Jerzy Niewiarowski, Institute of Mathematics, University of Lodz, ul. Banacha 22, 90-238 Lodz, POLAND.

MONOTONE SECTIONS OF FUNCTIONS OF TWO VARIABLES

We introduce the following notation.
Let $\quad \phi: I \rightarrow R$ (where $I=[0,1]$).
If a function ϕ has a property P, we denote this fact by $P(\phi)$.
Let $f: I x I \rightarrow R$. Then for each $x \in I$ we consider $f_{x}(y)=f(x, y)$ as a function of y and for each $y \in I$ we consider $f^{Y}(x)=f(x, y)$ as a function of x.

We put

$$
A_{x}(f, P)=\left\{x ; P\left(f_{x}\right)\right\} \quad \text { and } \quad A_{y}(f, P)=\left\{y ; P\left(f^{Y}\right)\right\}
$$

Let $A_{2} \subset I$ and $A_{2} \subset I$. We investigate conditions on the sets A_{1} and A_{2} under which there exists a function f such that $A_{1}=A_{X}(f, P)$ and $A_{2}=A_{y}(f, P)$, where P is a certain fixed property such as "nondecreasing", "increasing", "nondecreasing and continuous", "increasing and continuous", "of bounded variation".

Then we construct a function fulfilling these conditions. At first we suppose that P means "nondecreasing".

Theorem 1. Let $A_{1}, A_{2} \subset$. Then there exists a function $f(x, y)$ defined on $I \times I$ such that $A_{1}=A_{x}(f, P)$ and $A_{2}=A_{y}(f, P)$ if and only if

1. $I \neq A_{1}$ and $I \neq A_{2}$ or 2. $A_{1}=A_{2}=I$ or
2. $A_{1}=I, \quad A_{2} \pm I$ and $\operatorname{card}\left(\bar{A}_{2}-A_{2}\right) \leqslant x_{0}$ or
$A_{2}=I, \quad A_{1} \neq I$ and $\operatorname{card}\left(\bar{A}_{1}-A_{1}\right) \leqslant x_{0}$.

Proof. Sufficiency. If condition $1^{\text {• }}$ or $2^{\text {• }}$ is fulfilled, we define the function $f(x, y)$ in the following way:

$$
f(x, y)= \begin{cases}(x+1)(y+1) & \text { for }(x, y) \in A_{1} \times[0,1] \cup[0,1] \times A_{2} \tag{I}\\ -(x+1)(y+1) & \text { for the remaining }(x, y) \in I \times I\end{cases}
$$

If $A_{1}=A_{2}=I$, then, obviously, only (I) is valid, and if $A_{1}=A_{2}=\varnothing$, then all points are remaining, so we use only (II). It is clear that the function $f(x, y)$ fulfills all the the required conditions. Let us suppose that the first part of condition 3^{0} is fulfilled. Then $I^{0}=\left(I^{0}-\bar{A}_{2}\right) \cup\left(\left(\bar{A}_{2}-A_{2}\right) \cap I^{0}\right) \cup$ $\left(A_{2} \cap I^{0}\right)$ where $I^{0}=(0,1)$. Let $Z=\left(\bar{A}_{2}-A_{2}\right) \cap I^{0}$. We can write down all elements of the set Z as $\left\{y_{n}\right\}$ because Z is finite or countable. Let $G=I^{0}-\bar{A}_{2}=\underset{n}{U}\left(\alpha_{n}, \beta_{n}\right)$ where $\left(\alpha_{n}, \beta_{n}\right)$ are components of G. The notation $U\left(\alpha_{n}, \beta_{n}\right)$ means that the union is finite or countable.
n We put

$$
g(y)=y+\underset{y_{i}<y}{\Sigma} \quad \frac{1}{2^{i}} \quad \text { for } \quad y \in I^{0}
$$

Next we define a function $f_{1}(x, y)$ on the set $I^{0} \times I^{0}$ by the formula

$$
f_{1}(x, y)=\left\{\begin{array}{lll}
x \cdot g(y) & \text { for } x \in I^{0}-\left\{\frac{1}{2}\right\}, & y \in I^{0} \\
\frac{1}{2} \lim _{\eta \rightarrow y^{+}} g(\eta) & \text { for } x=\frac{1}{2}, & y \in I^{0}
\end{array}\right.
$$

Let $\gamma_{n}=\lim _{\eta \rightarrow \alpha_{n}^{+}} f_{1}\left(\frac{1}{2}, \eta\right), \quad \delta_{n}=\lim _{\eta \rightarrow \beta_{n}^{-}} f_{1}\left(\frac{1}{2}, \eta\right)$. Let $h_{n}(y)$ be any increasing and continuous function defined on $\left[\alpha_{n}, \beta_{n}\right]$ such that $h_{n}\left(\alpha_{n}\right)=\gamma_{n}$. $h_{n}\left(\beta_{n}\right)=\delta_{n}$ and $h_{n}(y)<f_{1}\left(\frac{1}{2}, y\right)$ for $y \in\left(\alpha_{n}, \beta_{n}\right)$.

