.e. It is easy to verify that

g(A(g)) is finite. Since C(g) C A(g), g(c(g)) is also finite.
The proofs of Theorems C2 through C6 below are identical
to those in the case of bDB]. Some indication of the proof is

given in each case. For detailed proofs see [8].

Theorem C2. The class of functions f € blusc such that

cl1f(A(f)) (resp., c1f(C(f))) has Lebesgue measure zero is a

residual Gg in blusc.

Proof. By Theorem Cl, the class, #, of functions f € blusc
such that c1f(A(f)) has Lebesgue measure zero is dense in

bOusc. Thus, it remains to show that # is a GS set. This is a
consequence of the fact that # = bDusc\ngTFn, where Fn is the
closed subset of blDusc consisting of {f: |c1f(A(f))]| > 1/n}.

Hence, Theorem C2 is true "A{f)". A similar argument holds for

().

Theorem C3. The class of functions f € bDusc such that

f(A(f)) (resp., f(C(f))) is nowhere dense and null is a

residual in blusc. 240




Theorem L3 is a direct consequence of Theorem C2 since the

class of Theorem C3 contains the residual class of Theorem C2.

Theorem CH4,. The class of functions f € blDusc such that

f(A(f)) (resp., f(C(f))) is nowhere dense is a residual Gg in

blusc.
Proof. By Theorem Cl1, the class, ¥, of functions f € blusc

such that f(A(f)) is nowhere dense is dense in blusc. Hence,

we only nead to show that # is a G nz1

set. Lot {Jn} be an

)

enumeration of all rational intervals.

Let E_ = {febdusc: J,c c1f(A(f))}. The set E, is closed

in bAusc and ¥ = bDusc\ngTEn} Hence, the theorem follows for
“A(f)". The proof for “C(f)" is similar,
Theorem CS. The class of functions f € bflusc such that

f(A(f)) (resp. f(C(f))) is countable is a dense first category

subset of blusc.

Proof. By Theorem Cl, the class, ¥, of functions f € blusc
such that f{(C(f)) is countabls {s dense in blusc. Let {Jn}:=l
be an enumeration of all rational intervals,

Let A_ = {fEbDusc: f is constant on J, n c(f)}. Each A

is closed and nowhere dense; moreover, ¥ =ngTAn. Hence, ¥ is
of first category. If ¥ denotes the class of functions
f € bDusc such that f(A(f)) is countable then F C #. Hence, ¥

is also of first category and dense (by Theorem C1).
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Many other properties are typical in blusc and bDlsc see
[10], however these properties can be proved in a more general
setting [11].

Finally, the author thanks the refereas for suggesting

many improvements in this papar,
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