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 Some Properties of Semi -conti nuous Functions

 Introduct i on. The purpose of this paper is to answer some

 questions posed by Ceder and Pearson [6] in a recent survey

 paper. In particular, it is proved that to each bounded upper

 sem i -con t i nuous function f, defined on a closed interval I,

 there corresponds a bounded Darboux upper sem i -con t i nuous

 function g, also defined on I, which differs from f on a first

 category subset of I having Lebesgue measure zero; moreover, we

 will show that g may be chosen so that f . < g on I .

 We will also show that, if f and g are two Darboux upper

 semi-continuous functions defined on a closed interval I and

 f < g on I , there exists a Darboux upper sem i -con t i nuous

 function h defined on I such that f < h < g on I ,

 We conclude this paper by showing that some of the

 properties which are known to be "typical" in the family of

 Darboux functions in Bai re class one are also "typical" in the

 family of Darboux upper sem i -cont i nuous functions.

 Since a function f is upper sem i -cont i nuous if and only if

 -f is lower semi -cont i nuous, results concerning upper semi-

 continuous functions yield correspond i ng results for lower

 semi -cont i nuous functions. Analogues of the above mentioned

 results for the family of bounded Darboux Bai re 1 functions may

 be found in [4], [5], [8] and [9],
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 Notation and Terminology, Given a family of functions which

 forms a Banach Space, a property will be called "typical" in

 the family if it holds for all functions except those in some

 first category subset of the space.

 We denote by use and B the set of functions, defined on

 [0,l], which are upper sem i -con t i nuous and in Baire class 1,

 respectively. The families bZ?usc and bVB ^ denote the
 correspond i ng bounded functions having the Darboux

 ( i , e, i ntermedi ate value) property. These families form Banach

 spaces with norm | | f | ļ =sup ļ f | , Moreover, each of the families

 bflusc and bZ?J9^ is a closed subspace of 3 , The sets C(f) and
 A ( f ) denote, respectively, the points of continuity and

 approximate continuity of the function f.

 The interval [0,l] will be denoted by I, and for any

 function f defined on I we take Q* ( f ) (resp, Q (f)) to be the

 set of points x in I such that f(x) = 1 i m^sup f(z) (resp,

 f(x) = 1 ' 2-»X-P

 A, A Relationship Between Seni -conti nuous and
 Darboux Semi -conti nuous Functions

 We begin with two lemmas which will be used in the proofs

 of some of the results appearing in this and later sections.

 Lemma Al, Let f 6 buse. Then I ' [Q+(f) fi Q (f)] i s a

 denumerable set,
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 Lemma A2. A function f G Ouse i f and on 1 y if

 i c o+(f) n q~ ( f ) .

 Lemma Al isa consequence of [7] Lemma -4. The proof of

 Lemma A2 i s a direct consequence of the definition of a Darboux

 upper sem i - con t i nuous function defined on I, Basic to the

 proof of the main result of this section is

 Lemma A3, Let f be a bounded upper sem i -con t i nuous function

 and I et {Pn}"_.j be a sequence of non-empty pai run se disjoint,
 c perfect subsets of I such that each P isa nondenumerab 1 e
 c

 Borei set and

 (a) ' / if a = sup r- P then f(x) ' / < f(a ' ) for all x 6 P ,
 ' / - n r- n

 (b) ' / di am P < 1 /n,
 ' /

 Then there exists a bounded upper sem i -con t i nuous function g

 such that

 (1) {x: f(x) t g(x)} C nW;pn,
 (2) f(x) < g(x) for all x uì I,

 (3) j_f f(Pn) C [yn>f(an)] for some y^ then

 g(Pn) c [yn,f(«n)J.

 (I)nu7{®n) U 0"(f) C Q"<g) and Q*(f> C 0*<9).
 Proof . Since f is bounded we may assume, without loss of

 general i ty, that 0 < f(x) < M for some real number M and all x

 in I .