Now we define a function $f(x, y)$ on the set $I^{0} \times I^{0}$ by

$$
f(x, y)=\left\{\begin{array}{l}
h_{n}(y) \text { for } x=\frac{1}{2}, \quad y \in\left(\alpha_{n}, \beta_{n}\right) \tag{III}\\
f_{1}(x, y) \text { for the ramaining }(x, y) \in I^{0} \times I^{0}
\end{array}\right.
$$

It is not difficult to extend the function $f(x, y)$ to $I \times I$ in order to
obtain a function fulfilling all of the required conditions.
Necessity. We suppose that $A_{1}=I, A_{2} \subset I$ and $\operatorname{card}\left(\bar{A}_{2}-A_{2}\right)>x_{0}$. The case $A_{1} \subset I, A_{2}=I$ and $\operatorname{card}\left(\bar{A}_{1}-A_{1}\right)>x_{0}$ is analogous. We assume that we can construct a function $f(x, y)$ such that $A_{1}=A_{x}(f, P)$ and $A_{2}=A_{y}(f, P)$. The set of all limit points of the set A_{2} from both the left and the right side which do not belong to the set A_{2} is denoted by B. Of course, card $B>x_{0}$. If $y_{0} \in B$, then there exist points $x_{0}, x_{1} \in I$ such that

$$
\begin{equation*}
x_{0}<x_{1} \text { and } f^{y_{0}}\left(x_{0}\right)>f^{y_{0}}\left(x_{1}\right) . \tag{1}
\end{equation*}
$$

We shall show that the function $f_{X_{0}}(y)$ is not continuous at y_{0}. Suppose that the function $f_{x_{0}}(y)$ is continuous at y_{0}. We consider a sequence $\left\{y_{n}\right\}_{n \in N}$ such that $y_{n} \in A_{2}$ and $y_{n} \rightarrow y_{0}$. of course, $f\left(x_{0}, y_{n}\right) \leq f\left(x_{1}, y_{n}\right)$.

Hence $f\left(x_{0}, y_{0}\right) \leqslant f\left(x_{1}, y_{0}\right)$. We have contradicted (1).
Let $x_{2} \in\left(x_{0}, x_{1}\right)$. If $f\left(x_{2}, y_{0}\right)>f\left(x_{1}, y_{0}\right)$, then, as above, the function $f_{x_{2}}(y)$ is not continuous at y_{0}.

Let $f\left(x_{2}, y_{0}\right) \leqslant f\left(x_{1}, y_{0}\right)$. We suppose that the function $f_{X_{2}}(y)$ is continuous at y_{0}. From (1) we obtain $f\left(x_{2}, y_{0}\right)<f\left(x_{0}, y_{0}\right)$. There exists $\delta>0$ such that for each $y \in\left(y_{0}, y_{0}+\delta\right), f\left(x_{2}, y\right)<f\left(x_{0}, y_{0}\right)$.

There exists $y_{1} \in A_{2} \cap\left(y_{0}, y_{0}+\delta\right)$ such that $f\left(x_{0}, y_{1}\right)>f\left(x_{2}, y_{1}\right)$. We have a contradiction because $y_{1} \in A_{2}$. We obtain that all functions $f_{x}(y)$ for $x \in\left[x_{0}, x_{1}\right)$ are not continuous at y_{0}. So for $y_{0} \in B$ we have found an interval of discontinuity. With each $y \in B$ we associate exactly one such interval. There eixsts a point $x \in I$ which belongs to an uncountable family of intervals. Hence the set of points of discontinuity of the function $f_{x}(y)$ is uncountable. We obtain a contradiction because this function is nondecreasing.

Remark 1. If $A_{1}=I$ and if there exists a function $f(x, y)$ such that $A_{1}=A_{X}(f, P), \quad A_{2}=A_{y}(f, P)$, then A_{2} belongs to the class G_{δ}.

Proof. $I^{0}=\left(I^{0} \cap A_{2}\right) \cup\left(I^{0} \cap\left(\bar{A}_{2}-A_{2}\right)\right) \cup\left(I^{0}-\bar{A}_{2}\right)$. Hence A_{2} is a set of type G_{δ} because $I^{0} \cap\left(\bar{A}_{2}-A_{2}\right)$ is a set of type F_{σ}.

Definition 1. We say that a set B fulfills condition (*) with respect to a set A_{2} if and only if there exists a sequence of sets $\left\{B_{n}\right\}$ such that $B=U_{n} B_{n}$ and for every $n \quad \operatorname{card}\left(A_{2} \cap B_{n}^{C}\right) \leqslant x_{0} \quad$ ($B C$ denotes the set of all points of condensation of the set B_{n}).

Remark 2. If a set B does not fulfill condition (*) with respect to A_{2} and Z is a finite or countable set, then the set $B-Z$ does not fulfill condition (*) with respect to A_{2}.

Lemma 1. If a set $\bar{A}_{2}-A_{2}$ fulfills condition (*) with respect to A_{2} where $A_{2} \subset I$, then A_{2} belongs to the intersection of the classes $F_{\sigma \delta}$ and $G_{\delta \sigma}$.

Proof. Let $B=\bar{A}_{2}-A_{2}, B=\underset{n}{U} B_{n}$ and for every $n \quad \operatorname{card}\left(A_{2} \cap B_{n}^{C}\right)$ $\leqslant x_{0}$. For every n let $Z_{n}=A_{2} \cap B_{n}^{n}$ and $A_{2}(n)=\left(A_{2}-Z_{n}\right) \cap I^{0}$. Let G_{n} denote the union of all maximal neighborhoods $p(n)$ of points of the set $A_{2}(n) \quad$ such that $\operatorname{card}\left(P(n) \cap B_{n}\right) \leqslant x_{0}$. Then $\operatorname{card}\left(G_{n} \cap B_{n}\right) \leqslant x_{0}$ and $n_{n}^{n} A_{2}(n) \subset \sum_{n} G_{n}$, but $\sum_{n}^{n} A_{2}(n)=I^{0} n_{n}^{n}\left(A_{2}-Z_{n}\right)=I^{0} n\left(A_{2}-Z\right)$ where $Z=U_{n} Z_{n}, \quad$ card $Z \leqslant x_{0}$

From the following inclusion
we obtain that

$$
\operatorname{card}\left(\underset{\mathbf{n}}{\cap} \mathbf{G}_{\mathbf{n}} \cap \mathbf{G}\right) \leqslant \kappa_{0}
$$

We have

$$
{\underset{n}{n}}^{n} G_{n} \cap A_{2}=\left(A_{2}-Z\right) \cap I^{0}
$$

and

$$
\left(A_{2}-Z\right) \cap I^{0}=\left(\underset{n}{n}\left(G_{n} \cap I^{0}\right)-{\underset{n}{n}}_{n} G_{n}\left(I^{0}-\bar{A}_{2}\right)\right)-{\underset{n}{n}}_{n} G_{n} \cap B
$$

The set $\left(A_{2}-Z\right) \cap I^{0}$ is the intersection of a set of type G_{δ} and a set of type F_{σ} Hence A_{2} belongs to the intersection of classes $F_{\sigma \delta}$ and $G_{\delta \sigma}$.

