Real Analysis Exchange Vol. 11 (1985-86)
James Foran, Department of Mathematics, University of Missouri-Kansas City, Kansas City, Missouri 64110

CONTINUOUS FUNCTIONS NEED NOT HAVE σ-POROUS GRAPHS

Porosity and σ-porosity are concepts which were first introduced in [1]. The purpose of this paper is to answer a question posed by Paul Humke; namely, do continous real functions have σ-porous graphs? The following definitions will be needed:

1) A set E has porosity s at x if $\overline{\operatorname{Im}} r^{\prime} / r=s$ where r^{\prime} is the radius of the largest circle whose interior misses E and lies inside the circle of radius r centered at x.
2) A set E is porous if each $x \in E$ has porosity greater than zero.
3) A set E is σ-porous if E is the countable union of porous sets.

Another way to consider porosity is as follows:
If B is a circle, let $m * B$ denote the circle with the same center as B and radius m times that of B. A point $x \in E$ has porosity greater than s if and only if there are arbitrarily small circles B whose interior misses E such that x is in the interior of $\mathrm{m} * \mathrm{~B}$ where $\mathrm{s}<1 /(\mathrm{m}+1)$.

This known equivalence can be seen by noting that if B is a ball of radius r^{\prime} and x is in the interior of $m^{*} B$, then if $r=m r^{\prime}+r^{\prime}$, B is contained in the circle of radius r centered at x. Thus for $s<\frac{1}{m+1} \frac{r^{\prime}}{r}$,
the porosity of E at x is greater than s . For similar reasons, the converse also holds. The porosity of a point can be no more than $1 / 2$. Nonetheless, the following result holds for the graphs of continuous functions and, as pointed out by the referee, for all nowhere dense subsets E of R^{N}; namely, the set of points of porosity $1 / 2$ of E is residual in E. To see this, consider $F^{\prime}=\bigcap_{m, k} F_{m k}$ where $E_{m, k}=\left\{x \in E\right.$: there is $Z \in R^{N}$ with dist (Z, x) $<(1+1 / k)$ dist $(z, E)<1 / m\}$. The ball of radius $(1+1 / k) \cdot 2$ dist (z, E) centered at \dot{x} contains the ball of radius dist (z, E) centered at Z and the second ball has no points of E in its interior. Thus, each point of E^{\prime} is a point of parosity $1 / 2$ of E and, since each $E_{m k}$ is open and dense in E, E^{\prime} is residual in E.

The example below is that of a function whose graph is non- σ-porous. The graph has Hausdorff dimension 2. It is not known whether a lower dimension number is possible or, for that matter, whether a function of bounded variation
could have a non- σ-porous graph. The function $F(x)=$ $x^{3 / 4} \cos \left(x^{-1 / 2}\right)$ with $F(0)=0$ has $(0,0)$ as a point of nonporosity of its graph and is absolutely continuous. It is not difficult to have the set of points of non-porosity be dense in the graph of a function of bounded variation. It is not clear whether this set could be uncountable. The following lemmas will be needed in the construction of a continuous f whose graph is non- σ-porous:

Lemma 1. Let $c_{1}=1 / 3$ and $c_{n+1}=c_{n} /(2 n+1)$. Suppose that E is a subset of the plane, $x \in E$ and for $n>N$ the circle of radius c_{n+1} centered at x contains no circle of radius c_{n+3} which misses E. Then x is a point of non-porosity of E .
Proof. Suppose E has porosity greater than $1 / \mathrm{m}$ at x . Choose n so that $\mathrm{m}<2 \mathrm{n}+5$. Given $\varepsilon>0$ with $\varepsilon<$ $\mathrm{c}_{\mathrm{n}+2}$, there is a circle of radius r with $\mathrm{r}<\varepsilon$ centered at x and a circle of radius r ' which misses E and is contained in the circle of radius r and $r^{\prime} / r>1 / m$. Choose p so that $c_{p+2}<r \leq c_{p+1}$. Then

$$
\frac{1}{m}<\frac{r^{\prime}}{r}<\frac{r^{\prime}}{c_{p+2}}<\frac{c_{p+3}}{c_{p+2}}=\frac{1}{2 p+5}<\frac{1}{m}
$$

which is a contradiction and thus the lemma is proved.