 Fix n. Let { ™ ^ be a sequence of non-empty disjoint
 perfect subsets of P^ defined in the following manner: for
 m = 1, let r, be such that 0 < a - r, < 1, and let F be a 1 n 1 1
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 non-empty perfect subset of (a^-r^,a^) fl Assuming that
 F,,F^,,,.,F * have been chosen so that FÑ isa non-empty perfect
 1 * 2 m i

 subset of P and F. fl F. =0 whenever i *j and î , w j 6Í i 1 , 2 , • • • , rn } n i j , w i

 then define F _ by J settinq ^ r , = m i n{ L 1 /m + 1 , d i s t (F v ,a )} J and m + _ 1 J ^ rn+ , 1 L , v m n' J

 taking F^+ ^ to be a non-empty perfect subset of
 (a N -r ,,a ) D P • Clearly, J the sequence 1 {F 1 } J °° _ defined in N n m+ ,,a 1 n' n • J sequence 1 1 m J m = _ 1

 this way consists of non-empty pairwise disjoint perfect

 subsets of P and the set {a 1 } 1 U U™F is closed, n 1 n 1 m= 1 m

 For each m > ' , let H be a bilaterally J c-dense- i n- i tsel f m J

 F subset of F and let h E Z?usc be such that
 o mm

 h (I) = [ 0 , f (a )] and I 'H = h»~ 1 { { 0 } } [ 1 ] . mx/ lxn/J , m mllJJLJ
 QO

 Setting h = £ h , then it is clear that h is Darboux and
 m = 1

 upper semi -conti nuous on I'{a 1 } and h( U?H ) = (0,f(a )]. 1 nJ xm=1m/vvn/J

 Let gn = max{f,h}. Clearly, g^ isa bounded function
 satisfying properties (l) through (3). Moreover, since f 6

 use, it follows, by (l) through (3) above, that {x: gn(x) > t}

 is closed for all real numbers t > f(a^). Furthermore, by the
 definition of the sequences {h 1 }™ , and ÍF 1 }™ ,, {x: 1 q (x) ^ ' > t} 1 1 nrm = , 1 1 m m = ,, 1 1 3n ^ ' ~ 1

 is also closed when 0 < t < f(a ). Therefore, q 6 use. n 3n

 We now show that U Q (f) C Q (gn). Let x be any
 point of this set and consider the following three cases.

 case 1. a^ = x. Then gn(x) = f(x). By the definition of
 (h 1 }™ J ,, we can choose a sequence ^ {x 1 }™ , increasinq y to a with 1 m J m= ,, 1 sequence ^ 1 mJ m= , 1 y n

 x 6 H for each m, and h (x v ) = f(a ); moreover, mm m v m n

 lim g (x ) ~ > lim h (x ) = lim f(x) v ' = f(x) v ' = q (x). v ' m-»» 3n m ~ m-»» mv m' m-*« v ' v ' 3n v '

 Therefore, a G Q (q ). n yn 231



 case 2. a^ * x and gn(x) = f(x). Since x E G (f), there
 exists a sequence {x 1 } J °° , increasinq ^ to x such that 1 rn J m = , 1 ^

 lim sup ^ f(x x ) = f(x). ' Thus, i f x SE Q (q ) then rn-*œ ^ x ro' ' x^n'

 q (x) v ' > lim sup r q (x ) ~ > lim sup ^ f(x v ) = f(x) v 9 = q (x), v 7 ^n v ' m-^oB r ^nv nr ~ m-*» ^ v m' v 9 ^n v 7

 a contradiction. Hence, x 6 Q (g ) when f(x) = g^(x).

 case 3, a^ t x and g^(x) = h(x). Since h is a Darboux upper

 sem i -cont i nuous function on I'{a^} it follows that x 6 Q (h).

 Hence, there exists a sequence { x } * _ ^ increasing to x such

 that 1 i m^sup h(x ) = h(x). Then, if x E Q (gp) we get
 q (x) 9 > lim sup r q (x ) - > lim sup r h(x v ) = h(x) v ' = q (x), ' q ^nv 9 m-*» sup r q ^nx m' - m-*« sup r v m' v ' q ^nx '

 a contradiction, giving x 6 Q (gn)*

 Consequently, Q (f) C Q (gR)* Similarly, Q*(f) C Q*(g^),
 For each n, let q be the function obtained as above and ^n

 def i ne

 q ^nx (x) ' if x 6 P , q ^nx ' n
 g(x) =

 f (x) otherwi se.