Lemma 2. If for each $y \in B \subset I \subset O Y$ the interval (α_{y}, β_{y}) $\subset I \subset O X$ is nondegenerate, then there exists a sequence of sets $\left\{B_{n}\right\}_{n \in N}$ and a sequence a nondegenerate intervals $\left\{P_{n}\right\}_{n \in N}, P_{n} \subset I \subset O X$ such that $B=U B_{n}$ and for every $n \underset{y \in B_{n}}{n}\left(\alpha_{y}, b_{y}\right) \supset P_{n}$.

Proof. Let $\left\{P_{n}\right\}_{n \in N}$ be the sequence of all intervals with rational end-points such that $P_{n} \subset$. Then the sequence of sets B_{n} is defined by

$$
B_{n}=\left\{y \in B ;\left(\alpha_{y}, \beta_{y}\right) \supset P_{n}\right\}
$$

Now we suppose that P means "increasing".

Theorem 2. There exists a function $f(x, y)$ on $I \times I$ such that $A_{1}=$ $A_{X}(f, P)$ and $A_{2}=A_{y}(f, P)$ if and only if

1. $I \neq A_{1} \subset I$ and $I \neq A_{2} \subset I$ or
2. $A_{1}=A_{2}=I$ or
$3^{-} A_{1}=I, A_{2} \subset I$ and $\bar{A}_{2}-A_{2}$ fulfills condition (*) with respect to A_{2} or
$A_{2}=I, A_{1} \subset I$ and $\bar{A}_{1}-A_{1}$ fulfills condition (*) with respect to A_{1}.

Proof. Sufficiency. If condition 1^{\bullet} or 2^{\bullet} is fulfilled, we define the function $f(x, y)$ by (I) or II). (See the proof of Theorem l.) Now we suppose that $A_{1}=I, I \neq A_{2} \subset I$ and $\bar{A}_{2}-A_{2}$ fulfills condition (*) with respect to A_{2}. Then by Lemma 1 there exists a set H of type G_{δ} such that $I^{\bullet} \cap\left(A_{2}-Z\right) \subset H, Z \subset A_{2}$, card $Z \leqslant x_{0}$. Therefore $A=\left\{y_{n}\right\}_{n \in N}$ and $\operatorname{card}(H \cap B) \leqslant \kappa_{0}$. Let $\tilde{B}=H \cap B, H \underset{i=0}{\infty} G_{i}$ where $\left\{G_{i}\right\}$ is a nonincreasing sequence of open sets. Put $G_{i}=U\left(\alpha_{n}^{(i)}, \beta_{n}^{(i)}\right)$, where $\left(\alpha_{n}^{(i)}, \beta_{n}^{(i)}\right)$ are the components of the set G_{i}^{n}, and $\left\{y_{i}^{(n)}\right\}_{i \in N}=$
$\left(\alpha_{n}^{(0)}, \beta_{n}^{(0)}\right) \cap \tilde{B} . \quad$ For every n let $\left\{z_{i}^{(n)}\right\}_{i \in N}$ be a sequence such that

$$
\sum_{i} z_{i}^{(n)}=\frac{\beta_{n}^{(0)}-\alpha_{n}^{(0)}}{2}
$$

For every n define a function $h_{n}(y)$ for $y \in\left(\alpha_{n}^{(0)}, \beta_{n}^{(0)}\right.$) by

$$
h_{n}(y)= \begin{cases}\sum_{\sum_{i}^{(n)}<y} z_{i}^{(n)} & \text { if }\left(\alpha_{n}^{(0)}, \beta_{n}^{(0)}\right) \cap \tilde{B} \neq \varnothing \\ \frac{\beta_{n}^{(0)}-\alpha_{n}^{(0)}}{2} & \text { if }\left(\alpha_{n}^{(0)}, \beta_{n}^{(0)}\right) \cap \tilde{B}=\varnothing .\end{cases}
$$

Now we define functions $f_{1}(x, y), f_{2}(x, y)$ and $f_{3}(x, y)$ on the set $I^{0} \times I^{0}$ in the following way:
$f_{2}(x, y)= \begin{cases}y+\sum_{y_{i}<y} \frac{1}{2^{i}} & \text { for } x \in I^{0}, \\ y_{n}+\sum_{y_{i}<y_{n}} \frac{1}{2^{i}}+x \in \frac{1}{2^{n}} \quad \text { for } x \in I^{0}-Z\end{cases}$
$f_{3}(x, y)=f_{1}(x, y)+f_{2}(x, y) \quad$ for $(x, y) \in I^{0} \times I^{0}$.

We shall show that for each $x \in I^{0}$ the function $\left(f_{3}\right)_{x}(y)$ is increasing. Let $y^{\prime}<y^{*}$ and $y^{\prime} \in I^{0}-G_{0}, y^{* *} \in G_{0}, x \in\left(0, \frac{1}{2}\right]$. Then $\left(f_{1}\right)_{x}(y):\left(\alpha_{n}^{(0)}, \beta_{n}^{(0)}\right) \rightarrow\left(\alpha_{n}^{(0)}, \beta_{n}^{(0)}\right)$. There exists $\alpha_{n}^{(0)}$ such that $y^{\prime} \leq \alpha_{n}^{(0)}<y^{*}$. Hence $\left(f_{1}\right)_{x}\left(y^{\prime}\right)<\left(f_{1}\right)_{x}\left(y^{\prime \prime}\right)$. If