In what follows denote the graph of f on the set X by $B(f ; x)$.

Lenma 2. Suppose F is defined and continuous on a
perfect set $F=F_{1,1}$ of $[0,1]$. Suppose that for every pair of natural numbers (k, n) with $n \geq k$ there are perfect sets $F_{k, n}$ satisfying the following: Given any natural numbers $k>1, n_{1}, n_{2}, \ldots n_{k-1}$ with $1 \leq n_{1}$
$<n_{2}<\ldots<n_{k-1}, \underline{\text { let }} F_{j}=F_{1, n_{1}} \cap F_{2, n_{2}} \cap \ldots \cap F_{j, n_{j}}$.
Suppose that for all $n>n_{k-1}$ and for all such choices of n_{i}
i) each point of ${ }^{R}\left(f ; F_{k-1} \cap F_{k, n}\right)$ is a point of nonporosity of $B\left(f ; F_{k-1}\right)$
ii) $F_{k-1} \cap \underset{n>k}{U} F_{k, n}$ is dense in F_{k-1}.

Then $B(f ; F)$ is a non- σ-porous subset of the plane.
Proof. (The proof is analogous but by no means
identical to that found in [2] p. 356.) Suppose not.
Then $B(f ; F)=\bigcup^{\infty} A_{n}$ where each A_{n} is a porous subset of $\mathrm{n}=1$
the plane. Let $A_{0}=\emptyset, F_{1}=F_{1,1} \cap I_{1}$ where $I_{1}=[0,1]$ and suppose that perfect sets $F_{1} \supset F_{2} \supset \ldots \supset F_{k-1}$ have been chosen where $F_{j}=\underset{i=1}{\dot{i}}\left(F_{i}, n_{i} \cap I_{i}\right) j=1,2, \ldots k-1$ and that $A_{i} \cap F_{j}=\emptyset$ for all $i<j$ and all $j \leq k-1$.

There are two possibilities for A_{k-1}, (1) A_{k-1} is dense in $\mathrm{F}_{\mathrm{k}-1}$ or (2) there is a closed interval $\mathrm{I}_{\mathrm{k}} \subset \mathrm{I}_{\mathrm{k}-1}$ with $A_{k-1} \cap F_{k-1} \cap I_{k}=\varnothing$ and $F_{k-1} \cap I_{k}$ perfect. In case (1), A_{k-1} is contained in the set of points of porosity of $B\left(f ; F_{k-1}\right)$. Then $A_{k-1} \cap B\left(f ; F_{k, n}\right)=\emptyset$ for all $n>n_{k-1}$. Select any $n_{k}>n_{k-1}$ and any $I_{k} \subset I_{k-1}$ with $F_{k, n_{k}} \cap I_{k}$.perfect and let $F_{k}=F_{k, n_{k}} \cap I_{k}$. In case (2), with I_{k} determined, using ii) select $n_{k}>n_{k-1}$ such that $F_{k-1} \cap F_{k, n_{k}} \cap I_{k}$ is perfect and let $F_{k}=$ $\mathrm{F}_{\mathrm{k}-1} \cap \mathrm{~F}_{\mathrm{k}, \mathrm{n}_{\mathrm{k}}} \cap \mathrm{I}_{\mathrm{k}}$. Proceeding in this fashion yields a decreasing sequence F_{k} of perfect sets contained in F with $A_{i} \cap B\left(f ; F_{k}\right)=\emptyset$ for all $i \leq k$ and all k. Then $\bigcap_{k=1}^{\infty} B\left(f ; F_{k}\right)$ is not empty but contains no point of $\bigcup_{k=1}^{\infty} A_{k}$, a contradiction.

Example. There is a continuous real function defined
on $[0,1]$ whose graph is a non- σ-porous subset of the plane.
Construction. The function f will be defined on a
perfect set F and thus can clearly be extended to $[0,1]$ by adding to the graph monotone functions connecting the endpoints of intervals contiguous to F. Let $c_{n}=$ $1 /(3 \cdot 5 \cdot 7 \cdot \ldots \cdot(2 n+1))$. Then each $x \in[0,1]$ can be written uniquely as $\Sigma x_{n} c_{n}$ where the x_{n} are integers with $0 \leq x_{n} \leq 2 n$. The x_{n} will be referred to as the
places in the expansion of x. The uniqueness can be obtained by using terminating 0 ' s whenever x has two expansions.