 Clearly, g is a bounded function satisfying properties (i)

 through (3) above. Let us show that g 6 use.

 If g E uso, then there exists an x and a sequence

 converging to x such that 1 i ļin^sup g(x^) > g(x). If
 g(x ) = f(x. ) for all but finitely many k then

 K. K

 g(x) > f(x) > lißj^sup f(xk) = liß^sup g(*k) > g(x),
 a contradiction, giving g 6 use. Thus, we may assume, without

 loss of generality, that g(xk) t f(x^) and x^ 6 for all k.
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 By (1) and (3) above, f(aR) = 9k(ak) > 9k(xk) = 9(xk) for
 all k. Since x, -» x and di am P. -♦ 0 as k - ®, it follows that

 k k.

 a. -♦ x. Hence,
 K

 g(x) > f(x) > liļin^sup f(aR) > 1 i j«^sup g(><k) > g(*)>
 a contradiction. Therefore, g is upper senii -continuous.

 Finally, it remains to show that g satisfies property

 (4). Clearly, G Q (g) for every n. Hence, it is enough to

 shoui that Q (f) C Q (g) and Q+(f) C Q+(g). Since the proofs

 are similar we will only prove that Q (f) C Q (g).

 To do this, let x E Q (f) v ' be such that x t a for all n. v ' n

 Either g(x) = f(x) or g(x) = 9n(x) f°r some n.
 If g(x) = f(x) then, since x E Q (f), there exists a

 sequence increasing to x such that

 1 i jTj^sup f(x^) = f(x). Thus, if x E Q (g) we get

 g(x) > liß^sup g(xk) > liļi^sup f(*k) = f(x) = g(x) ,
 a contradiction leading to Q (f) C Q (g)* A similar argument

 holds if g(x) = g^(x), Hence, in either case Q (f) C Q (g)*
 This completes the proof of this lemma.

 Theorem A 1 . I_f f is a bounded upper semi -conti nuous function,

 then there exists a bounded Darboux upper sem i -con t i nuous

 f une t i on g such that {x: f(x) ¿ g(x)} is a first category null

 subset of I, and f(x) < g(x) for all x j_n I,

 Proof. Let {a 1 }°° J - be an enumeration of I 'Q (f)(Lemma N /N Al). '

 Since f G use, there exists a sequence {ln}™_j of open
 subintervals of I such that a = supi , diami < 1/n and

 n n n
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 f(x) ' / < f(a ' ) for all x E I . Clearly, we can choose, for each ' / ' p' n

 n, sets P CI such that the sequence {P 1 } 1 " , consists of non- n n 1 n 1 n= , 1

 empty, disjoint, nowhere dense and null perfect subsets of I

 satisfying (a) and (b) of Lemma A3. Hence, there exists a

 function h 6 buse satisfying (l) through (4) of Lemma A3. By

 property (2) we have f(x) < h(x) for all x 6 I and property (4)

 implies that ICQ (h).

 Using a similar argument applied to the function h and

 I'Q+(h), we get the function g of this theorem.

 B. Insertion of Darboux Sentì -conti nuous Functions

 Theorem 1 of [5] states that if two Darboux Baire 1

 functions f and g, defined on I, are such that f < g on I then

 there exists a Darboux Baire 1 function h defined on I such

 that f < h < g on I . In Theorem B2 below we shall show that

 the analogous result holds for two Darboux upper sem i -cont i nuous

 functi ons.

 It is a simple matter to show that the average of two

 Darboux upper sem i -cont i nuous functions need not even be

 Darboux. This is given in the following.