$$
x \in\left(\sum_{k=1}^{i} \frac{1}{2^{k}}, \sum_{k=1}^{i+1} \frac{1}{2^{k}}\right]
$$

then $\left(f_{1}\right)_{x}(y):\left(\alpha_{n}^{(i)}, \beta_{n}^{(i)}\right) \rightarrow\left(\sum_{k=0}^{i-1} \frac{1}{2^{k}}+\frac{1}{2^{i}} \alpha_{n}^{(i)}, \sum_{k=0}^{i-1} \frac{1}{2^{k}}+\frac{1}{2^{i}} \beta_{n}^{(i)}\right)$, $\left(f_{1}\right)_{x}\left(y^{\prime}\right)=\sum_{k=0}^{i-1} \frac{1}{2^{k}}+\frac{1}{2^{i}} y^{\prime} \leqslant \sum_{k=0}^{i-1} \frac{1}{2^{k}}+\frac{1}{2^{i}} \alpha_{n}^{(0)}<\left(f_{1}\right)_{x}\left(y^{*}\right)$.

In the other cases our considerations are analogous. The function $\left(f_{1}\right)_{x}(y)$ is increasing. If $y^{\prime}<y^{\prime \prime}$, then

$$
\left(f_{2}\right)_{x}\left(y^{\prime}\right)<y^{\prime}+\sum_{y_{i}<y^{\prime}} \frac{1}{2^{i}}<y^{*}+\sum_{y_{i}<y^{*}} \frac{l}{2^{i}}<\left(f_{2}\right)_{x}\left(y^{*}\right)
$$

We obtain that the function $\left(f_{2}\right)_{x}(y)$ is increasing. Hence $\left(f_{3}\right)_{x}(y)$ is increasing.

We shall show that for each $y \in \Lambda_{2}$, the function $f_{3}^{y}(x)$ is increasing. If $y \in A_{2}-Z$, then the function $\left(f_{1}\right)^{y}(x)$ is increasing because $A_{2}-Z \subset H-\tilde{B}$ and

$$
\begin{aligned}
\left(f_{1}\right)^{y}\left(\sum_{k=1}^{i} \frac{1}{2^{k}}\right) & <\lim _{\xi \rightarrow \sum_{k=1}^{i}} \frac{1}{2^{k}}+.
\end{aligned}
$$

Since the function $\left(f_{2}\right)^{y}(x)$ is constant, $\left(f_{3}\right)^{y}(x)$ is increasing. If $y \in Z$, then $\left(f_{1}\right)^{y}(x)$ is nondecreasing, $\left(f_{2}\right)^{y}(x)$ is increasing and $\left(f_{3}\right)^{y}(x)$ is increasing.

Now we show that if $H \cap\left(I^{0}-\bar{A}_{2}\right)=\varnothing$, then for each $y \in I^{0}-A_{2}$, $\left(f_{3}\right)^{y}(x)$ is not increasing. In this case we have $I^{0}-A_{2}=$ $\left(I^{0}-(H \cup Z)\right) \cup \tilde{B}$. Let $y \in I^{0}-(H \cup Z)$. Then $\left(f_{1}\right)^{y}(x)$ is not nondecreasing and $\left(f_{2}\right)^{y}(x)$ is constant. Hence $\left(f_{3}\right)^{y}(x)$ is not increasing. Let $y \in \tilde{B}$. Then $\left(f_{1}\right)^{y}(x)$ is not nondecreasing and $\left(f_{2}\right)^{y}(x)$ is constant. Hence $\left(f_{3}\right)^{y}(x)$ is not increasing. In this case the function $f_{3}(x, y)$ fulfills the required conditions.

If $H \cap\left(I^{0}-\bar{A}_{2}\right) \pm$, we put $G=G_{1} \cap\left(I^{0}-\bar{A}_{2}\right)$ and $G=U\left(\alpha_{n}, \beta_{n}\right)$, where $\left(\alpha_{n}, \beta_{n}\right)$ are components of G,

$$
\gamma_{n}=\lim _{\eta \rightarrow \alpha_{n}^{+}} f_{3}(x, \eta), \quad \delta_{n}=\lim _{\eta \rightarrow \beta_{n}^{-}} f_{3}(x, \eta) .
$$

For $x=\frac{5}{8}, y \in\left(\alpha_{n}, \beta_{n}\right)$, we change the values of the function $f_{3}(x, y)$ as in (III). (See the proof of Theorem 1.) In this way we obtain the function $f(x, y)$. We can extend this function to $I \times I$ to obtain a function fulfilling all the conditions.

Necessity. We suppose that $A_{1}=I, A_{2} \subset I, \bar{A}_{2}-A_{2}$ does not fulfill condition (*) with respect to A_{2}, and that there exists a function $f(x, y)$ defined on $I \times I$ such that $A_{1}=A_{X}(f, P)$ and $A_{2}=A_{y}(f, P)$. Let $y \in \bar{A}_{2}-A_{2}$. We have two cases.

Case 1. There exist points $x_{0}, x_{1} \in I$ such that

$$
x_{0}<x_{1} \quad \text { and } \quad f\left(x_{0}, y\right)>f\left(x_{1}, y\right)
$$

By Theorem 1 this case may occur only on a finite or countable subset Z of the set $\bar{A}_{2}-A_{2}$. Hence, for each $y \in\left(\bar{A}_{2}-A_{2}\right)-Z$, we have

Case 2. There exists an interval $\left(\alpha_{y}, \beta_{y}\right) \subset I$ such that the function $f^{y}(x)$ is constant on this interval. Let $B=\left(\bar{A}_{\mathbf{2}}-A_{2}\right)-Z$. By Lemma 2 there exist a sequence of sets $\left\{B_{n}\right\}_{n \in N}$ and a sequence of intervals $\left\{P_{n}\right\}_{n \in N}$ such that $B=\underset{\sim}{U} B_{n}$ and for every $n \underset{y \in B_{n}}{n}\left(\alpha_{y}, \beta_{y}\right)>P_{n}$.