Certain other numbers will be used in constructions of
$f, F=F_{1,1}$ and $F_{k, n}$.
Thus, let $e_{n}=\frac{5}{n+4}-\frac{5}{n+5}$
$P_{n}=1 / 2+\frac{1}{n+2} \quad, \quad N_{0}=0, N_{1}=18, N_{j+1}=N_{j}!$,
$K_{j}=N_{j}-N_{j-1}$.
Note that $\sum_{n=1}^{\infty} e_{n}=1, \sum_{n=k}^{\infty} e_{n}=5 /(k+4)$ and
$\left\{p_{n}\right\}=\{5 / 6,6 / 8,7 / 10, \ldots,(n+4) / 2(n+2), \ldots\}$.
Then p_{n} can be thought of as proportions and p_{n}
decreases to $1 / 2$. Furthermore, the numbers K_{n} are
exactly divisible by $2(n+2)$ which is the p_{n} denominator
and are divisible by all P_{k} denominators when $\mathrm{k} \leq \mathrm{n}$.
To define $f(x)$, a weight w_{i} will be assigned to every
place in the expansions where

$$
w_{i}=\frac{e_{j}}{K_{j}} \text { when } N_{j-1}<i \leq N_{j} .
$$

Given x and its x_{i}, let $a_{i}(x)=a_{i}=1$ if x_{i} is odd, 0
if x_{i} is even. Finally, define $f(x)={ }_{i=1}^{\infty} a_{i}(x) w_{i}$ and
$F_{k, n}=\left\{\begin{array}{c}x \quad \text { for } j>n \#\left\{i \mid a_{i}(x)=0, N_{j-1}<i \leq N_{j}\right\} \leq n_{k} \cdot K_{j} \\ \text { and } \#\left\{i \mid a_{i}(x)=0, N_{j-1}<i \leq N_{j}\right\} \leq n_{k} \cdot K_{j} \\ 199\end{array}\right\}$

Then $x \in F_{k, n}$ if and only if eventually (when $j>n$) x has the proportion of even x_{i} and the proportion of odd x_{i} at the places in its expansion less than or equal to p_{k} in each block of i where $N_{j-1}<i<N_{j}$. Thus each $\mathrm{F}_{\mathrm{k}, \mathrm{n}}$ does not contain any points which can be written as $\sum_{i=1}^{N} \quad x_{i} c_{i}$. It follows that if $x^{m} \in F_{k, n}$ and $x^{m} \rightarrow x$, then $x_{n}^{m}=x_{n}$ eventually; that is, there is M_{n} so that $x_{n}^{m}=x_{n}$ when $n>M_{n}$. Thus each $F_{k, n}$ is closed and since it contains no isolated points each $F_{k, n}$ is perfect. Likewise, if $x^{m} \rightarrow x$ in $F_{k, n}$ then $f\left(x^{m}\right) \rightarrow f(x)$ because of the place wise definition of f.