 Exampl e Bl. Let f(x) = sin(l/x) if x * 0 and f(x) =1 if x =

 0. Let g(x) = -sin(l/x) if x ¿ 0 and g(x) =1 i f x = 0. Both

 f and g are Darboux and upper sem i -cont i nuous , but h = ^(f+g)

 is zero when x * 0 and 1 when x = 0. Thus, h is not Darboux.
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 To prove the main theorem of this section we need

 Lemma B 1 • Let f be a bounded upper semi -conti nuous function

 and 1 et g be a bounded Darboux Bai re 1 function. Suppose that

 f(x) ^ 9(x) for all X j_n I . Then there exists a bounded

 Darboux. upper semi-continuous function h such that

 f (x) < *h(x) < g(x) for all x I *

 Proof. First, we show that there exists h^ 6 use such that

 (1) f (x) < h^(x) < g(x) for all x in I,

 (2) Gf^) = I and Q+(f) C Q+(h ).
 To do this, let {a 1 }" , be an enumeration of I'Q (f). v ' Let 1 nJ n= , 1 v '

 {ln}"_^ be a sequence of open subintervals of I such that
 a = sup I , diami < 1 /n and f(x) < f(a ) for all x in I . We nrn , n v/xny n

 shall construct a sequence { P ^ ^ ^ of pairwise disjoint perfect
 sets satisfying the following two properties

 (c) a^ = sup and f(x) < f(a^) < g(x) for all x 6 Pn>
 (d) v ' d i am P < 1 /n . v ' n

 The sequence {Pn}™_^ may be chosen as follows. First, let

 n = 1. Since f(a^) < g(a^), there is an r >0 such that.

 f(a^) + r^ < g(sj). Since g £ 2?¡ 5^, there exists a nonempty

 perfect set P7 C 1^ such that aļ = sup P^ f(aļ) + r < g(x) if

 x 6 Pļ and ř P^ if j > 1. Assuming that pairwise disjoint
 sets P.,P0,...,P have been chosen so that P. is perfect and
 i ¿L n i

 a, E P. if j > i, I - < i < n, To define P ,, note that
 J i - n+ 1

 f(a x i) ' < 9(a 3 v ,), ' so there exists an r ,>0 such that x n+ 1 ' 3 v n+ 1 ' n+ 1

 f(a v . ) ' + r < g(a 3 v ,). ' Since g 3 6 VB. there is a perfect r set v n+ . 1 ' n-«- 1 3 v n+ 1 ' 3 . 1 r
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 P .CI ' €U?P. such that a , = sup K P , and n+1 n+ 1 i = 1 i n+ 1 , sup K n+ , 1

 f(a I ) ' + r < q(x) j ' for all x £ P . Clearly, J the sequence ^ n+ I ' n+1 j ' n+1 J ^

 {Pn}™_1 chosen in this way satisfies properties (a) and (b) of
 Lemma A3. Hence, there exists a bounded upper sem i -con t i nuous

 function h^ satisfying (l) through (-4) of Lemma A3. The

 relation h^ < g on I was built into the construction. This

 together with (2) of Lemma A3 implies that h^ satisfies (l)

 above. Moreover, (4) of Lemma A3 implies that h^ also satisfies
 (2) above.

 Applying a similar argument to h^ and I'Q+(h^) we get the
 function h of this lemma, completing the proof.

 Theorem B 1 . Let f be a bounded upper sem i -cont '1 nuous function

 and 1 e t g^ and g^ be two bounded Darboux Bai re 1 functions such

 that gļ < f < g^ on I. Then there exists a bounded Darboux

 upper semi -conti nuous function g such that g^ < g < g^ on I,
 Proof ♦ By Lemma Bl, there exists g E bZ?usc such that

 f < g < ç}^ on Clearly, g is the desired function.

 Theorem B2. Let g^ and g^ be two bounded Darboux upper semi-

 conti nuous functions such that g^ ^ S2 Then there exists
 a bounded Darboux upper sem i -cont i nuous function g such that

 9-| < 9 < 92 on I-

 Proof. Since g^,g^ £ use, the function f = ^(g^+g^) 6 use and
 < f < on I. By Theorem Bl, there exists g 6 bZ?usc such

 that f < g < g^ on I . Clearly, g is the desired function.
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 Remark BK Let f be a real valued function defined on I and

 let P be a nonempty perfect subset of I, We write f 6 #(P) if

 whenever x is a right (resp, left) limit point of P, f(x) is a

 right (resp, left) limit point of f(p), We write f E 23^(P) if
 f 1 (G) HP i s an for each open set G, These definitions are

 due to Bruckner and Ceder [3], Note that if P is an interval,

 Z?(P) PI 3^(P) coincides with the Darboux functions on P [2].
 We will say that f is upper semi -conti nuous on P, written

 f 6 usc(P), if f|P, the restriction of f to P, is upper semi-

 continuous on P.