By Remark 2 the set B does not fulfill condition (*) with respect to the set A_{2}. Therefore, there exists $n_{0} \in N$ such that $A_{2} \cap B_{n_{0}}^{C}>x_{0}$. Of course $n_{y \in B_{n_{0}}}\left(\alpha_{y}, \beta_{y}\right) \supset P_{n_{0}}$. Let $x_{0}, x_{1} \in P_{n_{0}}$ and $x_{0}<x_{1}$. If $y_{0} \in A_{2} \cap B_{n_{0}}^{c}$, then there exists a sequence $\left\{y_{n}\right\}_{n \in N}$ such that $y_{n} \in B_{n_{0}}$ and $y_{n} \rightarrow y_{0}$, but

$$
f\left(x_{0}, y_{0}\right)<f\left(x_{1}, y_{0}\right) \quad \text { and } \quad f\left(x_{0}, y_{n}\right)=f\left(x_{1}, y_{n}\right)
$$

Both $f_{x_{0}}(y)$ and $f_{x_{1}}(y)$ cannot be simultaneously continuous at the point Yo. So at least one of these functions has an uncountable set of discontinuity points, which is impossible.

Remark 3. If A_{2} is a set of the first category on some interval $J \subset I$ and it is c-dense on this interval, then $\overline{\mathbf{A}}_{2}-\mathrm{A}_{2}$ does not fulfill condition (*) with respect to A_{2}.

Proof. We assume that $\overline{\mathbf{A}}_{2}-\mathrm{A}_{2}$ fulfills condition (*) with respect to A_{2}. Then by the proof of Lemma l there exist a set $H \subset J$ of type G_{δ} and a countable set $Z \subset J$ such that $H=\left(J \cap A_{2} \cup\left(H \cap\left(\bar{A}_{2}-A_{2}\right)\right)\right.$) Z. Hence $H \cap J$ is a G_{δ}-set of the first category, dense on the interval J. This contradicts the Baire category Theorem.

Example 1. Let $\left\{r_{i}\right\}_{i \in N}$ be the rational numbers from the interval I^{0}. For each $n \in N$ let $G_{n}=\underset{i \in N}{U}\left(r_{i}-\frac{1}{2^{i+n+1}}, \quad r_{i}+\frac{1}{2^{i+n+1}}\right)$, $G=\cap_{n \in N} G_{n}$, and $F=I-G$. Then for $A_{1}=I$ and $A_{2}=G$ we can construct a function $f(x, y)$ on $I \times I$ such that $A_{1}=A_{X}(f, P)$, $A_{2}=A_{y}(f, P)$. Although $\operatorname{card}\left(G \cap(\bar{G}-G)^{C}\right)>x_{0}$, we have $\bar{G}-G=$
$U\left(I-G_{n}\right)$ and $\operatorname{card}\left(G \cap\left(I-G_{n}\right)^{c}\right)=0$ for every n, and so, $\bar{G}-G$ $\mathbf{n} \in \mathbf{N}$
fulfills condition ($*$) with respect to G. Now let $A_{1}=I, \quad A_{2}=F$.
The set F is of the first category and c-dense on the interval I. By Remark 3 and Theorem 2 it is not possible to construct a function $f(x, y)$ such that $A_{1}=A_{X}(f, P), \quad A_{2}=A_{y}(f, P)$.

Now let P mean "nondecreasing and continuous".

Theorem 3. There exists a function $f(x, y)$ defined on $I \times I$ such that $A_{1}=A_{x}(f, P), \quad A_{2}=A_{y}(f, P)$ if and only if:

1. $I \neq A_{1} \subset I$ and $I \neq A_{2} \subset I$ or
2. $\quad A_{1}=A_{2}=I$ or
3. $\quad A_{1}=I, A_{2} \subset I$ and $I^{0}-A_{2}=G \cup D$ where G is an open set and D is a subset of the set of one-sided limit points of A_{2}, or a symmetric condition holds with respect to A_{1}.

Proof. Sufficiency. If condition 1^{\bullet} or 2^{\bullet} is fulfilled, we define the function $f(x, y)$ by (I) or (II). So suppose that condition 3^{\bullet} holds. Hence $I-A_{2}={\underset{n}{n}}_{U} P_{n}$ or $I-A_{2}$ is the union of $\int_{n}^{U} P_{n}$ and at least one end-point of the interval $[0,1]$ where P_{n} is an open interval or a closed interval or a half-open interval. Let the sequences $\left\{c_{n}\right\}_{n \in N},\left\{d_{n}\right\}_{n \in N},\left\{e_{n}\right\}_{n \in N}$ fulfill the following conditions.

$$
\begin{array}{ll}
0<c_{n}<c_{n+1}, & d_{n}<d_{n+1}, c_{n}<e_{n}<c_{n+1}, \\
\lim _{n \rightarrow \infty} c_{n}=1, & \lim _{n \rightarrow \infty} d_{n}=d<+\infty
\end{array}
$$

We denote by a_{n} and b_{n} the end-points of the interval P_{n}. Let $g_{n}(y)$ be a linear function for $y \in\left(a_{n}, b_{n}\right)$, joining the points $\left(a_{n}, d_{n}\right)$ and $\left(b_{n}, d_{n+1}\right)$. Let $\check{g}_{n}(y)$ and $\hat{g}_{n}(y)$ be any continuous functions increasing on (a_{n}, b_{n}) such that

$$
g_{n}(y)=\check{g}_{n}(y)=\hat{g}_{n}(y)= \begin{cases}d_{n} & \text { for } y \in\left[0, a_{n}\right] \\ d_{n+1} & \text { for } y \in\left[b_{n}, l\right]\end{cases}
$$

$$
\check{g}_{n}(y)<g_{n}(y)<\hat{g}_{n}(y) \quad \text { whenever } \quad y \in\left(a_{n}, b_{n}\right) .
$$