Hence f is continuous on $F_{1,1}$ and on all $F_{k, n}$. It is clear that the $F_{k, n}$ satisfy ii) of Lenma 2. Lemma 1 will be used to show that f satisfies i) of Lemma 2 on the $F_{k, n}$ and this will prove that the graph of f is non- σ-porous. Let $k>1,1 \leq n_{1}<\ldots<n_{k-1}<n$, $\mathrm{F}_{\mathrm{k}=1}=\mathrm{F}_{1} \mathrm{n}_{1} \cap \ldots \cap \mathrm{~F}_{\mathrm{k}-1}, \mathrm{n}_{\mathrm{k}-1}$ and let $x \in F_{k-1} \cap F_{k, n}$. Sunnose $j>n+1$ and $N_{j}<i \leq N_{j+1}$ and consider the points $x-c_{i}-m c_{i+3}$ where $0 \leq m$ $<2 c_{i} / c_{i+3}$. Let x^{\prime} be one of these points and note that at most four places occur in x ' for which the value of $a_{j}\left(x^{\prime}\right) \neq a_{j}(x)$. Moreover, these places occur in between
$\mathrm{N}_{\mathrm{j}-1}$ and $\mathrm{N}_{\mathrm{j}-2}$. (This is because the possible values of $x_{i} c_{i}$ have numerators between 0 and $2 i$ inclusive and thus if $x_{i}=0, x_{i-1}=0, \ldots, x_{i-\ell-1}=0$ and $x_{i-\ell+1} \neq 0$ then $x^{\prime}=x-c_{i}$ has an even term in each place
$x^{\prime}{ }_{i-1}, \ldots x^{\prime}{ }_{i-\ell-1}$; namely, 2i, 2(i-1), ... 2(i-ौ-1) and x^{\prime} has a change of parity from x only at $x_{i-\ell+1}$. Moreover, $i-\ell+1>N_{j-1}$ because the proportions of even and odd places required of $\mathrm{F}_{\mathrm{k}, \mathrm{n}}$ are less than 1 in each block $N_{j-1}<i<N_{j}$. Similarly this occurs for each $x_{i^{\prime}}=x-c_{i}+m c_{i+3}$. Thus each such $x^{\prime} \in F_{k-1}$. Let $x^{\prime \prime}=x^{\prime}+c_{i+1}$, then $\left[x^{\prime}, x^{\prime \prime}\right] \cap F_{k-1}$ is a perfect set.
Note that

$$
f(x)-a \leq f\left(x^{\prime}\right) \leq f(x)+a
$$

where $a=4 e_{j-1} / K_{j-1}$. Due to the increased value of p_{k-1} to that of p_{k}, the function f on the interval [$\left.x^{\prime}, x^{\prime \prime}\right]$ takes on a larger range of values on F_{k-1} than it does on $F_{k, n^{\prime}}$. Specifically the range of f on [$\left.\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime}\right] \cap \mathrm{F}_{\mathrm{k}-1}$ contains points as large and as small as $f\left(x^{\prime}\right) \pm b$ where

$$
b=\sum_{i=j+2}^{\infty}\left(p_{k-1}-p_{k}\right) e_{i}=\frac{5}{(k+2)(k+1)(j+6)}>\frac{5}{(j+6)^{3}}
$$

Since $a=\frac{4.5}{(j+3)(j+4) K_{j-1}}$, is small in comparison to b and it is easily seen that $b-a>\frac{4}{(j+6)^{3}}>c_{i}$. On each interval $\left[x^{\prime}, x^{\prime \prime}\right], f(x)$ takes on values on F_{k-1} between $f(x)-(b-a)$ and $f(x)+(b-a)$ in increments of at most $1 / q$ where $q=K_{j+3}$. For if $q=K_{j+3}$ and $\frac{p}{q} \leq p_{k-1}-p_{k-1}$, then $f(x)+\frac{p}{q} \cdot \sum_{i=j+2}^{\infty} e_{i}$ is assumed on $\mathrm{F}_{\mathrm{k}-1}$ on each of these intervals. Thus the ball of radius c_{i} centered at $(x, f(x))$ does not contain a ball of radius c_{i+3} which misses $B\left(f ; F_{k-1}\right)$. Since this is true at each $x \in F_{k, n}$ when $i>N_{n+1}$ it follows that i) of Lemma 2 holds and thus f has the property that its graph is non- σ-porous.

One may further note that the graph of f on F_{i} can be connected by means of monotone singular functions each of which is constant on a dense set of intervals in each interval continguous to F_{1}. On each of the intervals where the singular functions are constant, a function having small oscillation and non- σ-porous graph can be constructed. If this process is repeated, the property that its graph is non- σ-porous on every interval contained in [0,1].

REFERENCES

1. E. Dolženko, Boundary properties of arbitrary functions, Izvestija Akad Nauk SSR Vol. 1 (1967) 1-12.
2. L. Zajicek, Sets of σ-porosity and sets of σ-porosity (q), Casopis pro pest. mat., 101 (1976) 350-359.