 It is clear that, with proper modifications, all the

 lemmas and theorems we have established are extendable to

 functions f E usc(P) , In particular we have

 Theorem B3, Let P be a nonempty perfect subset of I, or an

 i nterval , and 1 et f E busc(P) (resp , f E blsc(P)), Then there

 exists a function g 6 bZ?usc(P) (resp , g E bZ?lsc(P)) such that

 {x: f(x) t g(x)} is of first category in P and of Lebesque

 measure zero.

 Theorem B-4, Let P be a nonempty perfect subset of I, or an

 i nterval , and 1 et ^»h^ E bZ?usc(P) (resp, ^i,h2 ^ bOlsc(P)) be

 such that h^ < h^ oj2 P* Then there exists a function

 g E bZ?usc(P) (resp, g E bÖlsc(P)) such that h^ < g < h^ ojn P,
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 C, Additional Properties of Darboux Seni i -con t i nuous Functions

 In Theorems C2 through C6 below we consider the nature of

 the dense sets in b#usc. We will show that some of the

 properties, known to be typical in are also typical in

 the family bflusc, First we prove

 Lemma C 1 ♦ Let f be a bounded upper semi -conti nuous function

 and 1 et s > 0, Then there exists a bounded upper semi-

 conti nuous function g having finite range such that

 1 1 f - gl I <

 Proof, Since f is bounded there exists a real number M such

 that -M < f(x) < M for all x in I.

 Let a .j , a^ , . . . , a^ be a sequence of points in [-M,M] such
 that -M = a < a ,-<...< a„< a, = M and a. -a. , < s for all n n- 1 2 1 i i * , 1

 i 6 { 1 , 2 , . . . , n- 1 } .

 For each i > 1 set G. = {x: f(x) > a.} and if 1 < i < n- 1

 set A. = G. ,' G. . Now, define q(x) a ' / = a. if x 6 A.. » i + 1 i . a ' / , ,

 Clearly, I = ?u|a. and the range of g is contained in

 { a ^ » * * * » an ļ}' Hence, g is a bounded function having finite
 range. Moreover, for any real number t, if T ={i: t > a.},

 then {x: g(x) > t} = . {x: f(x) > a.} which is obviously

 closed. Therefore, g is also upper sem i -con t i nuous , and by the

 choice of a ^ , a^ , . . . , a^ , ļ ļ f - g|¡ < s. This completes the
 proof .
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 Lemma C2. Let f be a bounded upper semi-conti nuous function

 and 1 et z > 0, Suppose that there exists a bounded Darboux

 Ba i re 1 f une t i on h such that ļ ļ f - h ļ ļ < z . Then there exists

 a bounded Darboux upper semi -conti nuous function g such that

 ( 1 ) {x: f(x) t g(x) } i s a nul 1 subset of I,

 (2) I I f - g|| < 16s,

 Proof. To begin with, assume that f" has finite range. Let

 {a 1 }" 1 , be an enumeration of I 'Q (f). v ' Since h 6 DB, , for each 1 n 1 n= , 1 v ' 1

 n > 1 there exists a perfect set P such that a = supP and
 n n n

 h(P^) C (h(an) - e , h(a )■»■ s ) . Moreover, since f G use and

 I ļ f - h I I < s, it follows that f(Pn) C (f (an)-3e , f (a ) ] .