Now we construct the function $f(x, y)$. In all cases we let $f(x, y)=d$ for $(x, y) \in\left[0, c_{1}\right) \times[0,1]$ and for each n put $f\left(e_{n}, y\right)=g_{n}(y)$ for $y \in[0,1]$. First we consider the case $P_{n}=\left[a_{n}, b_{n}\right]$. Then at the remaining points of the closed trapezoid with vertices $\left(c_{n}, 0\right),\left(e_{n}, 0\right),\left(e_{n}, b_{n}\right),\left(c_{n}, l\right)$ we put $f(x, y)=d_{n}$. At the remaining points of the closed trapezoid with vertices $\left(e_{n}, a_{n}\right),\left(c_{n+1}, 0\right),\left(c_{n+1}, l\right)$, ($\left.e_{n}, l\right)$ we put $f(x, y)=d_{n+1}$. On the triangle with vertices $\left(c_{n}, l\right),\left(e_{n}, b_{n}\right),\left(e_{n}, l\right)$ we define the function $f(x, y)$ in such a way that all sections $f^{y}(x)$ for $y \in\left(b_{n}, l\right)$ are linear functions joining the points $\left(e_{n}-\frac{\left(e_{n}-c_{n}\right)\left(y-b_{n}\right)}{1-b_{n}}, d_{n}\right)$ and $\left(e_{n}, d_{n+1}\right)$ for $x \in\left(e_{n}-\frac{\left(e_{n}-c_{n}\right)\left(y-b_{n}\right)}{l-b_{n}}, e_{n}\right)$. In a similar way we define $f(x, y)$ on the triangle completing the rectangle bounded by $x=c_{n}$ and $x=c_{n+1}$.

We now consider the case $P_{n}=\left(a_{n}, b_{n}\right)$. We define the function $f(x, y)$ so that all sections $f^{y}(x)$ for $y \in[0,1]$ are linear functions joining the points $\left(c_{n}, d_{n}\right)$ and $\left(e_{n}, \check{g}_{n}(y)\right)$ for $x \in\left[c_{n}, e_{n}\right)$ and the points ($e_{n}, \hat{g}_{n}(y)$) and $\left(c_{n+1}, d_{n+1}\right)$ for $x \in\left(e_{n}, c_{n+1}\right]$. If $P_{n}=\left(a_{n}, b_{n}\right]$, then on $\left[c_{n}, e_{n}\right) \times[0,1]$ we construct $f(x, y)$ as in the first case and on ($\left.e_{n}, c_{n+1}\right] \times[0,1]$ we construct $f(x, y)$ as in the second case. If $P_{n}=$ [a_{n}, b_{n}), we proceed symmetrically. For $y \in[0,1]$ we put $f(1, y)=d$. If $0 \notin A_{2}$ or $l \notin A_{2}$, it is not difficult to make a modification of this definition so that the function $f(x, y)$ will satisfy all the required conditions.

Necessity. We suppose that conditions $1^{\bullet}, 2^{\bullet}, 3^{\bullet}$ are not fulfilled. Then $A_{1}=I$ and there exists a point y_{0} in $I^{0}-A_{2}$ which is a bilateral limit point of $\boldsymbol{A}_{\mathbf{2}}$. We assume that there exists a function $f(x, y)$ such that $A_{1}=A_{X}(f, P)$ and $A_{2}=A_{y}(f, P)$. Then the function $f^{y o}(x)$ is not nondecreasing or is not continuous. In the first case from the proof of Theorem l it follows that there exists an interval P_{0} such that for each $x \in P_{0}$ the function $f_{X}(y)$ is not continuous. We obtain a contradiction. In the second case we assume that the function $f^{y o}(x)$ is not continuous at a point x_{0}. Then we have

$$
\begin{equation*}
f^{y_{0}}\left(x_{0}\right)<\lim _{\xi \rightarrow x_{0}^{+}} f^{y_{0}}(\xi)=a \quad \text { or } \tag{2}
\end{equation*}
$$

$$
b=\lim _{\xi \rightarrow x_{0}^{-}} f^{y_{0}}(\xi)<f^{y_{0}}\left(x_{0}\right)
$$

From (2) it follows that for each $x \in I$ if $x>x_{0}$, then $f_{x}\left(y_{0}\right) \geq a$. There exists $y_{1} \in A_{1}, y_{1}>y_{0}$, such that $f\left(x_{0}, y_{1}\right)<a$. But $\lim f(\xi)=f\left(x_{0}, y_{1}\right)$. So there exists $x_{1}>x_{0}$ such that $f\left(x_{1}, y_{1}\right)<a$ $\xi \rightarrow \mathrm{x}_{0}^{+}$ which is a contradiction.

From (3) in an analogous way we obtain a contradiction.

Remark 4. If $A_{1}=I, I \neq A_{2} \subset I$ and if there exists a function $f(x, y)$ such that $A_{1}=A_{X}(f, P), \quad A_{2}=A_{y}(f, P)$, then A_{2} is a set of type G_{δ}.

Definition 2. We say that a set D fulfills condition (**) with respect to A_{2} if and only if there exists a sequence set $\left\{D_{n}\right\}_{n \in N}$ such that $D=\begin{aligned} & U \\ & n\end{aligned} D_{n}$ and for every $n \quad A_{2} \cap D_{n}^{C}=\varnothing$.

Remark 5. If D does not fulfill condition (**) with respect to A_{2}, then the set $D-Z$ where Z is any countable set does not fulfill this condition.

Remark 6. Let a function $g(x, y)$ be defined on $[\alpha, \beta] \times[0,1]$ where $\beta-\alpha<1$ such that $g_{X}(y)$ are increasing functions for each $x \in[\alpha, \beta]$ and $g^{y}(x)$ are nondecreasing functions for each $y \in[0,1]$. Then there exists a function $g_{1}(x, y)$ defined on $[\alpha, \beta] \times[0,1]$ such that $g_{1}(x, y)$ is increasing on every vertical and horizontal section of the triangle with vertices $(\alpha, 0),(\beta, 0),(\beta, \beta-\alpha)$ and $g_{1}(x, y)=g(x, y)$ on the complement of this triangle in $[\alpha, \beta] \times[0,1]$.

A similar result can be obtained with respect to the triangle with vertices $(\alpha, 1+\alpha-\beta),(\beta, 1),(\alpha, 1)$.

Proof. We project orthogonally all points of this triangle on its hypotenuse. Let the value of g_{1} at (x, y) be equal to the value of g at the projection of (x, y). At the remaining points of the rectangle we do not change the function g. It is easy to verify that the function g_{1} has
the required properties.
Let P now mean "increasing and continuous".

Theorem 4. There exists a function $f(x, y)$ on the set $I \times I$ such that $A_{1}=A_{x}(f, P), \quad A_{2}=A_{y}(f, P)$ if and only if:

1- $I \neq A_{1} \subset I$ and $I \neq A_{2} \subset I$ or
2. $A_{1}=A_{2}=I$ or
3. $A_{1}=I, A_{2} \subset I$ and $\bar{A}_{2}-A_{2}$ fulfills condition (**) with respect to the set A_{2} or
$A_{2}=I, A_{1} \subset I, \bar{A}_{1}-A_{1}$ fulfills condition (**) with respect to the set A_{1}.

Proof. Sufficiency. Use Theorem 1 if 1^{\bullet} or 2^{\bullet} occur. Let $B=\bar{A}_{\mathbf{2}}-A_{2}$ and suppose that B fulfills condition (**) with respect to A_{2}. Then $B=U B_{n}$ and for every $n A_{2} \cap B_{n}^{C}=1$. Accordingly there exist open sets n G_{n} such that $I^{0} \cap A_{2} \subset G_{n}$ and $\operatorname{card}\left(B_{n} \cap G_{n}\right) \leqslant x_{0}$. Let $H=\cap G_{n}$. Then $I^{0} \cap A_{2} \subset H$ and $\operatorname{card}(B \cap H) \leqslant x_{0}$. We can assume that $G_{n+1} \subset{ }_{\mathrm{G}}^{\mathrm{n}}$. for $n \in N$. Let $\left\{c_{n}\right\}_{n \in N}$ and $\left\{d_{n}\right\}_{n \in N}$ be sequences such that $0<c_{n}<c_{n+1}$ for $n \in N, \lim _{n \rightarrow \infty} c_{n}=c<1, \sum_{n=1}^{\infty} \gamma_{n}<+\infty$ where $\gamma_{n}=c-c_{n}$ and $c<d_{1}, d_{n}<d_{n+1}$ for $n \in N, \lim _{n \rightarrow \infty} d_{n}=1, \sum_{n=1}^{\infty} \delta_{n}<+\infty$ where $\delta_{n}=1-d_{n}$. If $H \cap\left(I^{0}-\bar{A}_{2}\right)=$, then we put $f_{1}(x, y)=x \cdot y$ for $(x, y) \in\left[0, \frac{c_{1}}{2}\right] \times[0,1]$. If $H \cap\left(I^{0}-\bar{A}_{2}\right) \neq$, then $G_{1} \cap\left(I^{0}-\bar{A}_{2}\right)=\underset{i}{U}\left(a_{i}, b_{i}\right)$ and we change the function $f_{1}(x, y)$ for $x=\frac{c_{1}}{4}, y \in\left(a_{i}, b_{i}\right)$ similarly as in (III). (See the proof of Theorem 1.) We denote the elements of the set $H \cap B$ by $\left\{\alpha_{n}\right\}$. This set is finite or countable. We define a sequence $\left\{\beta_{n}\right\}_{n \in N}$ such that

$$
\begin{aligned}
& \beta_{1}-\alpha_{1} \gamma_{1}=1, \\
& \beta_{n+1}=\beta_{n}+\gamma_{2 n-1}\left(1-\alpha_{n}\right) c_{2 n}+\alpha_{n+1} \cdot \gamma_{2 n+1}
\end{aligned}
$$

and

$$
\lim _{n \rightarrow \infty} \beta_{n}=\beta
$$

This is possible because $\sum_{n=i}^{\infty} \gamma_{n}<\infty$ and $c_{n}<1$ for every \therefore. Now we define the function $f_{1}(x, y)$ on the rectangles $\left[c_{2 n-1}, c_{2} n . \times[0,1]\right.$ by
$f_{1}(x, y)= \begin{cases}\beta_{n}+\left(y-\alpha_{n}\right)(c-x) & \text { for } x \in\left[c_{2 n-1}, c_{2 n}\right], y \in\left[0, \alpha_{n}\right] \\ \beta_{n} & \text { for } x \in\left[c_{2 n-1}, c_{2 n}\right], y=\alpha_{n} \\ \beta_{n}+\gamma_{2 n-1} \cdot x \cdot\left(y-\alpha_{n}\right) & \text { for } x \in\left[c_{2 n-1}, c_{2 n}\right], y \in\left(\alpha_{n}, 1\right] .\end{cases}$
Let $f_{1}(c, y)=\beta$ for $y \in[0,1]$. We have $G_{n}=\underset{i}{U}\left(a_{i}^{(n)}, b_{i}^{(n)}\right)$ for $n \in N$.
Next we define a sequence $\left\{\eta_{\mathrm{n}}\right\}_{\mathrm{n} \in \mathrm{N}}$ such that $\boldsymbol{\eta}_{1}>\beta, \boldsymbol{\eta}_{\mathrm{n}+1}=\eta_{\mathrm{n}}+\delta \mathrm{n}_{\mathrm{n}-1}$ and for every n a sequence $\left\{\varepsilon_{i}^{(n)}\right\}_{i \in N}$ such that $0<\varepsilon_{i}^{(n)}<\frac{b_{i}^{(n)}-a_{i}^{(n)}}{2}$. We construct the function $f_{1}(x, y)$ on $\left[d_{2 n-1}, d_{2 n}\right] \times[0,1]$ by