 Clearly, the sets {Pn}™_^ may be chosen so that each P^ is
 null, diamP <. 1/n, and P flP = 0ifn*m. That is, the

 n n m

 sequence {Pn}™_^ satisfies properties (a) and (b) of Lemma A3.
 Hence, there exists a function k 6 buse satisfying (l) through

 (4) of Lemma A3. Since f(Pn) C ( f (a^) -3s , f (a^) ] we have
 I I f - k I I < 3s and ļ | h - k | | < A z . Now, if g is the function

 obtained by applying the above argument to k and I'Q+(k), then

 g satisfies (l) above and ||k - g|| < 12s. It follows that

 I I f ~ g I I < I I f ~ k I I + I I k - g I I < 15s. Fi na 1 1 y , if f does

 not have finite range, we can choose f^ of finite range such

 that ļ J f - fļ|| < in which case the resulting function g
 satisfies (2) above.
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 Theorem Cl . The class of functions f G bJJusc such that

 f(A(f)) (resp . f(c(f))) is finite is dense in b?7usc.

 Proof . Let f E b2?usc and e > 0. Using Lemma Ci, we can obtain

 a function h 6 buse having finite range such that ||f - h|| <

 s/16, Now, apply Lemma C2 to get a function g 6 bZ?usc such

 that ||f - gļļ < t and g = h a. e. It is easy to verify that

 g(A(g) ) 's finite. Since C(g) C A(g), g(C(g)) is also finite.

 The proofs of Theorems C2 through C6 below are identical

 to those in the case of Some indication of the proof is

 given in each case. For detailed proofs see [8].

 Theorem C2. The class of functions f G bZ?usc such that

 clf(A(f)) (resp. , clf(c(f))) has Lebesque measure zero i s a

 residual G„ in bZ7usc.
 6

 Proof , By Theorem CI, the class, ft, of functions f E bffusc

 such that clf(A(f)) has Lebesgue measure zero is dense in

 bZ?usc, Thus, it remains to show that ft i s a set. This is a
 ò

 consequence of the fact that "H - bOuscX^U ^ , where F^ is the
 closed subset of bZ7usc consisting of {f: |clf(A(f))| > 1/n}.

 Hence, Theorem C2 is true "A(f)". A similar argument holds for

 "C ( f ) " .

 Theorem C3. The class of functions f G bZ?usc such that

 f(A(f)) (resp. , f(C(f))) i s nowhere dense and nul 1 isa

 resi dua 1 i n bZ?usc. ^40



 Theorem C3 isa direct consequence of Theorem C2 since the

 class of Theorem C3 contains the residual class of Theorem C2.

 Theorem CM. The class of functions f 6 bftusc such that

 f ( A ( f ) ) (resp., f(C(f))) is nowhere dense is a residual in

 bDusc.

 Proof. By Theorem CI, the class, 7/, of functions f 6 bCusc

 such that f(A(f)) is nowhere dense is dense in bflusc. Hence,

 we only J need to show that V i s a G. set. Let (J 1 J } °° , be an J S . 1 n J n = , 1

 enumeration of all rational intervals.

 Let E = {fEbZ?usc: 1 J C clf(A(f))}. The set E is closed n 1 n n

 in bflusc and N = bZ?usc' U?E , Hence, the theorem follows for
 n = 1 n

 The proof for "C(f)" is similar.

 Theorem C5. The class of functions f £ btfusc such that

 f(A(0) (resp. f(C(f))) is countable is a dense first category

 subset of bflusc.

 Proof . By Theorem CI, the class, h , of functions f 6 bZ?usc

 such that f(C(f)) ' ' / / is countable is dense in böusc. Let {J L J } °° , ' ' / / L n J n = , i

 be an enumeration of all rational intervals.

 Let A = {f6bZ?usc: 1 f is constant on J fl C(f)}. v 9 J Each A n 1 n v 9 J n

 is closed and nowhere dense; moreover, N = U^A . Hence, Ti is
 n = 1 n

 of first category. If 7 denotes the class of functions

 f E bZ?usc such that f(A(f)) is countable then J C W. Hence, 7

 is also of first category and dense (by Theorem Cl).
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 Many other properties are typical in bflusc and b iE? 1 sc see

 [io], however these properties can be proved in a more general

 sett i ng [ 1 1 ] .

 Finally, the author thanks the referees for suggesting

 many improvements in this paper.
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