Let $f_{1}(1, y)=\lim _{n \rightarrow \infty} \eta_{n}<+\infty$. The function $f_{1}(x, y)$ on the intervals $\left[\frac{c_{1}}{2}, c_{1}\right],\left[c_{2 n}, c_{2 n+1}\right],\left[c, d_{1}\right],\left[d_{2 n}, d_{2 n+1}\right]$ is for each $y \in[0,1]$ a
linear function joining the value of the function f_{1}^{y} at the left endpoint of the above-mentioned intervals and the value of the function f_{1}^{y} at the right end-point of these intervals. If $\{0\} \cup\{1\} \subset I-A_{2}$, then one may verify as in the proof of Theorem 2 that the function $f_{1}(x, y)+y$ satisfies all the required conditions. If $0 \in A_{2}$, we use Remark 6 to construct a function $f_{1}(x, y)$ such that $f_{1}(x, y)+y$ satisfies all the required conditions.

We proceed similarly in the case when $l \in A_{2}$.
Necessity. We assume that $A_{1}=I, A_{2} \subset I$ and the set $B=\bar{A}_{2}-A_{2}$ does not fulfill condition ($* *$) with respect to the set A_{2}. Let Z be the set of one-sided limit points of the set A_{2}. Let $y_{o} \in B-Z$. If the function $f^{y_{0}}(x)$ is not continuous, then by the proof of Theorem 3 there exists x_{0} such that the function $f_{x_{0}}(y)$ is not continuous. This contradicts the equality $A_{X}(f, P)=I$. If $f^{y_{0}}(x)$ is not increasing, then there exist points $x_{0}, x_{1} \in I$ such that $x_{0}<x_{1}$ and $f\left(x_{0}, y_{0}\right)>f\left(x_{1}, y_{0}\right)$ or $f^{y_{0}}(x)$ is constant on some interval $\left(\alpha_{y_{0}}, \beta_{y_{0}}\right)$. The first case by the proof of Theorem 1 is not possible. So the function $f^{y}(x)$ is constant on the interval $\left(\alpha, \beta_{y}\right)$ where $y \in B-Z$. By Lemma 2 there exist a sequence of sets $\left\{B_{n}\right\}_{n \in N}$ and a sequence of intervals $\left\{P_{n}\right\}_{n \in N}$ such that

$$
B-Z=\underset{n}{U} B_{n} \quad \text { and }{\underset{y \in B_{n}}{ }}\left(\alpha_{y}, \beta_{y}\right) \supset P_{n} \quad \text { for every } n
$$

By Remark 5 it follows that the set B - Z does not satisfy condition (**) with respect to the set A_{2}. Therefore, there exists $n_{0} \in N$ such that $A_{2} \cap B_{n_{0}}^{C} \neq$ and by Lemma 2

$$
{\underset{y \in B_{n_{0}}}{ }\left(\alpha_{y}, \beta_{y}\right)>P_{n_{0}}}
$$

We obtain a contradiction just as in the proof of Theorem 2.
We obtain the following as we did Remark 3.

Remark 7. If a set A_{2} is a set of the first category in some interval $J \subset I$ and if it is dense in this interval, then the set $\bar{A}_{2}-A_{2}$ does not fulfill condition ($* *$) with respect to \mathbf{A}_{2}.

Corollary 1. Let $A_{1}=I$ and let A_{2} be the set of all rational numbers from the interval I. Then there does not exist a function such that $A_{1}=A_{X}(f, P), \quad A_{2}=A_{y}(f, P)$.

Remark 8. The set G defined in Example 1 fulfills condition (**) while I - G does not.

Remark 9. If $A_{1}=I, \quad I \neq A_{2} \subset I$ and there exists a function $f(x, y)$ such that $A_{1}=A_{X}(f, P), A_{2}=A_{y}(f, P)$, then the set A_{2} must be both a $\mathrm{G}_{\delta \sigma^{-}}$set and an $\mathrm{F}_{\sigma \delta}$-set.

Lastly, let P mean "of bounded variation".

Theoren 5. For any sets $A_{1} \subset I, A_{2} \subset I$, there exists a function $f(x, y)$ such that $A_{1}=A_{X}(f, P), \quad A_{2}=A_{y}(f, P)$.

Proof. We assume that $I-A_{1} \neq$ and $I-A_{2} \neq$ and for each $y \in I-A_{2}$ we choose a sequence $B_{y}=\left\{x_{y}^{(n)}\right\}_{n \in N}$ such that the sets B_{y} are mutually disjoint and $\underset{y \in I-A_{2}}{U} B_{y} \subset I$ (a subset of the x-axis). For each $x \in I-A_{1}$ we choose a sequence $A_{x}=\left\{y_{x}^{(n)}\right\}_{n \in N}$ such that the sets A_{X} are mutually disjoint and $\underset{x \in I-A_{1}}{U} A_{X} \subset I$ (a subset of the y-axis).

We define

$$
f_{1}(x, y)= \begin{cases}\frac{1}{n} & \text { for } x=x_{y}^{(n)}, y \in I-A_{2} \\ 0 & \text { for the remaining }(x, y) \in I \times I\end{cases}
$$

and

$$
f(x, y)= \begin{cases}\frac{1}{n} & \text { for } x \in I-A_{1}, \quad y=y_{x}^{(n)} \\ f_{1}(x, y) & \text { for the remaining } \\ (x, y) \in I \times I .\end{cases}
$$

It is easy to verify that $f(x, y)$ satisfies all the required conditions.
If $I-A_{1}=\varnothing$, then $f_{1}(x, y)$ is the required function. The case
$I-A_{2}=$ is symmetric and the case $I-A_{2}=\varnothing, I-A_{1}=\varnothing$ is obvious.

Received June 26, 1985

